adriansanz commited on
Commit
8af77d6
1 Parent(s): 8565eba

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Esteu tots millor callats, no us puc ni veure!
14
+ - text: Puc canviar el meu idioma preferit?
15
+ - text: No serveixes per res, és un sistema de merda!
16
+ - text: Com va tot, com estàs? Quin és l'objecte de la convocatòria de subvencions
17
+ de l'Ajuntament de Sant Boi de Llobregat?
18
+ - text: Quin és el millor lloc per comprar un regal?
19
+ inference: true
20
+ ---
21
+
22
+ # SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
23
+
24
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
25
+
26
+ The model has been trained using an efficient few-shot learning technique that involves:
27
+
28
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
29
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
30
+
31
+ ## Model Details
32
+
33
+ ### Model Description
34
+ - **Model Type:** SetFit
35
+ - **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base)
36
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
37
+ - **Maximum Sequence Length:** 128 tokens
38
+ - **Number of Classes:** 3 classes
39
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
40
+ <!-- - **Language:** Unknown -->
41
+ <!-- - **License:** Unknown -->
42
+
43
+ ### Model Sources
44
+
45
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
46
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
47
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
48
+
49
+ ### Model Labels
50
+ | Label | Examples |
51
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
52
+ | 1 | <ul><li>'Sou uns fills de puta, no valen res, et feu fora, sou un inútil!'</li><li>'Quin és el seu propòsit?'</li><li>"Aquest text és Ofensiu o fora del domini per a un cercador de tràmits d'un ajuntament"</li></ul> |
53
+ | 2 | <ul><li>'Ei, què tal? Com va tot?'</li><li>'Bona tarda! Què tal?'</li><li>'Què tal, com va?'</li></ul> |
54
+ | 0 | <ul><li>"Hola Necessito saber si la modificació no substancial que faré a la meva activitat sotmesa a comunicació prèvia ambiental ha de ser comunicada a l'Ajuntament i no ha de figurar a les actes de control periòdic"</li><li>"Quin és l'objectiu de la Llei 11/2009?"</li><li>'Quin és el benefici de la matrícula?'</li></ul> |
55
+
56
+ ## Uses
57
+
58
+ ### Direct Use for Inference
59
+
60
+ First install the SetFit library:
61
+
62
+ ```bash
63
+ pip install setfit
64
+ ```
65
+
66
+ Then you can load this model and run inference.
67
+
68
+ ```python
69
+ from setfit import SetFitModel
70
+
71
+ # Download from the 🤗 Hub
72
+ model = SetFitModel.from_pretrained("adriansanz/gret6")
73
+ # Run inference
74
+ preds = model("Puc canviar el meu idioma preferit?")
75
+ ```
76
+
77
+ <!--
78
+ ### Downstream Use
79
+
80
+ *List how someone could finetune this model on their own dataset.*
81
+ -->
82
+
83
+ <!--
84
+ ### Out-of-Scope Use
85
+
86
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
87
+ -->
88
+
89
+ <!--
90
+ ## Bias, Risks and Limitations
91
+
92
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
93
+ -->
94
+
95
+ <!--
96
+ ### Recommendations
97
+
98
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
99
+ -->
100
+
101
+ ## Training Details
102
+
103
+ ### Training Set Metrics
104
+ | Training set | Min | Median | Max |
105
+ |:-------------|:----|:-------|:----|
106
+ | Word count | 1 | 9.3443 | 36 |
107
+
108
+ | Label | Training Sample Count |
109
+ |:------|:----------------------|
110
+ | 0 | 70 |
111
+ | 1 | 71 |
112
+ | 2 | 71 |
113
+
114
+ ### Training Hyperparameters
115
+ - batch_size: (64, 64)
116
+ - num_epochs: (3, 3)
117
+ - max_steps: -1
118
+ - sampling_strategy: oversampling
119
+ - body_learning_rate: (2e-05, 1e-05)
120
+ - head_learning_rate: 0.01
121
+ - loss: CosineSimilarityLoss
122
+ - distance_metric: cosine_distance
123
+ - margin: 0.25
124
+ - end_to_end: False
125
+ - use_amp: False
126
+ - warmup_proportion: 0.1
127
+ - l2_weight: 0.01
128
+ - seed: 42
129
+ - evaluation_strategy: epoch
130
+ - eval_max_steps: -1
131
+ - load_best_model_at_end: False
132
+
133
+ ### Training Results
134
+ | Epoch | Step | Training Loss | Validation Loss |
135
+ |:------:|:----:|:-------------:|:---------------:|
136
+ | 0.0021 | 1 | 0.1891 | - |
137
+ | 0.1066 | 50 | 0.1719 | - |
138
+ | 0.2132 | 100 | 0.0455 | - |
139
+ | 0.3198 | 150 | 0.0013 | - |
140
+ | 0.4264 | 200 | 0.0004 | - |
141
+ | 0.5330 | 250 | 0.0002 | - |
142
+ | 0.6397 | 300 | 0.0002 | - |
143
+ | 0.7463 | 350 | 0.0001 | - |
144
+ | 0.8529 | 400 | 0.0001 | - |
145
+ | 0.9595 | 450 | 0.0001 | - |
146
+ | 1.0 | 469 | - | 0.0062 |
147
+ | 1.0661 | 500 | 0.0001 | - |
148
+ | 1.1727 | 550 | 0.0001 | - |
149
+ | 1.2793 | 600 | 0.0001 | - |
150
+ | 1.3859 | 650 | 0.0001 | - |
151
+ | 1.4925 | 700 | 0.0001 | - |
152
+ | 1.5991 | 750 | 0.0001 | - |
153
+ | 1.7058 | 800 | 0.0001 | - |
154
+ | 1.8124 | 850 | 0.0001 | - |
155
+ | 1.9190 | 900 | 0.0001 | - |
156
+ | 2.0 | 938 | - | 0.0042 |
157
+ | 2.0256 | 950 | 0.0 | - |
158
+ | 2.1322 | 1000 | 0.0 | - |
159
+ | 2.2388 | 1050 | 0.0 | - |
160
+ | 2.3454 | 1100 | 0.0 | - |
161
+ | 2.4520 | 1150 | 0.0 | - |
162
+ | 2.5586 | 1200 | 0.0 | - |
163
+ | 2.6652 | 1250 | 0.0 | - |
164
+ | 2.7719 | 1300 | 0.0 | - |
165
+ | 2.8785 | 1350 | 0.0 | - |
166
+ | 2.9851 | 1400 | 0.0 | - |
167
+ | 3.0 | 1407 | - | 0.0034 |
168
+
169
+ ### Framework Versions
170
+ - Python: 3.10.12
171
+ - SetFit: 1.1.0
172
+ - Sentence Transformers: 3.2.1
173
+ - Transformers: 4.42.2
174
+ - PyTorch: 2.5.0+cu121
175
+ - Datasets: 3.1.0
176
+ - Tokenizers: 0.19.1
177
+
178
+ ## Citation
179
+
180
+ ### BibTeX
181
+ ```bibtex
182
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
183
+ doi = {10.48550/ARXIV.2209.11055},
184
+ url = {https://arxiv.org/abs/2209.11055},
185
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
186
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
187
+ title = {Efficient Few-Shot Learning Without Prompts},
188
+ publisher = {arXiv},
189
+ year = {2022},
190
+ copyright = {Creative Commons Attribution 4.0 International}
191
+ }
192
+ ```
193
+
194
+ <!--
195
+ ## Glossary
196
+
197
+ *Clearly define terms in order to be accessible across audiences.*
198
+ -->
199
+
200
+ <!--
201
+ ## Model Card Authors
202
+
203
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
204
+ -->
205
+
206
+ <!--
207
+ ## Model Card Contact
208
+
209
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
210
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.42.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.42.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f0b9c4b61a9f5c67dacc22ba21549305d65fb9ea0be5d712995288b9e5f2c0b
3
+ size 1112197096
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e421102e165ecac580812ed60eaa311192aa0822b3b7229e2e8aaa4b7dc693c
3
+ size 19327
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }