adriansanz commited on
Commit
62912e0
·
verified ·
1 Parent(s): 27468e6

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,69 +1,247 @@
1
  ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: projecte-aina/roberta-base-ca-v2
5
- tags:
6
- - generated_from_trainer
7
  metrics:
8
  - accuracy
9
- - precision
10
- - recall
11
- - f1
 
 
 
 
 
 
 
 
 
 
12
  model-index:
13
- - name: fm-tc-authentic
14
- results: []
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
 
17
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
- should probably proofread and complete it, then remove this comment. -->
19
 
20
- # fm-tc-authentic
21
 
22
- This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) on the None dataset.
23
- It achieves the following results on the evaluation set:
24
- - Loss: 0.0314
25
- - Accuracy: 1.0
26
- - Precision: 1.0
27
- - Recall: 1.0
28
- - F1: 1.0
29
 
30
- ## Model description
 
31
 
32
- More information needed
33
 
34
- ## Intended uses & limitations
 
 
 
 
 
 
 
 
35
 
36
- More information needed
37
 
38
- ## Training and evaluation data
 
 
39
 
40
- More information needed
 
 
 
 
41
 
42
- ## Training procedure
43
 
44
- ### Training hyperparameters
 
 
 
45
 
46
- The following hyperparameters were used during training:
47
- - learning_rate: 1e-05
48
- - train_batch_size: 16
49
- - eval_batch_size: 16
50
- - seed: 42
51
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
- - lr_scheduler_type: linear
53
- - lr_scheduler_warmup_steps: 500
54
- - num_epochs: 2
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- ### Training results
 
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
59
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
60
- | No log | 1.0 | 202 | 0.1516 | 0.9992 | 0.9994 | 0.9988 | 0.9991 |
61
- | No log | 2.0 | 404 | 0.0314 | 1.0 | 1.0 | 1.0 | 1.0 |
62
 
 
 
63
 
64
- ### Framework versions
 
65
 
66
- - Transformers 4.44.2
67
- - Pytorch 2.5.0+cu121
68
- - Datasets 3.1.0
69
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
3
+ library_name: setfit
 
 
 
4
  metrics:
5
  - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Quin és el percentatge de bonificació per a les famílies monoparentals o nombroses?
14
+ - text: Salut, tanque's
15
+ - text: Quin és el tema principal de l'informe previ?
16
+ - text: Quin és el destinatari de la sol·licitud de canvi d'ubicació?
17
+ - text: Què es necessita per obtenir una placa de gual?
18
+ inference: true
19
  model-index:
20
+ - name: SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.9978448275862069
32
+ name: Accuracy
33
  ---
34
 
35
+ # SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base
 
36
 
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
 
39
+ The model has been trained using an efficient few-shot learning technique that involves:
 
 
 
 
 
 
40
 
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
 
44
+ ## Model Details
45
 
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 128 tokens
51
+ - **Number of Classes:** 2 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
 
56
+ ### Model Sources
57
 
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
 
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1 | <ul><li>'Bona nit, com estàs?'</li><li>'Ei, què tal tot?'</li><li>'Hola, com està el temps?'</li></ul> |
66
+ | 0 | <ul><li>'Quin és el propòsit de la llicència administrativa?'</li><li>'Quin és el benefici de les subvencions per als infants?'</li><li>"Què acredita el certificat d'empadronament col·lectiu?"</li></ul> |
67
 
68
+ ## Evaluation
69
 
70
+ ### Metrics
71
+ | Label | Accuracy |
72
+ |:--------|:---------|
73
+ | **all** | 0.9978 |
74
 
75
+ ## Uses
76
+
77
+ ### Direct Use for Inference
78
+
79
+ First install the SetFit library:
80
+
81
+ ```bash
82
+ pip install setfit
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+
87
+ ```python
88
+ from setfit import SetFitModel
89
+
90
+ # Download from the 🤗 Hub
91
+ model = SetFitModel.from_pretrained("adriansanz/greetings-v2")
92
+ # Run inference
93
+ preds = model("Salut, tanque's")
94
+ ```
95
 
96
+ <!--
97
+ ### Downstream Use
98
 
99
+ *List how someone could finetune this model on their own dataset.*
100
+ -->
 
 
101
 
102
+ <!--
103
+ ### Out-of-Scope Use
104
 
105
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
106
+ -->
107
 
108
+ <!--
109
+ ## Bias, Risks and Limitations
110
+
111
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
112
+ -->
113
+
114
+ <!--
115
+ ### Recommendations
116
+
117
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
118
+ -->
119
+
120
+ ## Training Details
121
+
122
+ ### Training Set Metrics
123
+ | Training set | Min | Median | Max |
124
+ |:-------------|:----|:-------|:----|
125
+ | Word count | 2 | 9.8187 | 23 |
126
+
127
+ | Label | Training Sample Count |
128
+ |:------|:----------------------|
129
+ | 0 | 100 |
130
+ | 1 | 60 |
131
+
132
+ ### Training Hyperparameters
133
+ - batch_size: (16, 16)
134
+ - num_epochs: (3, 3)
135
+ - max_steps: -1
136
+ - sampling_strategy: oversampling
137
+ - body_learning_rate: (2e-05, 1e-05)
138
+ - head_learning_rate: 0.01
139
+ - loss: CosineSimilarityLoss
140
+ - distance_metric: cosine_distance
141
+ - margin: 0.25
142
+ - end_to_end: False
143
+ - use_amp: False
144
+ - warmup_proportion: 0.1
145
+ - l2_weight: 0.01
146
+ - seed: 42
147
+ - eval_max_steps: -1
148
+ - load_best_model_at_end: False
149
+
150
+ ### Training Results
151
+ | Epoch | Step | Training Loss | Validation Loss |
152
+ |:------:|:----:|:-------------:|:---------------:|
153
+ | 0.0012 | 1 | 0.2127 | - |
154
+ | 0.0581 | 50 | 0.1471 | - |
155
+ | 0.1163 | 100 | 0.0168 | - |
156
+ | 0.1744 | 150 | 0.001 | - |
157
+ | 0.2326 | 200 | 0.0004 | - |
158
+ | 0.2907 | 250 | 0.0002 | - |
159
+ | 0.3488 | 300 | 0.0001 | - |
160
+ | 0.4070 | 350 | 0.0001 | - |
161
+ | 0.4651 | 400 | 0.0001 | - |
162
+ | 0.5233 | 450 | 0.0001 | - |
163
+ | 0.5814 | 500 | 0.0001 | - |
164
+ | 0.6395 | 550 | 0.0001 | - |
165
+ | 0.6977 | 600 | 0.0001 | - |
166
+ | 0.7558 | 650 | 0.0 | - |
167
+ | 0.8140 | 700 | 0.0 | - |
168
+ | 0.8721 | 750 | 0.0 | - |
169
+ | 0.9302 | 800 | 0.0 | - |
170
+ | 0.9884 | 850 | 0.0 | - |
171
+ | 1.0465 | 900 | 0.0 | - |
172
+ | 1.1047 | 950 | 0.0 | - |
173
+ | 1.1628 | 1000 | 0.0 | - |
174
+ | 1.2209 | 1050 | 0.0 | - |
175
+ | 1.2791 | 1100 | 0.0 | - |
176
+ | 1.3372 | 1150 | 0.0 | - |
177
+ | 1.3953 | 1200 | 0.0 | - |
178
+ | 1.4535 | 1250 | 0.0 | - |
179
+ | 1.5116 | 1300 | 0.0 | - |
180
+ | 1.5698 | 1350 | 0.0 | - |
181
+ | 1.6279 | 1400 | 0.0 | - |
182
+ | 1.6860 | 1450 | 0.0 | - |
183
+ | 1.7442 | 1500 | 0.0 | - |
184
+ | 1.8023 | 1550 | 0.0 | - |
185
+ | 1.8605 | 1600 | 0.0 | - |
186
+ | 1.9186 | 1650 | 0.0 | - |
187
+ | 1.9767 | 1700 | 0.0 | - |
188
+ | 2.0349 | 1750 | 0.0 | - |
189
+ | 2.0930 | 1800 | 0.0 | - |
190
+ | 2.1512 | 1850 | 0.0 | - |
191
+ | 2.2093 | 1900 | 0.0 | - |
192
+ | 2.2674 | 1950 | 0.0 | - |
193
+ | 2.3256 | 2000 | 0.0 | - |
194
+ | 2.3837 | 2050 | 0.0 | - |
195
+ | 2.4419 | 2100 | 0.0 | - |
196
+ | 2.5 | 2150 | 0.0 | - |
197
+ | 2.5581 | 2200 | 0.0 | - |
198
+ | 2.6163 | 2250 | 0.0 | - |
199
+ | 2.6744 | 2300 | 0.0 | - |
200
+ | 2.7326 | 2350 | 0.0 | - |
201
+ | 2.7907 | 2400 | 0.0 | - |
202
+ | 2.8488 | 2450 | 0.0 | - |
203
+ | 2.9070 | 2500 | 0.0 | - |
204
+ | 2.9651 | 2550 | 0.0 | - |
205
+
206
+ ### Framework Versions
207
+ - Python: 3.10.12
208
+ - SetFit: 1.1.0
209
+ - Sentence Transformers: 3.2.1
210
+ - Transformers: 4.44.2
211
+ - PyTorch: 2.5.0+cu121
212
+ - Datasets: 3.1.0
213
+ - Tokenizers: 0.19.1
214
+
215
+ ## Citation
216
+
217
+ ### BibTeX
218
+ ```bibtex
219
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
220
+ doi = {10.48550/ARXIV.2209.11055},
221
+ url = {https://arxiv.org/abs/2209.11055},
222
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
223
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
224
+ title = {Efficient Few-Shot Learning Without Prompts},
225
+ publisher = {arXiv},
226
+ year = {2022},
227
+ copyright = {Creative Commons Attribution 4.0 International}
228
+ }
229
+ ```
230
+
231
+ <!--
232
+ ## Glossary
233
+
234
+ *Clearly define terms in order to be accessible across audiences.*
235
+ -->
236
+
237
+ <!--
238
+ ## Model Card Authors
239
+
240
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
241
+ -->
242
+
243
+ <!--
244
+ ## Model Card Contact
245
+
246
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
247
+ -->
config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "_name_or_path": "projecte-aina/roberta-base-ca-v2",
3
  "architectures": [
4
- "RobertaForSequenceClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "bos_token_id": 0,
@@ -11,23 +11,19 @@
11
  "hidden_act": "gelu",
12
  "hidden_dropout_prob": 0.1,
13
  "hidden_size": 768,
14
- "id2label": {
15
- "0": 0,
16
- "1": 1
17
- },
18
  "initializer_range": 0.02,
19
  "intermediate_size": 3072,
20
  "layer_norm_eps": 1e-05,
21
  "max_position_embeddings": 514,
22
- "model_type": "roberta",
23
  "num_attention_heads": 12,
24
  "num_hidden_layers": 12,
 
25
  "pad_token_id": 1,
26
  "position_embedding_type": "absolute",
27
- "problem_type": "single_label_classification",
28
  "torch_dtype": "float32",
29
  "transformers_version": "4.44.2",
30
  "type_vocab_size": 1,
31
  "use_cache": true,
32
- "vocab_size": 50262
33
  }
 
1
  {
2
+ "_name_or_path": "projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base",
3
  "architectures": [
4
+ "XLMRobertaModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "bos_token_id": 0,
 
11
  "hidden_act": "gelu",
12
  "hidden_dropout_prob": 0.1,
13
  "hidden_size": 768,
 
 
 
 
14
  "initializer_range": 0.02,
15
  "intermediate_size": 3072,
16
  "layer_norm_eps": 1e-05,
17
  "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
  "num_attention_heads": 12,
20
  "num_hidden_layers": 12,
21
+ "output_past": true,
22
  "pad_token_id": 1,
23
  "position_embedding_type": "absolute",
 
24
  "torch_dtype": "float32",
25
  "transformers_version": "4.44.2",
26
  "type_vocab_size": 1,
27
  "use_cache": true,
28
+ "vocab_size": 250002
29
  }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:06945cdccb238d1ebde6feeeccfe25752fadf8327042c418141728f99b125ddf
3
- size 498603608
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:541b2bbe7945748eb9a5102fa753a29424013a6ddb8fdeadd1408d8bca5b9ce0
3
+ size 1112197096
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d57419310f3170a362600f05ead623a5d6d4793887b9248aa87fab12ab91a414
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json CHANGED
@@ -2,49 +2,49 @@
2
  "bos_token": {
3
  "content": "<s>",
4
  "lstrip": false,
5
- "normalized": true,
6
  "rstrip": false,
7
  "single_word": false
8
  },
9
  "cls_token": {
10
  "content": "<s>",
11
  "lstrip": false,
12
- "normalized": true,
13
  "rstrip": false,
14
  "single_word": false
15
  },
16
  "eos_token": {
17
  "content": "</s>",
18
  "lstrip": false,
19
- "normalized": true,
20
  "rstrip": false,
21
  "single_word": false
22
  },
23
  "mask_token": {
24
  "content": "<mask>",
25
  "lstrip": true,
26
- "normalized": true,
27
  "rstrip": false,
28
  "single_word": false
29
  },
30
  "pad_token": {
31
  "content": "<pad>",
32
  "lstrip": false,
33
- "normalized": true,
34
  "rstrip": false,
35
  "single_word": false
36
  },
37
  "sep_token": {
38
  "content": "</s>",
39
  "lstrip": false,
40
- "normalized": true,
41
  "rstrip": false,
42
  "single_word": false
43
  },
44
  "unk_token": {
45
  "content": "<unk>",
46
  "lstrip": false,
47
- "normalized": true,
48
  "rstrip": false,
49
  "single_word": false
50
  }
 
2
  "bos_token": {
3
  "content": "<s>",
4
  "lstrip": false,
5
+ "normalized": false,
6
  "rstrip": false,
7
  "single_word": false
8
  },
9
  "cls_token": {
10
  "content": "<s>",
11
  "lstrip": false,
12
+ "normalized": false,
13
  "rstrip": false,
14
  "single_word": false
15
  },
16
  "eos_token": {
17
  "content": "</s>",
18
  "lstrip": false,
19
+ "normalized": false,
20
  "rstrip": false,
21
  "single_word": false
22
  },
23
  "mask_token": {
24
  "content": "<mask>",
25
  "lstrip": true,
26
+ "normalized": false,
27
  "rstrip": false,
28
  "single_word": false
29
  },
30
  "pad_token": {
31
  "content": "<pad>",
32
  "lstrip": false,
33
+ "normalized": false,
34
  "rstrip": false,
35
  "single_word": false
36
  },
37
  "sep_token": {
38
  "content": "</s>",
39
  "lstrip": false,
40
+ "normalized": false,
41
  "rstrip": false,
42
  "single_word": false
43
  },
44
  "unk_token": {
45
  "content": "<unk>",
46
  "lstrip": false,
47
+ "normalized": false,
48
  "rstrip": false,
49
  "single_word": false
50
  }
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1,10 +1,9 @@
1
  {
2
- "add_prefix_space": true,
3
  "added_tokens_decoder": {
4
  "0": {
5
  "content": "<s>",
6
  "lstrip": false,
7
- "normalized": true,
8
  "rstrip": false,
9
  "single_word": false,
10
  "special": true
@@ -12,7 +11,7 @@
12
  "1": {
13
  "content": "<pad>",
14
  "lstrip": false,
15
- "normalized": true,
16
  "rstrip": false,
17
  "single_word": false,
18
  "special": true
@@ -20,7 +19,7 @@
20
  "2": {
21
  "content": "</s>",
22
  "lstrip": false,
23
- "normalized": true,
24
  "rstrip": false,
25
  "single_word": false,
26
  "special": true
@@ -28,15 +27,15 @@
28
  "3": {
29
  "content": "<unk>",
30
  "lstrip": false,
31
- "normalized": true,
32
  "rstrip": false,
33
  "single_word": false,
34
  "special": true
35
  },
36
- "4": {
37
  "content": "<mask>",
38
  "lstrip": true,
39
- "normalized": true,
40
  "rstrip": false,
41
  "single_word": false,
42
  "special": true
@@ -46,13 +45,17 @@
46
  "clean_up_tokenization_spaces": true,
47
  "cls_token": "<s>",
48
  "eos_token": "</s>",
49
- "errors": "replace",
50
  "mask_token": "<mask>",
51
- "max_len": 512,
52
- "model_max_length": 512,
 
53
  "pad_token": "<pad>",
 
 
54
  "sep_token": "</s>",
55
- "tokenizer_class": "RobertaTokenizer",
56
- "trim_offsets": true,
 
 
57
  "unk_token": "<unk>"
58
  }
 
1
  {
 
2
  "added_tokens_decoder": {
3
  "0": {
4
  "content": "<s>",
5
  "lstrip": false,
6
+ "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
 
11
  "1": {
12
  "content": "<pad>",
13
  "lstrip": false,
14
+ "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
 
19
  "2": {
20
  "content": "</s>",
21
  "lstrip": false,
22
+ "normalized": false,
23
  "rstrip": false,
24
  "single_word": false,
25
  "special": true
 
27
  "3": {
28
  "content": "<unk>",
29
  "lstrip": false,
30
+ "normalized": false,
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": true
34
  },
35
+ "250001": {
36
  "content": "<mask>",
37
  "lstrip": true,
38
+ "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
 
45
  "clean_up_tokenization_spaces": true,
46
  "cls_token": "<s>",
47
  "eos_token": "</s>",
 
48
  "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "pad_to_multiple_of": null,
52
  "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
  "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
  "unk_token": "<unk>"
61
  }