adiancook commited on
Commit
6594e80
·
verified ·
1 Parent(s): ead3662

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -206.36 +/- 53.05
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 280.86 +/- 13.14
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79708ea0de40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79708ea0dee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79708ea0df80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79708ea0e020>", "_build": "<function ActorCriticPolicy._build at 0x79708ea0e0c0>", "forward": "<function ActorCriticPolicy.forward at 0x79708ea0e160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79708ea0e200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79708ea0e2a0>", "_predict": "<function ActorCriticPolicy._predict at 0x79708ea0e340>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79708ea0e3e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79708ea0e480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79708ea0e520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79708e97a140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737745431860082777, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1L9j7kMv69tWfFPP485DyNuyg++fQaPQAAgD8AAAAA2jwDvkidPz+a4d+8oQMlvxoIXb6HjUW9AAAAAAAAAACyXBi/aNOmPT5+O7qgGW046vHnvZ4YjzkAAIA/AACAP3PKM764XdE+DiuEvfS2tL6GMi69oieQPQAAAAAAAAAAysLpPrRDxD2ViBW9HiUHv0LBJD6TL0m+AAAAAAAAAACaUFG9Bja6P6Mn/75NFTA+BwYeuiRgEb0AAAAAAAAAADNpErxh39o7wtuvPK9Ud73DINU8lmBJuwAAAAAAAAAAM6oVvlJwgrkEGgi9+6DROSKotLsZUrm6AACAPwAAgD/tGVo+iTA0P8bbPj6uSZG+xEqHPtnoAT4AAAAAAAAAADPzfjxkmZU/EDPFvYsJf746oGk9W5XjvQAAAAAAAAAAgIE4vVx/ILpq5xO957KJtusPELvjb/Y1AACAPwAAgD8tWgQ/SUd4PUrVED4hycC+ClpxvZvCUz0AAAAAAAAAAABU+bueULQ/Kk1Fv584yb2LkBA8T8QyPgAAAAAAAAAAl4QRv491ej7mdxk+ji8Iv+MvAD64dWQ+AAAAAAAAAABzx1O+IXBcP2IWPb6F5sG+CUxKvVSesToAAAAAAAAAANaGGb94jIw9XaMku8Wozjg4VoK90+qNOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDB3aakRBeKMAWyUS6qMAXSUR0CNOn6/IsAedX2UKGgGRz/3st9QXQ+maAdLuWgIR0CNOpNW2gFpdX2UKGgGR8BAAhu4wyqNaAdLwWgIR0CNO/2OAAhjdX2UKGgGR8BLXjG96C17aAdLuGgIR0CNPB7SApazdX2UKGgGR8A7NBMBZIQOaAdL4mgIR0CNPKl7+kxidX2UKGgGR8AswGTs6aLGaAdLomgIR0CNPWBjFyaNdX2UKGgGR0AL1b5dnkDIaAdLt2gIR0CNP2Y4Qz1sdX2UKGgGR0A/nlk6Lfk4aAdLlmgIR0CNP2X8fmtAdX2UKGgGR8A3A9jwx33YaAdLcmgIR0CNP3dTo+wDdX2UKGgGR0Aw/toi9qUNaAdLbmgIR0CNQhke6qbSdX2UKGgGR8A+dV5a/yoXaAdL2WgIR0CNQxe1rqMWdX2UKGgGR8AhXCWu5jH5aAdLpmgIR0CNQ+36yjYadX2UKGgGR8AyFJNCZ4OdaAdLm2gIR0CNRxO45Lh8dX2UKGgGR8At/W/8EV32aAdNCwFoCEdAjUoW1UlzEXV9lChoBkdAMSJssQNCq2gHTQ8BaAhHQI1PkY0l7dB1fZQoaAZHwD59I065oXdoB0vYaAhHQI1QgjKPn0V1fZQoaAZHwBAdRNyo4uNoB0uCaAhHQI1Uurhisn11fZQoaAZHQCZXDxb0OExoB0vQaAhHQI1XR1A7gbZ1fZQoaAZHwCGLFZPl+3JoB0uFaAhHQI1aHms/6ft1fZQoaAZHwFNPw+t8uz1oB01EAWgIR0CNX7NsWO6vdX2UKGgGR0AeiABkqc3EaAdN6ANoCEdAjWLQ9A5aNnV9lChoBkfAUTOhdt2s72gHS4toCEdAjWRRkmQbM3V9lChoBke/9iol2NedCmgHS6toCEdAjWvAxSHdoHV9lChoBkfAa7NhxYJVsGgHTVsBaAhHQI1r3tUn5SF1fZQoaAZHwAE/jKgZjx1oB0u+aAhHQI1wOVE/jbV1fZQoaAZHQDlq36Q/5cloB0vGaAhHQI14lY+0PYp1fZQoaAZHwEITEF4cFQloB0viaAhHQI2AIGB4D9x1fZQoaAZHQDCmVUuL741oB0ujaAhHQI2APa6BiCt1fZQoaAZHwGRWLXtjTa1oB01IAmgIR0CNgIK/EfkndX2UKGgGR8AkhmNBF/hEaAdLhGgIR0CNgT8CPp6hdX2UKGgGR8AS0RzzVc2SaAdL/GgIR0CNghp/PPcBdX2UKGgGR8A1fJ40Mw10aAdLs2gIR0CNgln8KohqdX2UKGgGR8BBrcR15jYqaAdLi2gIR0CNij22Xsw+dX2UKGgGR0BYSaNMoMKDaAdN6ANoCEdAjZVCZF5OanV9lChoBkfANshcZ9/jKmgHS5xoCEdAjZbaJIlMRHV9lChoBkdAPP9grpaA4GgHTegDaAhHQI2W/9aUzKt1fZQoaAZHwDO2OFQEZBNoB0u1aAhHQI2X15GBnSR1fZQoaAZHQEIknxaxHG1oB03oA2gIR0CNmMfp2U0OdX2UKGgGR8Ai/frKNhmYaAdLvmgIR0CNmmxfOUt7dX2UKGgGR8A67IOH31zyaAdL02gIR0CNm0KUmlZYdX2UKGgGR0A2KohY/3WXaAdN6ANoCEdAjZyoegctG3V9lChoBkfAQcUlgMMI/2gHS/NoCEdAjZ4k4//vOXV9lChoBke/87Y/Vy3kP2gHS/xoCEdAjZ/NpdrwfHV9lChoBkdAQZ+mJm/WUmgHS3NoCEdAjaFGseXAunV9lChoBkdAVwA4m1IAfmgHTegDaAhHQI2mFc+qzZ91fZQoaAZHwDbvvy9VWCFoB0uYaAhHQI2mRISUTtd1fZQoaAZHwEue+A3DNyJoB0ubaAhHQI2n8QEpy6t1fZQoaAZHQEl6OPvKEFpoB03oA2gIR0CNqlyI55qudX2UKGgGR8A08S9/SYw7aAdLzGgIR0CNqy6wMYuTdX2UKGgGR0A9sL0jC53DaAdLqWgIR0CNq5CrLhaUdX2UKGgGR8A6/5u63AmBaAdL52gIR0CNrgv8IiTudX2UKGgGR8Aehm9QGfPHaAdL3mgIR0CNr0Qr+YMOdX2UKGgGR0Ax392ovSMMaAdLwmgIR0CNsAgpz90jdX2UKGgGR8BQGADeTFERaAdL22gIR0CNsMiAUcn3dX2UKGgGR0A6W12JSBK+aAdN6ANoCEdAjbI+oDPnjnV9lChoBke/6Isd1dPcjGgHS4toCEdAjbJA3DNyHXV9lChoBkfALZ6Ww/xDs2gHS4RoCEdAjbst0mtyP3V9lChoBkdAMkqvmozeoGgHS81oCEdAjbzT8HfMwHV9lChoBkfASc/qTr3TNWgHS8NoCEdAjb1fPHDJl3V9lChoBkfAV6CCI1tO22gHTQUBaAhHQI3AjKxLTQV1fZQoaAZHwE0Aab4Ju2toB0vuaAhHQI3BzBO58Sh1fZQoaAZHwDFlY2bXpW5oB0vMaAhHQI3B7/GVAzJ1fZQoaAZHQFQRTfBN21VoB03oA2gIR0CNw0dmQKa5dX2UKGgGR0A/3JPZZjhDaAdLxWgIR0CNxP5t3wCsdX2UKGgGR8A4M+WGATZhaAdL4GgIR0CNxtgssg+ydX2UKGgGRz/0ObZvkzXSaAdN6ANoCEdAjcuSsjmjkHV9lChoBkfAPh+NtIkJKWgHS4poCEdAjcvWd3B55nV9lChoBkfAH0xWkrPMS2gHS4loCEdAjc/37cfvF3V9lChoBkfAQVJ3FDOTq2gHS9NoCEdAjdB0/OdGzHV9lChoBkdAKRkUKzAvc2gHS+toCEdAjdQQpF1B+nV9lChoBkfAQvUQXhwVCWgHS6NoCEdAjdUN6PbO/3V9lChoBkfAQzusFMZgomgHS9ZoCEdAjdXDjBEa2nV9lChoBkc/zW3Sa3I+4mgHS8poCEdAjdcFa0QbuXV9lChoBkfAEKgx8D0UXmgHS/FoCEdAjdc1BMSK33V9lChoBkfAQah/qgRK6GgHS5xoCEdAjdia9TP0I3V9lChoBkdAHtzOoo/iYWgHS4doCEdAjdwCD28IzHV9lChoBkdAIZSgoPTXrmgHTSEBaAhHQI3cfSUkfLd1fZQoaAZHQB3MIzFdcB5oB00CAWgIR0CN4rggow23dX2UKGgGR8BmarXBguyvaAdNjgJoCEdAjePvuPV/c3V9lChoBkdAIYXSa3I+4mgHS51oCEdAjeSYSQHRkXV9lChoBkdALFavzOHFgmgHS7NoCEdAjeYhd+ocaXV9lChoBkdANvb8vVVghWgHS6BoCEdAjeZTbWVeKXV9lChoBkfATCHBUJfICGgHS8toCEdAjerIqTbFj3V9lChoBkdALmMwL3K0U2gHS6hoCEdAje0i2DxsmHV9lChoBkdAWDpQ2uPmxWgHTegDaAhHQI3uCbnX/YJ1fZQoaAZHQC2uOjqOcUdoB00UAWgIR0CN7tBHkLhKdX2UKGgGR8BgNwP7N0NjaAdNgQJoCEdAjfBWECeVcHV9lChoBkfAMoDSCvovBmgHS49oCEdAjfDnGS6lL3V9lChoBkfAPnzP4VRDTmgHS+poCEdAjfK+aScLB3V9lChoBkdAPR70SRKYiWgHS55oCEdAjfU1CgK4QXV9lChoBkfAGdomG/N7jWgHS7ZoCEdAjfc9q+JxenV9lChoBkfARDCyIHkcTGgHS9toCEdAjfiXe3x4IXV9lChoBkdAOZh/iHZbp2gHTegDaAhHQI3+Y/1QIld1fZQoaAZHwDInM6ij+JhoB0u2aAhHQI3+l8stkFx1fZQoaAZHwDE9nVXmvGJoB0vBaAhHQI3+2TNdJJ51fZQoaAZHQF1Kx5cC5mRoB03oA2gIR0CN/8L3sXzldX2UKGgGR0AnmhBZ6lchaAdLuGgIR0COAQyjYZl4dX2UKGgGR8A8w9RJmNBGaAdL+WgIR0COAURcu8K5dX2UKGgGR8BAfOejEehgaAdLo2gIR0COBdIPsiSrdX2UKGgGR8BQlG/FirksaAdL0WgIR0COBpGCI1tPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e532f75e7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e532f75e840>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e532f75e8e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e532f75e980>", "_build": "<function ActorCriticPolicy._build at 0x7e532f75ea20>", "forward": "<function ActorCriticPolicy.forward at 0x7e532f75eac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e532f75eb60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e532f75ec00>", "_predict": "<function ActorCriticPolicy._predict at 0x7e532f75eca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e532f75ed40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e532f75ede0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e532f75ee80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e532f8d5780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737748272590652628, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1/LD2HMi0/ZZ2tvAQ6zr4D6Bo9jacyvAAAAAAAAAAAxodUvtvraj/Yr5q9PqXtvtuW2b5LUBq9AAAAAAAAAADmdQY+/kpbP8FmHD6ZRdy+58lEPoxJR70AAAAAAAAAAMPXIz+M/W6+r0gsu21tJDkjEQQ9omNGOQAAgD8AAAAATZ2zvSloA7rKRhy6rz4PNayMjru8hzQ5AAAAAAAAgD/NHzO9P7JwP72QTrxBOPe+iX7ovS7HZT0AAAAAAAAAAJM5RD7PMT0/s6TCPL+J8L5DVjw+EaICvgAAAAAAAAAAM1NpvOGSgrr6f4E85oB8votrgTxWj1G9AAAAAAAAgD8AqTA96YkMvAW1UDvC80c8/q1fPWJ8Kr0AAIA/AACAP2awcbyPjmm6s9pwMzJyFrA1NaS6/pa6swAAgD8AAIA/mtJyPXH/UrsOSty7BBSRPJVVqTybE3m9AACAPwAAgD/d+5M+a0v6PpMB2r2lmuy+Tki8Pr4nBr4AAAAAAAAAAC0ZMj4vHEc/3hUivsfQtL4I3iI91AYrvgAAAAAAAAAAE2IDPv4ngz6UpAc9pv2gviysCT71gAy9AAAAAAAAAAAzCBA9p6nAPk/Gnb5LFHq+BiSSvuvSp70AAAAAAAAAANoKFr6iqjM/YyvRPCFf1r5HRjS+wjllPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+W5J04iouMAWyUS+OMAXSUR0ChXuxGMGX5dX2UKGgGR0Bxo2+/QBxQaAdL4WgIR0ChXwQMYuTSdX2UKGgGR0Bu5qPKdQO4aAdL+WgIR0ChX0Kaw2VFdX2UKGgGR0BwG7CDVYp2aAdNCAFoCEdAoV+YB1cMVnV9lChoBkdAcIrqVQhwEWgHS99oCEdAoWACgqVhTnV9lChoBkdAchzTGHYYi2gHS/xoCEdAoWAXqiXY2HV9lChoBkdAb0Xovi97GGgHS+poCEdAoWAVWdVebHV9lChoBkdAc2Nj/uLJjmgHS9hoCEdAoWAVDYywfXV9lChoBkdAcJSK3uuzQmgHTasBaAhHQKFgOToMa0h1fZQoaAZHQHH39fw7T2FoB0vlaAhHQKFgoJsO5J91fZQoaAZHQHNOpJoTPB1oB00QAWgIR0ChYMUygwoLdX2UKGgGR0Bx8fChvitJaAdL8mgIR0ChYN1WjoIOdX2UKGgGR0By7fbBXS0CaAdL8mgIR0ChYU4VARkFdX2UKGgGR0BxVLAoG6f8aAdNEQFoCEdAoWFYsCkoF3V9lChoBkdAcU67mdRR/GgHTR0BaAhHQKFhdzBhx5t1fZQoaAZHQHHch+WnjyZoB0vdaAhHQKFhhOeJ53V1fZQoaAZHQHKrh06o2n9oB00MAWgIR0ChYbC8WbgCdX2UKGgGR0BzGcSAYpDvaAdL62gIR0ChYb+NLlFMdX2UKGgGR0ByyZQ9A5aNaAdL3GgIR0ChYhFj/dZadX2UKGgGR0BzkTbcoH9naAdNAwFoCEdAoWI4Mtsen3V9lChoBkdAbwqpIczZYmgHS+1oCEdAoWKwLLIPsnV9lChoBkdAcc9cAR02cmgHS/JoCEdAoWK8+C9RJnV9lChoBkdAc4vVyWAwwmgHS/NoCEdAoWK/ikwevXV9lChoBkdAcbhI2OyVwGgHTQMBaAhHQKFjEZDRc/t1fZQoaAZHQHOHdh/iHZdoB0vnaAhHQKFjMGlhw2l1fZQoaAZHQHJHdRm9QGhoB00xAWgIR0ChY2MySFGodX2UKGgGR0BvRbgXMyJsaAdL8WgIR0ChY2/8uSOjdX2UKGgGR0Bx6oQUYbbUaAdL22gIR0ChY+0d7v5QdX2UKGgGR0BwC3FVDKHPaAdL5mgIR0ChZEro4dZJdX2UKGgGR0Bw9qhzvJA/aAdNBQFoCEdAoWRJyIYWL3V9lChoBkdAcvahm5DqnmgHTQIBaAhHQKFkYMspXp51fZQoaAZHQHCXSjxkNF1oB00SAWgIR0ChZGiVKPGRdX2UKGgGR0ByCt3HJcPfaAdL8WgIR0ChZH588cMmdX2UKGgGR0BQVzBl+VkdaAdLqmgIR0ChZLrEUCaJdX2UKGgGR0BxP76LwWnCaAdNXQFoCEdAoWTUH2RJVnV9lChoBkdAb6PMgU1yemgHS/poCEdAoWTzTnaFmHV9lChoBkdAcZlOQyRB/2gHS+5oCEdAoWT1iUgSvnV9lChoBkdAcWRzYmLLp2gHS/RoCEdAoW89sYVIqnV9lChoBkdAcIhAWSEDhmgHS8xoCEdAoW9MGHHmzXV9lChoBkdAcDvtV7x/eGgHS+JoCEdAoW9rUG3WnXV9lChoBkdAboSV2Rq46WgHTQwBaAhHQKFvjEUj9n91fZQoaAZHQHKqwE6kqMFoB0vhaAhHQKFvs4TbnHN1fZQoaAZHQHFEkW2w3YNoB00OAWgIR0ChcDa9CeEqdX2UKGgGR0BwVzZAY51eaAdL6WgIR0ChcEcgQpWndX2UKGgGR0ByQGScLBsRaAdL2WgIR0ChcGSmqHXVdX2UKGgGR0BwKp12aDwpaAdL6WgIR0ChcMjTa0x/dX2UKGgGR0BRao/u9eyBaAdLwmgIR0ChcNGLDQ7cdX2UKGgGR0BumwUBXCCSaAdNAAFoCEdAoXDc7hegMHV9lChoBkdAclnjFAE+xGgHTRABaAhHQKFxHF5OafB1fZQoaAZHQHMu0l3Qla9oB0vyaAhHQKFxH2dNFjN1fZQoaAZHQHDx8EidJ8RoB00eAWgIR0ChcUpOvdM1dX2UKGgGR0BxIdw2l2vCaAdNCQFoCEdAoXF7faYeDHV9lChoBkdAcg2Eal1r7GgHTQIBaAhHQKFxiyLQ5WB1fZQoaAZHQEIyz3yqdYpoB0vKaAhHQKFxoO0b9611fZQoaAZHQHH8KQ7tAs1oB0vmaAhHQKFxwELYwqR1fZQoaAZHQD7QS/TLGJhoB0uZaAhHQKFx+MuOCGx1fZQoaAZHQG/90eU6gdxoB00AAWgIR0ChchDTa0x/dX2UKGgGR0Bw/YNd7fHhaAdNAAFoCEdAoXJNfqoqC3V9lChoBkdActfuVX3g1mgHS+RoCEdAoXK+MsH0LHV9lChoBkdAb0/Jtix3V2gHTRkBaAhHQKFyyPbO/tZ1fZQoaAZHQHI8+WGATZhoB0vVaAhHQKFzOdDpkf91fZQoaAZHQHAmMByS3b5oB00GAWgIR0Chc1f/vOQhdX2UKGgGR0BwP4DFId2gaAdL2mgIR0ChdBsAeaKDdX2UKGgGR0By1X91loUSaAdNBwFoCEdAoXQ27voeP3V9lChoBkdAbjx/7zkIX2gHTQYBaAhHQKF0NzPKMeh1fZQoaAZHQG0MH6l+EytoB0vhaAhHQKF0UziS7oV1fZQoaAZHQHFxXfQ8fV9oB00NAWgIR0ChdIWTPjXGdX2UKGgGR0Bvib5Ec81XaAdNAQFoCEdAoXSTVYp2EHV9lChoBkdAcRBsLORkmWgHS+xoCEdAoXSi7K7qZHV9lChoBkdAcYwr4nF5wGgHS/JoCEdAoXUBIz3yqnV9lChoBkdAb31pGnXNDGgHS/BoCEdAoXVn2kBS1nV9lChoBkdAcNEJL/S6UmgHTQ0BaAhHQKF1fbXYlIF1fZQoaAZHQHE2I5T6zmhoB0viaAhHQKF1wVMVUMp1fZQoaAZHQG5GwdKdxyZoB00IAWgIR0Chdjsw1zhhdX2UKGgGR0Bx/TcM3IdVaAdL7mgIR0ChdnEZR8+idX2UKGgGR0Ba5/qTr3TNaAdLtWgIR0ChdqqRdQfqdX2UKGgGR0BxBtBt1p0waAdNAAFoCEdAoXbbU7Sy+3V9lChoBkdAbX3OX3QD3mgHTfQBaAhHQKF3HZdv8651fZQoaAZHQHAKQXZXdTJoB0vYaAhHQKF3Tjwx33Z1fZQoaAZHQHCoTJQtSQ5oB0vfaAhHQKF3S74i5d51fZQoaAZHQHFGc8xKxs5oB0vbaAhHQKF3mDzyz5Z1fZQoaAZHQHAKYNqgyuZoB0v+aAhHQKF3ncmjTKF1fZQoaAZHQHIg4vzvqkdoB0vvaAhHQKF36GucME11fZQoaAZHQHENKNVBD5VoB0v9aAhHQKF3+46Oo5x1fZQoaAZHQHCOjJZGKAJoB0vbaAhHQKF4A1twaR91fZQoaAZHQHEABacI7eVoB0vtaAhHQKF4ohrWRRx1fZQoaAZHQG9xJlSS/0xoB0v0aAhHQKF4zujynUF1fZQoaAZHQHHONuHerMloB0vIaAhHQKF4+Bz3h4t1fZQoaAZHQHEGTQE6kqNoB0vyaAhHQKF5ETGHYYl1fZQoaAZHQHII0o8ZDRdoB0vOaAhHQKF5RXNC7bt1fZQoaAZHQHAEaMR6F/RoB0vVaAhHQKF5uhC+lCV1fZQoaAZHQHBtyc0+C9RoB0v1aAhHQKF6Ad/8VHp1fZQoaAZHQHKgSUHIIWxoB0vraAhHQKF6eb5M10l1fZQoaAZHQHCV9YGMXJpoB0v0aAhHQKF6mp1A7gd1fZQoaAZHQGzBX7DVH4JoB0viaAhHQKF6sNOuaF51fZQoaAZHQHDZhf8dgfFoB0vmaAhHQKF6uV7hNud1fZQoaAZHQG/V/echC+loB00MAWgIR0ChesPC/GlzdX2UKGgGR0BuDK6e5Fw2aAdLzmgIR0Ches2THKfWdX2UKGgGR0Bym35HmRvFaAdL5WgIR0Chewh4+r2hdX2UKGgGR0BuD+3Ytg8baAdL4GgIR0ChexGFJxvOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 548, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:15d71bee0727afdc9c1b94386f95ebee8f24969f87b4665f008e2ebe34a219be
3
- size 148026
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4be0ae0c94c59240766316067a9ed28df2ed037aa12ef3dba7c2d53c278a674c
3
+ size 148044
ppo-LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x79708ea0de40>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79708ea0dee0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79708ea0df80>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79708ea0e020>",
11
- "_build": "<function ActorCriticPolicy._build at 0x79708ea0e0c0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x79708ea0e160>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x79708ea0e200>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79708ea0e2a0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x79708ea0e340>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79708ea0e3e0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79708ea0e480>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x79708ea0e520>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x79708e97a140>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 229376,
25
- "_total_timesteps": 200000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1737745431860082777,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1L9j7kMv69tWfFPP485DyNuyg++fQaPQAAgD8AAAAA2jwDvkidPz+a4d+8oQMlvxoIXb6HjUW9AAAAAAAAAACyXBi/aNOmPT5+O7qgGW046vHnvZ4YjzkAAIA/AACAP3PKM764XdE+DiuEvfS2tL6GMi69oieQPQAAAAAAAAAAysLpPrRDxD2ViBW9HiUHv0LBJD6TL0m+AAAAAAAAAACaUFG9Bja6P6Mn/75NFTA+BwYeuiRgEb0AAAAAAAAAADNpErxh39o7wtuvPK9Ud73DINU8lmBJuwAAAAAAAAAAM6oVvlJwgrkEGgi9+6DROSKotLsZUrm6AACAPwAAgD/tGVo+iTA0P8bbPj6uSZG+xEqHPtnoAT4AAAAAAAAAADPzfjxkmZU/EDPFvYsJf746oGk9W5XjvQAAAAAAAAAAgIE4vVx/ILpq5xO957KJtusPELvjb/Y1AACAPwAAgD8tWgQ/SUd4PUrVED4hycC+ClpxvZvCUz0AAAAAAAAAAABU+bueULQ/Kk1Fv584yb2LkBA8T8QyPgAAAAAAAAAAl4QRv491ej7mdxk+ji8Iv+MvAD64dWQ+AAAAAAAAAABzx1O+IXBcP2IWPb6F5sG+CUxKvVSesToAAAAAAAAAANaGGb94jIw9XaMku8Wozjg4VoK90+qNOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.1468799999999999,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDB3aakRBeKMAWyUS6qMAXSUR0CNOn6/IsAedX2UKGgGRz/3st9QXQ+maAdLuWgIR0CNOpNW2gFpdX2UKGgGR8BAAhu4wyqNaAdLwWgIR0CNO/2OAAhjdX2UKGgGR8BLXjG96C17aAdLuGgIR0CNPB7SApazdX2UKGgGR8A7NBMBZIQOaAdL4mgIR0CNPKl7+kxidX2UKGgGR8AswGTs6aLGaAdLomgIR0CNPWBjFyaNdX2UKGgGR0AL1b5dnkDIaAdLt2gIR0CNP2Y4Qz1sdX2UKGgGR0A/nlk6Lfk4aAdLlmgIR0CNP2X8fmtAdX2UKGgGR8A3A9jwx33YaAdLcmgIR0CNP3dTo+wDdX2UKGgGR0Aw/toi9qUNaAdLbmgIR0CNQhke6qbSdX2UKGgGR8A+dV5a/yoXaAdL2WgIR0CNQxe1rqMWdX2UKGgGR8AhXCWu5jH5aAdLpmgIR0CNQ+36yjYadX2UKGgGR8AyFJNCZ4OdaAdLm2gIR0CNRxO45Lh8dX2UKGgGR8At/W/8EV32aAdNCwFoCEdAjUoW1UlzEXV9lChoBkdAMSJssQNCq2gHTQ8BaAhHQI1PkY0l7dB1fZQoaAZHwD59I065oXdoB0vYaAhHQI1QgjKPn0V1fZQoaAZHwBAdRNyo4uNoB0uCaAhHQI1Uurhisn11fZQoaAZHQCZXDxb0OExoB0vQaAhHQI1XR1A7gbZ1fZQoaAZHwCGLFZPl+3JoB0uFaAhHQI1aHms/6ft1fZQoaAZHwFNPw+t8uz1oB01EAWgIR0CNX7NsWO6vdX2UKGgGR0AeiABkqc3EaAdN6ANoCEdAjWLQ9A5aNnV9lChoBkfAUTOhdt2s72gHS4toCEdAjWRRkmQbM3V9lChoBke/9iol2NedCmgHS6toCEdAjWvAxSHdoHV9lChoBkfAa7NhxYJVsGgHTVsBaAhHQI1r3tUn5SF1fZQoaAZHwAE/jKgZjx1oB0u+aAhHQI1wOVE/jbV1fZQoaAZHQDlq36Q/5cloB0vGaAhHQI14lY+0PYp1fZQoaAZHwEITEF4cFQloB0viaAhHQI2AIGB4D9x1fZQoaAZHQDCmVUuL741oB0ujaAhHQI2APa6BiCt1fZQoaAZHwGRWLXtjTa1oB01IAmgIR0CNgIK/EfkndX2UKGgGR8AkhmNBF/hEaAdLhGgIR0CNgT8CPp6hdX2UKGgGR8AS0RzzVc2SaAdL/GgIR0CNghp/PPcBdX2UKGgGR8A1fJ40Mw10aAdLs2gIR0CNgln8KohqdX2UKGgGR8BBrcR15jYqaAdLi2gIR0CNij22Xsw+dX2UKGgGR0BYSaNMoMKDaAdN6ANoCEdAjZVCZF5OanV9lChoBkfANshcZ9/jKmgHS5xoCEdAjZbaJIlMRHV9lChoBkdAPP9grpaA4GgHTegDaAhHQI2W/9aUzKt1fZQoaAZHwDO2OFQEZBNoB0u1aAhHQI2X15GBnSR1fZQoaAZHQEIknxaxHG1oB03oA2gIR0CNmMfp2U0OdX2UKGgGR8Ai/frKNhmYaAdLvmgIR0CNmmxfOUt7dX2UKGgGR8A67IOH31zyaAdL02gIR0CNm0KUmlZYdX2UKGgGR0A2KohY/3WXaAdN6ANoCEdAjZyoegctG3V9lChoBkfAQcUlgMMI/2gHS/NoCEdAjZ4k4//vOXV9lChoBke/87Y/Vy3kP2gHS/xoCEdAjZ/NpdrwfHV9lChoBkdAQZ+mJm/WUmgHS3NoCEdAjaFGseXAunV9lChoBkdAVwA4m1IAfmgHTegDaAhHQI2mFc+qzZ91fZQoaAZHwDbvvy9VWCFoB0uYaAhHQI2mRISUTtd1fZQoaAZHwEue+A3DNyJoB0ubaAhHQI2n8QEpy6t1fZQoaAZHQEl6OPvKEFpoB03oA2gIR0CNqlyI55qudX2UKGgGR8A08S9/SYw7aAdLzGgIR0CNqy6wMYuTdX2UKGgGR0A9sL0jC53DaAdLqWgIR0CNq5CrLhaUdX2UKGgGR8A6/5u63AmBaAdL52gIR0CNrgv8IiTudX2UKGgGR8Aehm9QGfPHaAdL3mgIR0CNr0Qr+YMOdX2UKGgGR0Ax392ovSMMaAdLwmgIR0CNsAgpz90jdX2UKGgGR8BQGADeTFERaAdL22gIR0CNsMiAUcn3dX2UKGgGR0A6W12JSBK+aAdN6ANoCEdAjbI+oDPnjnV9lChoBke/6Isd1dPcjGgHS4toCEdAjbJA3DNyHXV9lChoBkfALZ6Ww/xDs2gHS4RoCEdAjbst0mtyP3V9lChoBkdAMkqvmozeoGgHS81oCEdAjbzT8HfMwHV9lChoBkfASc/qTr3TNWgHS8NoCEdAjb1fPHDJl3V9lChoBkfAV6CCI1tO22gHTQUBaAhHQI3AjKxLTQV1fZQoaAZHwE0Aab4Ju2toB0vuaAhHQI3BzBO58Sh1fZQoaAZHwDFlY2bXpW5oB0vMaAhHQI3B7/GVAzJ1fZQoaAZHQFQRTfBN21VoB03oA2gIR0CNw0dmQKa5dX2UKGgGR0A/3JPZZjhDaAdLxWgIR0CNxP5t3wCsdX2UKGgGR8A4M+WGATZhaAdL4GgIR0CNxtgssg+ydX2UKGgGRz/0ObZvkzXSaAdN6ANoCEdAjcuSsjmjkHV9lChoBkfAPh+NtIkJKWgHS4poCEdAjcvWd3B55nV9lChoBkfAH0xWkrPMS2gHS4loCEdAjc/37cfvF3V9lChoBkfAQVJ3FDOTq2gHS9NoCEdAjdB0/OdGzHV9lChoBkdAKRkUKzAvc2gHS+toCEdAjdQQpF1B+nV9lChoBkfAQvUQXhwVCWgHS6NoCEdAjdUN6PbO/3V9lChoBkfAQzusFMZgomgHS9ZoCEdAjdXDjBEa2nV9lChoBkc/zW3Sa3I+4mgHS8poCEdAjdcFa0QbuXV9lChoBkfAEKgx8D0UXmgHS/FoCEdAjdc1BMSK33V9lChoBkfAQah/qgRK6GgHS5xoCEdAjdia9TP0I3V9lChoBkdAHtzOoo/iYWgHS4doCEdAjdwCD28IzHV9lChoBkdAIZSgoPTXrmgHTSEBaAhHQI3cfSUkfLd1fZQoaAZHQB3MIzFdcB5oB00CAWgIR0CN4rggow23dX2UKGgGR8BmarXBguyvaAdNjgJoCEdAjePvuPV/c3V9lChoBkdAIYXSa3I+4mgHS51oCEdAjeSYSQHRkXV9lChoBkdALFavzOHFgmgHS7NoCEdAjeYhd+ocaXV9lChoBkdANvb8vVVghWgHS6BoCEdAjeZTbWVeKXV9lChoBkfATCHBUJfICGgHS8toCEdAjerIqTbFj3V9lChoBkdALmMwL3K0U2gHS6hoCEdAje0i2DxsmHV9lChoBkdAWDpQ2uPmxWgHTegDaAhHQI3uCbnX/YJ1fZQoaAZHQC2uOjqOcUdoB00UAWgIR0CN7tBHkLhKdX2UKGgGR8BgNwP7N0NjaAdNgQJoCEdAjfBWECeVcHV9lChoBkfAMoDSCvovBmgHS49oCEdAjfDnGS6lL3V9lChoBkfAPnzP4VRDTmgHS+poCEdAjfK+aScLB3V9lChoBkdAPR70SRKYiWgHS55oCEdAjfU1CgK4QXV9lChoBkfAGdomG/N7jWgHS7ZoCEdAjfc9q+JxenV9lChoBkfARDCyIHkcTGgHS9toCEdAjfiXe3x4IXV9lChoBkdAOZh/iHZbp2gHTegDaAhHQI3+Y/1QIld1fZQoaAZHwDInM6ij+JhoB0u2aAhHQI3+l8stkFx1fZQoaAZHwDE9nVXmvGJoB0vBaAhHQI3+2TNdJJ51fZQoaAZHQF1Kx5cC5mRoB03oA2gIR0CN/8L3sXzldX2UKGgGR0AnmhBZ6lchaAdLuGgIR0COAQyjYZl4dX2UKGgGR8A8w9RJmNBGaAdL+WgIR0COAURcu8K5dX2UKGgGR8BAfOejEehgaAdLo2gIR0COBdIPsiSrdX2UKGgGR8BQlG/FirksaAdL0WgIR0COBpGCI1tPdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 70,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -77,14 +77,14 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
- "n_steps": 2048,
81
- "gamma": 0.99,
82
- "gae_lambda": 0.95,
83
- "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e532f75e7a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e532f75e840>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e532f75e8e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e532f75e980>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e532f75ea20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e532f75eac0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e532f75eb60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e532f75ec00>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e532f75eca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e532f75ed40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e532f75ede0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e532f75ee80>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e532f8d5780>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1737748272590652628,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1/LD2HMi0/ZZ2tvAQ6zr4D6Bo9jacyvAAAAAAAAAAAxodUvtvraj/Yr5q9PqXtvtuW2b5LUBq9AAAAAAAAAADmdQY+/kpbP8FmHD6ZRdy+58lEPoxJR70AAAAAAAAAAMPXIz+M/W6+r0gsu21tJDkjEQQ9omNGOQAAgD8AAAAATZ2zvSloA7rKRhy6rz4PNayMjru8hzQ5AAAAAAAAgD/NHzO9P7JwP72QTrxBOPe+iX7ovS7HZT0AAAAAAAAAAJM5RD7PMT0/s6TCPL+J8L5DVjw+EaICvgAAAAAAAAAAM1NpvOGSgrr6f4E85oB8votrgTxWj1G9AAAAAAAAgD8AqTA96YkMvAW1UDvC80c8/q1fPWJ8Kr0AAIA/AACAP2awcbyPjmm6s9pwMzJyFrA1NaS6/pa6swAAgD8AAIA/mtJyPXH/UrsOSty7BBSRPJVVqTybE3m9AACAPwAAgD/d+5M+a0v6PpMB2r2lmuy+Tki8Pr4nBr4AAAAAAAAAAC0ZMj4vHEc/3hUivsfQtL4I3iI91AYrvgAAAAAAAAAAE2IDPv4ngz6UpAc9pv2gviysCT71gAy9AAAAAAAAAAAzCBA9p6nAPk/Gnb5LFHq+BiSSvuvSp70AAAAAAAAAANoKFr6iqjM/YyvRPCFf1r5HRjS+wjllPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+W5J04iouMAWyUS+OMAXSUR0ChXuxGMGX5dX2UKGgGR0Bxo2+/QBxQaAdL4WgIR0ChXwQMYuTSdX2UKGgGR0Bu5qPKdQO4aAdL+WgIR0ChX0Kaw2VFdX2UKGgGR0BwG7CDVYp2aAdNCAFoCEdAoV+YB1cMVnV9lChoBkdAcIrqVQhwEWgHS99oCEdAoWACgqVhTnV9lChoBkdAchzTGHYYi2gHS/xoCEdAoWAXqiXY2HV9lChoBkdAb0Xovi97GGgHS+poCEdAoWAVWdVebHV9lChoBkdAc2Nj/uLJjmgHS9hoCEdAoWAVDYywfXV9lChoBkdAcJSK3uuzQmgHTasBaAhHQKFgOToMa0h1fZQoaAZHQHH39fw7T2FoB0vlaAhHQKFgoJsO5J91fZQoaAZHQHNOpJoTPB1oB00QAWgIR0ChYMUygwoLdX2UKGgGR0Bx8fChvitJaAdL8mgIR0ChYN1WjoIOdX2UKGgGR0By7fbBXS0CaAdL8mgIR0ChYU4VARkFdX2UKGgGR0BxVLAoG6f8aAdNEQFoCEdAoWFYsCkoF3V9lChoBkdAcU67mdRR/GgHTR0BaAhHQKFhdzBhx5t1fZQoaAZHQHHch+WnjyZoB0vdaAhHQKFhhOeJ53V1fZQoaAZHQHKrh06o2n9oB00MAWgIR0ChYbC8WbgCdX2UKGgGR0BzGcSAYpDvaAdL62gIR0ChYb+NLlFMdX2UKGgGR0ByyZQ9A5aNaAdL3GgIR0ChYhFj/dZadX2UKGgGR0BzkTbcoH9naAdNAwFoCEdAoWI4Mtsen3V9lChoBkdAbwqpIczZYmgHS+1oCEdAoWKwLLIPsnV9lChoBkdAcc9cAR02cmgHS/JoCEdAoWK8+C9RJnV9lChoBkdAc4vVyWAwwmgHS/NoCEdAoWK/ikwevXV9lChoBkdAcbhI2OyVwGgHTQMBaAhHQKFjEZDRc/t1fZQoaAZHQHOHdh/iHZdoB0vnaAhHQKFjMGlhw2l1fZQoaAZHQHJHdRm9QGhoB00xAWgIR0ChY2MySFGodX2UKGgGR0BvRbgXMyJsaAdL8WgIR0ChY2/8uSOjdX2UKGgGR0Bx6oQUYbbUaAdL22gIR0ChY+0d7v5QdX2UKGgGR0BwC3FVDKHPaAdL5mgIR0ChZEro4dZJdX2UKGgGR0Bw9qhzvJA/aAdNBQFoCEdAoWRJyIYWL3V9lChoBkdAcvahm5DqnmgHTQIBaAhHQKFkYMspXp51fZQoaAZHQHCXSjxkNF1oB00SAWgIR0ChZGiVKPGRdX2UKGgGR0ByCt3HJcPfaAdL8WgIR0ChZH588cMmdX2UKGgGR0BQVzBl+VkdaAdLqmgIR0ChZLrEUCaJdX2UKGgGR0BxP76LwWnCaAdNXQFoCEdAoWTUH2RJVnV9lChoBkdAb6PMgU1yemgHS/poCEdAoWTzTnaFmHV9lChoBkdAcZlOQyRB/2gHS+5oCEdAoWT1iUgSvnV9lChoBkdAcWRzYmLLp2gHS/RoCEdAoW89sYVIqnV9lChoBkdAcIhAWSEDhmgHS8xoCEdAoW9MGHHmzXV9lChoBkdAcDvtV7x/eGgHS+JoCEdAoW9rUG3WnXV9lChoBkdAboSV2Rq46WgHTQwBaAhHQKFvjEUj9n91fZQoaAZHQHKqwE6kqMFoB0vhaAhHQKFvs4TbnHN1fZQoaAZHQHFEkW2w3YNoB00OAWgIR0ChcDa9CeEqdX2UKGgGR0BwVzZAY51eaAdL6WgIR0ChcEcgQpWndX2UKGgGR0ByQGScLBsRaAdL2WgIR0ChcGSmqHXVdX2UKGgGR0BwKp12aDwpaAdL6WgIR0ChcMjTa0x/dX2UKGgGR0BRao/u9eyBaAdLwmgIR0ChcNGLDQ7cdX2UKGgGR0BumwUBXCCSaAdNAAFoCEdAoXDc7hegMHV9lChoBkdAclnjFAE+xGgHTRABaAhHQKFxHF5OafB1fZQoaAZHQHMu0l3Qla9oB0vyaAhHQKFxH2dNFjN1fZQoaAZHQHDx8EidJ8RoB00eAWgIR0ChcUpOvdM1dX2UKGgGR0BxIdw2l2vCaAdNCQFoCEdAoXF7faYeDHV9lChoBkdAcg2Eal1r7GgHTQIBaAhHQKFxiyLQ5WB1fZQoaAZHQEIyz3yqdYpoB0vKaAhHQKFxoO0b9611fZQoaAZHQHH8KQ7tAs1oB0vmaAhHQKFxwELYwqR1fZQoaAZHQD7QS/TLGJhoB0uZaAhHQKFx+MuOCGx1fZQoaAZHQG/90eU6gdxoB00AAWgIR0ChchDTa0x/dX2UKGgGR0Bw/YNd7fHhaAdNAAFoCEdAoXJNfqoqC3V9lChoBkdActfuVX3g1mgHS+RoCEdAoXK+MsH0LHV9lChoBkdAb0/Jtix3V2gHTRkBaAhHQKFyyPbO/tZ1fZQoaAZHQHI8+WGATZhoB0vVaAhHQKFzOdDpkf91fZQoaAZHQHAmMByS3b5oB00GAWgIR0Chc1f/vOQhdX2UKGgGR0BwP4DFId2gaAdL2mgIR0ChdBsAeaKDdX2UKGgGR0By1X91loUSaAdNBwFoCEdAoXQ27voeP3V9lChoBkdAbjx/7zkIX2gHTQYBaAhHQKF0NzPKMeh1fZQoaAZHQG0MH6l+EytoB0vhaAhHQKF0UziS7oV1fZQoaAZHQHFxXfQ8fV9oB00NAWgIR0ChdIWTPjXGdX2UKGgGR0Bvib5Ec81XaAdNAQFoCEdAoXSTVYp2EHV9lChoBkdAcRBsLORkmWgHS+xoCEdAoXSi7K7qZHV9lChoBkdAcYwr4nF5wGgHS/JoCEdAoXUBIz3yqnV9lChoBkdAb31pGnXNDGgHS/BoCEdAoXVn2kBS1nV9lChoBkdAcNEJL/S6UmgHTQ0BaAhHQKF1fbXYlIF1fZQoaAZHQHE2I5T6zmhoB0viaAhHQKF1wVMVUMp1fZQoaAZHQG5GwdKdxyZoB00IAWgIR0Chdjsw1zhhdX2UKGgGR0Bx/TcM3IdVaAdL7mgIR0ChdnEZR8+idX2UKGgGR0Ba5/qTr3TNaAdLtWgIR0ChdqqRdQfqdX2UKGgGR0BxBtBt1p0waAdNAAFoCEdAoXbbU7Sy+3V9lChoBkdAbX3OX3QD3mgHTfQBaAhHQKF3HZdv8651fZQoaAZHQHAKQXZXdTJoB0vYaAhHQKF3Tjwx33Z1fZQoaAZHQHCoTJQtSQ5oB0vfaAhHQKF3S74i5d51fZQoaAZHQHFGc8xKxs5oB0vbaAhHQKF3mDzyz5Z1fZQoaAZHQHAKYNqgyuZoB0v+aAhHQKF3ncmjTKF1fZQoaAZHQHIg4vzvqkdoB0vvaAhHQKF36GucME11fZQoaAZHQHENKNVBD5VoB0v9aAhHQKF3+46Oo5x1fZQoaAZHQHCOjJZGKAJoB0vbaAhHQKF4A1twaR91fZQoaAZHQHEABacI7eVoB0vtaAhHQKF4ohrWRRx1fZQoaAZHQG9xJlSS/0xoB0v0aAhHQKF4zujynUF1fZQoaAZHQHHONuHerMloB0vIaAhHQKF4+Bz3h4t1fZQoaAZHQHEGTQE6kqNoB0vyaAhHQKF5ETGHYYl1fZQoaAZHQHII0o8ZDRdoB0vOaAhHQKF5RXNC7bt1fZQoaAZHQHAEaMR6F/RoB0vVaAhHQKF5uhC+lCV1fZQoaAZHQHBtyc0+C9RoB0v1aAhHQKF6Ad/8VHp1fZQoaAZHQHKgSUHIIWxoB0vraAhHQKF6eb5M10l1fZQoaAZHQHCV9YGMXJpoB0v0aAhHQKF6mp1A7gd1fZQoaAZHQGzBX7DVH4JoB0viaAhHQKF6sNOuaF51fZQoaAZHQHDZhf8dgfFoB0vmaAhHQKF6uV7hNud1fZQoaAZHQG/V/echC+loB00MAWgIR0ChesPC/GlzdX2UKGgGR0BuDK6e5Fw2aAdLzmgIR0Ches2THKfWdX2UKGgGR0Bym35HmRvFaAdL5WgIR0Chewh4+r2hdX2UKGgGR0BuD+3Ytg8baAdL4GgIR0ChexGFJxvOdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 548,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d0a9a660c5494561ba1a3f4c5be967a0c6d48a9ec699cc09cac56be979cc406a
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:235177e6828e3474196a18061e0eec6d5ce54e5e95f9ca83b0667a3267326461
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8887580da7f4a38d35a3195ea137271268fbc02db663eb8ce7de7eee4b7abaee
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d74bdce6878fda041e19a2446ef981123b567eceb3adbc304243646d2e1e7ed3
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -206.3608261, "std_reward": 53.04948560348941, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-24T19:23:20.729612"}
 
1
+ {"mean_reward": 280.86159050000003, "std_reward": 13.1388587384127, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-24T20:02:35.773279"}