adhityamw11
commited on
Commit
•
04c7da1
1
Parent(s):
11e3200
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2_2.zip +3 -0
- ppo-LunarLander-v2_2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_2/data +96 -0
- ppo-LunarLander-v2_2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_2/policy.pth +3 -0
- ppo-LunarLander-v2_2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 297.84 +/- 18.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9a7307760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9a73077f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9a7307880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9a7307910>", "_build": "<function ActorCriticPolicy._build at 0x7ff9a73079a0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff9a7307a30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff9a7307ac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9a7307b50>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff9a7307be0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9a7307c70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9a7307d00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9a7307d90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff9a72da740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682688531348639667, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaC8LxxTDm7n8JAPaCNhjwiGay8ekVoPQAAgD8AAIA/xgFZPt6tFz8is4G+6RNBv4RHcD7uQHi+AAAAAAAAAACaBVm8SEGvuAEYJbiRI3az4qivOr4GRTcAAIA/AACAP5pjarxcW3S66La9NmlCsjGzYbO4G+/ctQAAgD8AAIA/zccMvbLXvj/LAoq+vG3oPUSsCT0IZ3w9AAAAAAAAAABm98+8e6qJumcpJjm6cyQ0LKs8O+9aQbgAAIA/AACAPzPfqL1Relg/olMUvgvHTr/JEky+IiqUvQAAAAAAAAAAZnJsPFLg7blqfIu68wzttTHLRbrqkKA5AACAPwAAgD8AVGG8A3NvP2g4GL1DUXu/QctivSVo47sAAAAAAAAAAGbOR7uN7rU/Wx+evsUp7T5d+Wc7uUSPPQAAAAAAAAAAwHTFvTEW2D5t0aw9kXQ6v5NxFL5I4eo9AAAAAAAAAACabMa8e5KDuofMHDMyPEIqOS69OjYOyrMAAIA/AACAP5pZ8jvhQJi6uvr9OLfIdDP3Q5i6uXEQuAAAgD8AAIA/zV4+vPZEQLqyePk7st4vM2d/C7qArWIzAACAPwAAgD/NSGW9GkSnP5ATOr63yQa/mCDdvcpBCb4AAAAAAAAAAE1HIr2PylG68zJ7PBonkDyOHAq8kNN6PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI63B0lW4kc0CUhpRSlIwBbJRLzYwBdJRHQLZgE1Oj7AN1fZQoaAZoCWgPQwhkkLsIU4JyQJSGlFKUaBVLxGgWR0C2YCNZmqYJdX2UKGgGaAloD0MIkrJF0q67c0CUhpRSlGgVS7BoFkdAtmAlQ/HHWHV9lChoBmgJaA9DCFeVfVeE0nFAlIaUUpRoFUuiaBZHQLZgLkD6nBN1fZQoaAZoCWgPQwjedMsOceJzQJSGlFKUaBVLwWgWR0C2YDZfdAPedX2UKGgGaAloD0MIVn4ZjJEfc0CUhpRSlGgVS8JoFkdAtmA5A+pwTHV9lChoBmgJaA9DCKxXkdEBwHFAlIaUUpRoFUuyaBZHQLZgTaBqbjN1fZQoaAZoCWgPQwiPi2oRUTtyQJSGlFKUaBVLumgWR0C2YF8xwhnrdX2UKGgGaAloD0MIVkRN9DmbcECUhpRSlGgVS7BoFkdAtmByxbB42XV9lChoBmgJaA9DCLMkQE3tKHNAlIaUUpRoFUuiaBZHQLZgddFvybx1fZQoaAZoCWgPQwhH/8u1qH5yQJSGlFKUaBVLqWgWR0C2YHoRNATqdX2UKGgGaAloD0MI0qqWdJRFUECUhpRSlGgVS2hoFkdAtmCBIsiB5HV9lChoBmgJaA9DCH8Udebe2XFAlIaUUpRoFUuwaBZHQLZgiU1yeZp1fZQoaAZoCWgPQwjWNVoONNtyQJSGlFKUaBVLv2gWR0C2YJ88xKxtdX2UKGgGaAloD0MICU/o9Wf0cUCUhpRSlGgVS6poFkdAtmCwiliz9nV9lChoBmgJaA9DCNoDrcAQWnJAlIaUUpRoFUu/aBZHQLZgtGtITXd1fZQoaAZoCWgPQwgIy9jQDaFxQJSGlFKUaBVLwmgWR0C2YMagAZKndX2UKGgGaAloD0MIlBRYAFPFcUCUhpRSlGgVS5loFkdAtmDTcO9WZXV9lChoBmgJaA9DCNdoOdBD8HBAlIaUUpRoFUuqaBZHQLZg0rYoRZl1fZQoaAZoCWgPQwj9LmzNltlyQJSGlFKUaBVLmWgWR0C2YNZcX3xndX2UKGgGaAloD0MIYd14dyQUcUCUhpRSlGgVS7FoFkdAtmDbd8Aq/nV9lChoBmgJaA9DCNi8qrNaHXJAlIaUUpRoFUuwaBZHQLZg4zS1E3N1fZQoaAZoCWgPQwgQsFbtGh1xQJSGlFKUaBVLkGgWR0C2YOKT0QK8dX2UKGgGaAloD0MIk3GMZE9GcECUhpRSlGgVS6loFkdAtmEP5JsfrHV9lChoBmgJaA9DCCzxgLKp025AlIaUUpRoFUuraBZHQLZhK/tIClt1fZQoaAZoCWgPQwjGwaVjjkNzQJSGlFKUaBVLpmgWR0C2YTKXfIjodX2UKGgGaAloD0MIAiuHFlknckCUhpRSlGgVS7JoFkdAtmE42Ifr8nV9lChoBmgJaA9DCCaqtwY2q3NAlIaUUpRoFUvGaBZHQLZhR8p1A7h1fZQoaAZoCWgPQwhzu5f7pMVxQJSGlFKUaBVLpWgWR0C2YVKKUFB6dX2UKGgGaAloD0MIUmStoRTRckCUhpRSlGgVS8xoFkdAtmFlirksBnV9lChoBmgJaA9DCJqV7UMeX3BAlIaUUpRoFUuqaBZHQLZhbySV4X51fZQoaAZoCWgPQwhjY15HnJhyQJSGlFKUaBVLuWgWR0C2YXrTDwYtdX2UKGgGaAloD0MIe2r11ZU5cUCUhpRSlGgVS6RoFkdAtmGM/FBIF3V9lChoBmgJaA9DCN+j/nrF8nBAlIaUUpRoFUu7aBZHQLZhlYbbUPR1fZQoaAZoCWgPQwi31awz/gtzQJSGlFKUaBVLqGgWR0C2YaA+Y+jedX2UKGgGaAloD0MIA7StZp1NckCUhpRSlGgVS65oFkdAtmGfPKMefnV9lChoBmgJaA9DCN6rVib8p3JAlIaUUpRoFUu9aBZHQLZhpxCpm291fZQoaAZoCWgPQwg1Bwjm6LNyQJSGlFKUaBVLymgWR0C2YbNtdiUgdX2UKGgGaAloD0MI9Ik8Sfo2c0CUhpRSlGgVS8xoFkdAtmHFVOsT4HV9lChoBmgJaA9DCH3Nctmo1HFAlIaUUpRoFUuqaBZHQLZhzRpDeCV1fZQoaAZoCWgPQwiF7LyNzTlxQJSGlFKUaBVLnmgWR0C2Yd1mFrVOdX2UKGgGaAloD0MIvMrapridcECUhpRSlGgVS6JoFkdAtmHpBNVR13V9lChoBmgJaA9DCCrEI/HyL3FAlIaUUpRoFUumaBZHQLZh/Rl6JIl1fZQoaAZoCWgPQwhoPBHEeTtzQJSGlFKUaBVLmWgWR0C2Yfo/JNj9dX2UKGgGaAloD0MISG5Nuu0gc0CUhpRSlGgVS8BoFkdAtmH/UI9kjHV9lChoBmgJaA9DCGn9LQG4mHFAlIaUUpRoFUuLaBZHQLZiEhHLA591fZQoaAZoCWgPQwgw9fOmIkBwQJSGlFKUaBVLsGgWR0C2Yi3889wFdX2UKGgGaAloD0MIXcDLDJvHcUCUhpRSlGgVS6VoFkdAtmJJnyup0nV9lChoBmgJaA9DCKslHeUgyXFAlIaUUpRoFUuuaBZHQLZiS1xbSql1fZQoaAZoCWgPQwjcoWExKt1zQJSGlFKUaBVL1WgWR0C2Yk7tRekYdX2UKGgGaAloD0MIB7MJMCwqcUCUhpRSlGgVS6loFkdAtmJX1dxAB3V9lChoBmgJaA9DCMr6zcR0fnBAlIaUUpRoFUujaBZHQLZiV8YQ8Ol1fZQoaAZoCWgPQwgtQUZAhfpyQJSGlFKUaBVLuWgWR0C2Ymbo4dZJdX2UKGgGaAloD0MIjnObcG/5cECUhpRSlGgVS6VoFkdAtmJmakRBeHV9lChoBmgJaA9DCF9/Ep87u3FAlIaUUpRoFUugaBZHQLZiejZteld1fZQoaAZoCWgPQwgpCB7f3oxxQJSGlFKUaBVLsmgWR0C2YoSuZCv6dX2UKGgGaAloD0MIpvCg2XUqckCUhpRSlGgVS65oFkdAtmKZM8HObHV9lChoBmgJaA9DCEoNbQA2jHFAlIaUUpRoFUuxaBZHQLZiptZFG5N1fZQoaAZoCWgPQwimgR/VMAhxQJSGlFKUaBVLqGgWR0C2YrIekpI+dX2UKGgGaAloD0MIumsJ+WBcckCUhpRSlGgVS7hoFkdAtmK+ois4k3V9lChoBmgJaA9DCHptNlZianNAlIaUUpRoFUu8aBZHQLZixhqCYkV1fZQoaAZoCWgPQwjlX8sr1+JzQJSGlFKUaBVLvGgWR0C2YtujdpIudX2UKGgGaAloD0MIutqK/WUvckCUhpRSlGgVS7JoFkdAtmLvZTQ3P3V9lChoBmgJaA9DCAOxbOYQ8W9AlIaUUpRoFUukaBZHQLZi+9/BnBd1fZQoaAZoCWgPQwhMjjulg+twQJSGlFKUaBVLo2gWR0C2Yv4+Sr5qdX2UKGgGaAloD0MIyHvVygTIcECUhpRSlGgVS5xoFkdAtmMPSro4dnV9lChoBmgJaA9DCBX9oZnngHJAlIaUUpRoFUu8aBZHQLZjFL0z0pV1fZQoaAZoCWgPQwh2GmmpvF1yQJSGlFKUaBVLuWgWR0C2YyAiqyWzdX2UKGgGaAloD0MII0vmWJ56cECUhpRSlGgVS6poFkdAtmMgQGwA2nV9lChoBmgJaA9DCF0xI7w9qXJAlIaUUpRoFUvDaBZHQLZjK6xPfsN1fZQoaAZoCWgPQwjcL5+s2OZxQJSGlFKUaBVLmWgWR0C2Yy5R4yGjdX2UKGgGaAloD0MIQ+T09bykckCUhpRSlGgVS6xoFkdAtmM38VHnU3V9lChoBmgJaA9DCGheDrvv/kpAlIaUUpRoFUt1aBZHQLZjNZ4wAVB1fZQoaAZoCWgPQwiy2vy/6jxEQJSGlFKUaBVLVmgWR0C2Y102DQJHdX2UKGgGaAloD0MITE9Y4oHickCUhpRSlGgVS5ZoFkdAtmNteqrBCXV9lChoBmgJaA9DCEPIef8fkHJAlIaUUpRoFUuwaBZHQLZjasqril11fZQoaAZoCWgPQwia7+AnzjtzQJSGlFKUaBVLv2gWR0C2Y239R77bdX2UKGgGaAloD0MIuhXCauwVcUCUhpRSlGgVS51oFkdAtmNuCmMwUXV9lChoBmgJaA9DCIS6SKGs7HJAlIaUUpRoFUulaBZHQLZjknPmgap1fZQoaAZoCWgPQwhxrfaw14dyQJSGlFKUaBVLqmgWR0C2Y7tD+irUdX2UKGgGaAloD0MIborHRTVBb0CUhpRSlGgVS51oFkdAtmPt1/2Cd3V9lChoBmgJaA9DCPKZ7J/n6nFAlIaUUpRoFUuuaBZHQLZj+f5DZ151fZQoaAZoCWgPQwikxRnDXJR0QJSGlFKUaBVL4WgWR0C2Y/djgAIZdX2UKGgGaAloD0MItB1TdyX5cECUhpRSlGgVS6VoFkdAtmP9InSfDnV9lChoBmgJaA9DCDoeM1DZJHNAlIaUUpRoFUvLaBZHQLZj/+7Dl5p1fZQoaAZoCWgPQwgnbD8ZI1FzQJSGlFKUaBVLxGgWR0C2ZAh4Y77sdX2UKGgGaAloD0MIls/yPPiuc0CUhpRSlGgVS9xoFkdAtmQYBo24u3V9lChoBmgJaA9DCK+0jNR7J3NAlIaUUpRoFUvWaBZHQLZkHEFW4mV1fZQoaAZoCWgPQwgSoRFsXGhxQJSGlFKUaBVLpGgWR0C2ZCFU+9rXdX2UKGgGaAloD0MIuYjvxCyAdECUhpRSlGgVS9NoFkdAtmQlfBvaUXV9lChoBmgJaA9DCBTMmIL1B3FAlIaUUpRoFUuiaBZHQLZkLYu01Il1fZQoaAZoCWgPQwg9C0J535JzQJSGlFKUaBVLo2gWR0C2ZC6E384xdX2UKGgGaAloD0MI3sZmR2qJdECUhpRSlGgVS69oFkdAtmQ5/CqIanV9lChoBmgJaA9DCKX4+ITsm3NAlIaUUpRoFUu9aBZHQLZkbJUo8ZF1fZQoaAZoCWgPQwjB4QUR6dtzQJSGlFKUaBVL4mgWR0C2ZGyKm8/VdX2UKGgGaAloD0MI7pOjAJGtcECUhpRSlGgVS6VoFkdAtmSrfJmuknV9lChoBmgJaA9DCBaFXRR9/nBAlIaUUpRoFUutaBZHQLZkq8eS0Sh1fZQoaAZoCWgPQwhhwf2AB4BxQJSGlFKUaBVLqWgWR0C2ZK1+iJwbdX2UKGgGaAloD0MIbVhTWRS1cUCUhpRSlGgVS7ZoFkdAtmTA7nxJ/XV9lChoBmgJaA9DCE+tvrpqM3NAlIaUUpRoFUu2aBZHQLZkyxZdOZd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2_2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a07f42b9c2b4972845578b939d6ca7805e8fbc8e0e9fcf7642ad73ff1c67b71
|
3 |
+
size 147267
|
ppo-LunarLander-v2_2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2_2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9a7307760>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9a73077f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9a7307880>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9a7307910>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff9a73079a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff9a7307a30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff9a7307ac0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9a7307b50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff9a7307be0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9a7307c70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9a7307d00>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9a7307d90>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff9a72da740>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 5013504,
|
25 |
+
"_total_timesteps": 5000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682688531348639667,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaC8LxxTDm7n8JAPaCNhjwiGay8ekVoPQAAgD8AAIA/xgFZPt6tFz8is4G+6RNBv4RHcD7uQHi+AAAAAAAAAACaBVm8SEGvuAEYJbiRI3az4qivOr4GRTcAAIA/AACAP5pjarxcW3S66La9NmlCsjGzYbO4G+/ctQAAgD8AAIA/zccMvbLXvj/LAoq+vG3oPUSsCT0IZ3w9AAAAAAAAAABm98+8e6qJumcpJjm6cyQ0LKs8O+9aQbgAAIA/AACAPzPfqL1Relg/olMUvgvHTr/JEky+IiqUvQAAAAAAAAAAZnJsPFLg7blqfIu68wzttTHLRbrqkKA5AACAPwAAgD8AVGG8A3NvP2g4GL1DUXu/QctivSVo47sAAAAAAAAAAGbOR7uN7rU/Wx+evsUp7T5d+Wc7uUSPPQAAAAAAAAAAwHTFvTEW2D5t0aw9kXQ6v5NxFL5I4eo9AAAAAAAAAACabMa8e5KDuofMHDMyPEIqOS69OjYOyrMAAIA/AACAP5pZ8jvhQJi6uvr9OLfIdDP3Q5i6uXEQuAAAgD8AAIA/zV4+vPZEQLqyePk7st4vM2d/C7qArWIzAACAPwAAgD/NSGW9GkSnP5ATOr63yQa/mCDdvcpBCb4AAAAAAAAAAE1HIr2PylG68zJ7PBonkDyOHAq8kNN6PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI63B0lW4kc0CUhpRSlIwBbJRLzYwBdJRHQLZgE1Oj7AN1fZQoaAZoCWgPQwhkkLsIU4JyQJSGlFKUaBVLxGgWR0C2YCNZmqYJdX2UKGgGaAloD0MIkrJF0q67c0CUhpRSlGgVS7BoFkdAtmAlQ/HHWHV9lChoBmgJaA9DCFeVfVeE0nFAlIaUUpRoFUuiaBZHQLZgLkD6nBN1fZQoaAZoCWgPQwjedMsOceJzQJSGlFKUaBVLwWgWR0C2YDZfdAPedX2UKGgGaAloD0MIVn4ZjJEfc0CUhpRSlGgVS8JoFkdAtmA5A+pwTHV9lChoBmgJaA9DCKxXkdEBwHFAlIaUUpRoFUuyaBZHQLZgTaBqbjN1fZQoaAZoCWgPQwiPi2oRUTtyQJSGlFKUaBVLumgWR0C2YF8xwhnrdX2UKGgGaAloD0MIVkRN9DmbcECUhpRSlGgVS7BoFkdAtmByxbB42XV9lChoBmgJaA9DCLMkQE3tKHNAlIaUUpRoFUuiaBZHQLZgddFvybx1fZQoaAZoCWgPQwhH/8u1qH5yQJSGlFKUaBVLqWgWR0C2YHoRNATqdX2UKGgGaAloD0MI0qqWdJRFUECUhpRSlGgVS2hoFkdAtmCBIsiB5HV9lChoBmgJaA9DCH8Udebe2XFAlIaUUpRoFUuwaBZHQLZgiU1yeZp1fZQoaAZoCWgPQwjWNVoONNtyQJSGlFKUaBVLv2gWR0C2YJ88xKxtdX2UKGgGaAloD0MICU/o9Wf0cUCUhpRSlGgVS6poFkdAtmCwiliz9nV9lChoBmgJaA9DCNoDrcAQWnJAlIaUUpRoFUu/aBZHQLZgtGtITXd1fZQoaAZoCWgPQwgIy9jQDaFxQJSGlFKUaBVLwmgWR0C2YMagAZKndX2UKGgGaAloD0MIlBRYAFPFcUCUhpRSlGgVS5loFkdAtmDTcO9WZXV9lChoBmgJaA9DCNdoOdBD8HBAlIaUUpRoFUuqaBZHQLZg0rYoRZl1fZQoaAZoCWgPQwj9LmzNltlyQJSGlFKUaBVLmWgWR0C2YNZcX3xndX2UKGgGaAloD0MIYd14dyQUcUCUhpRSlGgVS7FoFkdAtmDbd8Aq/nV9lChoBmgJaA9DCNi8qrNaHXJAlIaUUpRoFUuwaBZHQLZg4zS1E3N1fZQoaAZoCWgPQwgQsFbtGh1xQJSGlFKUaBVLkGgWR0C2YOKT0QK8dX2UKGgGaAloD0MIk3GMZE9GcECUhpRSlGgVS6loFkdAtmEP5JsfrHV9lChoBmgJaA9DCCzxgLKp025AlIaUUpRoFUuraBZHQLZhK/tIClt1fZQoaAZoCWgPQwjGwaVjjkNzQJSGlFKUaBVLpmgWR0C2YTKXfIjodX2UKGgGaAloD0MIAiuHFlknckCUhpRSlGgVS7JoFkdAtmE42Ifr8nV9lChoBmgJaA9DCCaqtwY2q3NAlIaUUpRoFUvGaBZHQLZhR8p1A7h1fZQoaAZoCWgPQwhzu5f7pMVxQJSGlFKUaBVLpWgWR0C2YVKKUFB6dX2UKGgGaAloD0MIUmStoRTRckCUhpRSlGgVS8xoFkdAtmFlirksBnV9lChoBmgJaA9DCJqV7UMeX3BAlIaUUpRoFUuqaBZHQLZhbySV4X51fZQoaAZoCWgPQwhjY15HnJhyQJSGlFKUaBVLuWgWR0C2YXrTDwYtdX2UKGgGaAloD0MIe2r11ZU5cUCUhpRSlGgVS6RoFkdAtmGM/FBIF3V9lChoBmgJaA9DCN+j/nrF8nBAlIaUUpRoFUu7aBZHQLZhlYbbUPR1fZQoaAZoCWgPQwi31awz/gtzQJSGlFKUaBVLqGgWR0C2YaA+Y+jedX2UKGgGaAloD0MIA7StZp1NckCUhpRSlGgVS65oFkdAtmGfPKMefnV9lChoBmgJaA9DCN6rVib8p3JAlIaUUpRoFUu9aBZHQLZhpxCpm291fZQoaAZoCWgPQwg1Bwjm6LNyQJSGlFKUaBVLymgWR0C2YbNtdiUgdX2UKGgGaAloD0MI9Ik8Sfo2c0CUhpRSlGgVS8xoFkdAtmHFVOsT4HV9lChoBmgJaA9DCH3Nctmo1HFAlIaUUpRoFUuqaBZHQLZhzRpDeCV1fZQoaAZoCWgPQwiF7LyNzTlxQJSGlFKUaBVLnmgWR0C2Yd1mFrVOdX2UKGgGaAloD0MIvMrapridcECUhpRSlGgVS6JoFkdAtmHpBNVR13V9lChoBmgJaA9DCCrEI/HyL3FAlIaUUpRoFUumaBZHQLZh/Rl6JIl1fZQoaAZoCWgPQwhoPBHEeTtzQJSGlFKUaBVLmWgWR0C2Yfo/JNj9dX2UKGgGaAloD0MISG5Nuu0gc0CUhpRSlGgVS8BoFkdAtmH/UI9kjHV9lChoBmgJaA9DCGn9LQG4mHFAlIaUUpRoFUuLaBZHQLZiEhHLA591fZQoaAZoCWgPQwgw9fOmIkBwQJSGlFKUaBVLsGgWR0C2Yi3889wFdX2UKGgGaAloD0MIXcDLDJvHcUCUhpRSlGgVS6VoFkdAtmJJnyup0nV9lChoBmgJaA9DCKslHeUgyXFAlIaUUpRoFUuuaBZHQLZiS1xbSql1fZQoaAZoCWgPQwjcoWExKt1zQJSGlFKUaBVL1WgWR0C2Yk7tRekYdX2UKGgGaAloD0MIB7MJMCwqcUCUhpRSlGgVS6loFkdAtmJX1dxAB3V9lChoBmgJaA9DCMr6zcR0fnBAlIaUUpRoFUujaBZHQLZiV8YQ8Ol1fZQoaAZoCWgPQwgtQUZAhfpyQJSGlFKUaBVLuWgWR0C2Ymbo4dZJdX2UKGgGaAloD0MIjnObcG/5cECUhpRSlGgVS6VoFkdAtmJmakRBeHV9lChoBmgJaA9DCF9/Ep87u3FAlIaUUpRoFUugaBZHQLZiejZteld1fZQoaAZoCWgPQwgpCB7f3oxxQJSGlFKUaBVLsmgWR0C2YoSuZCv6dX2UKGgGaAloD0MIpvCg2XUqckCUhpRSlGgVS65oFkdAtmKZM8HObHV9lChoBmgJaA9DCEoNbQA2jHFAlIaUUpRoFUuxaBZHQLZiptZFG5N1fZQoaAZoCWgPQwimgR/VMAhxQJSGlFKUaBVLqGgWR0C2YrIekpI+dX2UKGgGaAloD0MIumsJ+WBcckCUhpRSlGgVS7hoFkdAtmK+ois4k3V9lChoBmgJaA9DCHptNlZianNAlIaUUpRoFUu8aBZHQLZixhqCYkV1fZQoaAZoCWgPQwjlX8sr1+JzQJSGlFKUaBVLvGgWR0C2YtujdpIudX2UKGgGaAloD0MIutqK/WUvckCUhpRSlGgVS7JoFkdAtmLvZTQ3P3V9lChoBmgJaA9DCAOxbOYQ8W9AlIaUUpRoFUukaBZHQLZi+9/BnBd1fZQoaAZoCWgPQwhMjjulg+twQJSGlFKUaBVLo2gWR0C2Yv4+Sr5qdX2UKGgGaAloD0MIyHvVygTIcECUhpRSlGgVS5xoFkdAtmMPSro4dnV9lChoBmgJaA9DCBX9oZnngHJAlIaUUpRoFUu8aBZHQLZjFL0z0pV1fZQoaAZoCWgPQwh2GmmpvF1yQJSGlFKUaBVLuWgWR0C2YyAiqyWzdX2UKGgGaAloD0MII0vmWJ56cECUhpRSlGgVS6poFkdAtmMgQGwA2nV9lChoBmgJaA9DCF0xI7w9qXJAlIaUUpRoFUvDaBZHQLZjK6xPfsN1fZQoaAZoCWgPQwjcL5+s2OZxQJSGlFKUaBVLmWgWR0C2Yy5R4yGjdX2UKGgGaAloD0MIQ+T09bykckCUhpRSlGgVS6xoFkdAtmM38VHnU3V9lChoBmgJaA9DCGheDrvv/kpAlIaUUpRoFUt1aBZHQLZjNZ4wAVB1fZQoaAZoCWgPQwiy2vy/6jxEQJSGlFKUaBVLVmgWR0C2Y102DQJHdX2UKGgGaAloD0MITE9Y4oHickCUhpRSlGgVS5ZoFkdAtmNteqrBCXV9lChoBmgJaA9DCEPIef8fkHJAlIaUUpRoFUuwaBZHQLZjasqril11fZQoaAZoCWgPQwia7+AnzjtzQJSGlFKUaBVLv2gWR0C2Y239R77bdX2UKGgGaAloD0MIuhXCauwVcUCUhpRSlGgVS51oFkdAtmNuCmMwUXV9lChoBmgJaA9DCIS6SKGs7HJAlIaUUpRoFUulaBZHQLZjknPmgap1fZQoaAZoCWgPQwhxrfaw14dyQJSGlFKUaBVLqmgWR0C2Y7tD+irUdX2UKGgGaAloD0MIborHRTVBb0CUhpRSlGgVS51oFkdAtmPt1/2Cd3V9lChoBmgJaA9DCPKZ7J/n6nFAlIaUUpRoFUuuaBZHQLZj+f5DZ151fZQoaAZoCWgPQwikxRnDXJR0QJSGlFKUaBVL4WgWR0C2Y/djgAIZdX2UKGgGaAloD0MItB1TdyX5cECUhpRSlGgVS6VoFkdAtmP9InSfDnV9lChoBmgJaA9DCDoeM1DZJHNAlIaUUpRoFUvLaBZHQLZj/+7Dl5p1fZQoaAZoCWgPQwgnbD8ZI1FzQJSGlFKUaBVLxGgWR0C2ZAh4Y77sdX2UKGgGaAloD0MIls/yPPiuc0CUhpRSlGgVS9xoFkdAtmQYBo24u3V9lChoBmgJaA9DCK+0jNR7J3NAlIaUUpRoFUvWaBZHQLZkHEFW4mV1fZQoaAZoCWgPQwgSoRFsXGhxQJSGlFKUaBVLpGgWR0C2ZCFU+9rXdX2UKGgGaAloD0MIuYjvxCyAdECUhpRSlGgVS9NoFkdAtmQlfBvaUXV9lChoBmgJaA9DCBTMmIL1B3FAlIaUUpRoFUuiaBZHQLZkLYu01Il1fZQoaAZoCWgPQwg9C0J535JzQJSGlFKUaBVLo2gWR0C2ZC6E384xdX2UKGgGaAloD0MI3sZmR2qJdECUhpRSlGgVS69oFkdAtmQ5/CqIanV9lChoBmgJaA9DCKX4+ITsm3NAlIaUUpRoFUu9aBZHQLZkbJUo8ZF1fZQoaAZoCWgPQwjB4QUR6dtzQJSGlFKUaBVL4mgWR0C2ZGyKm8/VdX2UKGgGaAloD0MI7pOjAJGtcECUhpRSlGgVS6VoFkdAtmSrfJmuknV9lChoBmgJaA9DCBaFXRR9/nBAlIaUUpRoFUutaBZHQLZkq8eS0Sh1fZQoaAZoCWgPQwhhwf2AB4BxQJSGlFKUaBVLqWgWR0C2ZK1+iJwbdX2UKGgGaAloD0MIbVhTWRS1cUCUhpRSlGgVS7ZoFkdAtmTA7nxJ/XV9lChoBmgJaA9DCE+tvrpqM3NAlIaUUpRoFUu2aBZHQLZkyxZdOZd1ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 1530,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 2048,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 10,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2_2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49eebac8d4a010d68962b9d880b7e062fa5218b1183e1e1b4c20033f79cea6b5
|
3 |
+
size 87929
|
ppo-LunarLander-v2_2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fdb41848657c801a8e90003e9667e86a35e767a03d4dd71c720ec0d6f1be8d5
|
3 |
+
size 43329
|
ppo-LunarLander-v2_2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2_2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (188 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 297.8440851030259, "std_reward": 18.617639168917805, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-28T15:09:32.922677"}
|