adhityamw11 commited on
Commit
04c7da1
1 Parent(s): 11e3200

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 297.84 +/- 18.62
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9a7307760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9a73077f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9a7307880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9a7307910>", "_build": "<function ActorCriticPolicy._build at 0x7ff9a73079a0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff9a7307a30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff9a7307ac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9a7307b50>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff9a7307be0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9a7307c70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9a7307d00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9a7307d90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff9a72da740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682688531348639667, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaC8LxxTDm7n8JAPaCNhjwiGay8ekVoPQAAgD8AAIA/xgFZPt6tFz8is4G+6RNBv4RHcD7uQHi+AAAAAAAAAACaBVm8SEGvuAEYJbiRI3az4qivOr4GRTcAAIA/AACAP5pjarxcW3S66La9NmlCsjGzYbO4G+/ctQAAgD8AAIA/zccMvbLXvj/LAoq+vG3oPUSsCT0IZ3w9AAAAAAAAAABm98+8e6qJumcpJjm6cyQ0LKs8O+9aQbgAAIA/AACAPzPfqL1Relg/olMUvgvHTr/JEky+IiqUvQAAAAAAAAAAZnJsPFLg7blqfIu68wzttTHLRbrqkKA5AACAPwAAgD8AVGG8A3NvP2g4GL1DUXu/QctivSVo47sAAAAAAAAAAGbOR7uN7rU/Wx+evsUp7T5d+Wc7uUSPPQAAAAAAAAAAwHTFvTEW2D5t0aw9kXQ6v5NxFL5I4eo9AAAAAAAAAACabMa8e5KDuofMHDMyPEIqOS69OjYOyrMAAIA/AACAP5pZ8jvhQJi6uvr9OLfIdDP3Q5i6uXEQuAAAgD8AAIA/zV4+vPZEQLqyePk7st4vM2d/C7qArWIzAACAPwAAgD/NSGW9GkSnP5ATOr63yQa/mCDdvcpBCb4AAAAAAAAAAE1HIr2PylG68zJ7PBonkDyOHAq8kNN6PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI63B0lW4kc0CUhpRSlIwBbJRLzYwBdJRHQLZgE1Oj7AN1fZQoaAZoCWgPQwhkkLsIU4JyQJSGlFKUaBVLxGgWR0C2YCNZmqYJdX2UKGgGaAloD0MIkrJF0q67c0CUhpRSlGgVS7BoFkdAtmAlQ/HHWHV9lChoBmgJaA9DCFeVfVeE0nFAlIaUUpRoFUuiaBZHQLZgLkD6nBN1fZQoaAZoCWgPQwjedMsOceJzQJSGlFKUaBVLwWgWR0C2YDZfdAPedX2UKGgGaAloD0MIVn4ZjJEfc0CUhpRSlGgVS8JoFkdAtmA5A+pwTHV9lChoBmgJaA9DCKxXkdEBwHFAlIaUUpRoFUuyaBZHQLZgTaBqbjN1fZQoaAZoCWgPQwiPi2oRUTtyQJSGlFKUaBVLumgWR0C2YF8xwhnrdX2UKGgGaAloD0MIVkRN9DmbcECUhpRSlGgVS7BoFkdAtmByxbB42XV9lChoBmgJaA9DCLMkQE3tKHNAlIaUUpRoFUuiaBZHQLZgddFvybx1fZQoaAZoCWgPQwhH/8u1qH5yQJSGlFKUaBVLqWgWR0C2YHoRNATqdX2UKGgGaAloD0MI0qqWdJRFUECUhpRSlGgVS2hoFkdAtmCBIsiB5HV9lChoBmgJaA9DCH8Udebe2XFAlIaUUpRoFUuwaBZHQLZgiU1yeZp1fZQoaAZoCWgPQwjWNVoONNtyQJSGlFKUaBVLv2gWR0C2YJ88xKxtdX2UKGgGaAloD0MICU/o9Wf0cUCUhpRSlGgVS6poFkdAtmCwiliz9nV9lChoBmgJaA9DCNoDrcAQWnJAlIaUUpRoFUu/aBZHQLZgtGtITXd1fZQoaAZoCWgPQwgIy9jQDaFxQJSGlFKUaBVLwmgWR0C2YMagAZKndX2UKGgGaAloD0MIlBRYAFPFcUCUhpRSlGgVS5loFkdAtmDTcO9WZXV9lChoBmgJaA9DCNdoOdBD8HBAlIaUUpRoFUuqaBZHQLZg0rYoRZl1fZQoaAZoCWgPQwj9LmzNltlyQJSGlFKUaBVLmWgWR0C2YNZcX3xndX2UKGgGaAloD0MIYd14dyQUcUCUhpRSlGgVS7FoFkdAtmDbd8Aq/nV9lChoBmgJaA9DCNi8qrNaHXJAlIaUUpRoFUuwaBZHQLZg4zS1E3N1fZQoaAZoCWgPQwgQsFbtGh1xQJSGlFKUaBVLkGgWR0C2YOKT0QK8dX2UKGgGaAloD0MIk3GMZE9GcECUhpRSlGgVS6loFkdAtmEP5JsfrHV9lChoBmgJaA9DCCzxgLKp025AlIaUUpRoFUuraBZHQLZhK/tIClt1fZQoaAZoCWgPQwjGwaVjjkNzQJSGlFKUaBVLpmgWR0C2YTKXfIjodX2UKGgGaAloD0MIAiuHFlknckCUhpRSlGgVS7JoFkdAtmE42Ifr8nV9lChoBmgJaA9DCCaqtwY2q3NAlIaUUpRoFUvGaBZHQLZhR8p1A7h1fZQoaAZoCWgPQwhzu5f7pMVxQJSGlFKUaBVLpWgWR0C2YVKKUFB6dX2UKGgGaAloD0MIUmStoRTRckCUhpRSlGgVS8xoFkdAtmFlirksBnV9lChoBmgJaA9DCJqV7UMeX3BAlIaUUpRoFUuqaBZHQLZhbySV4X51fZQoaAZoCWgPQwhjY15HnJhyQJSGlFKUaBVLuWgWR0C2YXrTDwYtdX2UKGgGaAloD0MIe2r11ZU5cUCUhpRSlGgVS6RoFkdAtmGM/FBIF3V9lChoBmgJaA9DCN+j/nrF8nBAlIaUUpRoFUu7aBZHQLZhlYbbUPR1fZQoaAZoCWgPQwi31awz/gtzQJSGlFKUaBVLqGgWR0C2YaA+Y+jedX2UKGgGaAloD0MIA7StZp1NckCUhpRSlGgVS65oFkdAtmGfPKMefnV9lChoBmgJaA9DCN6rVib8p3JAlIaUUpRoFUu9aBZHQLZhpxCpm291fZQoaAZoCWgPQwg1Bwjm6LNyQJSGlFKUaBVLymgWR0C2YbNtdiUgdX2UKGgGaAloD0MI9Ik8Sfo2c0CUhpRSlGgVS8xoFkdAtmHFVOsT4HV9lChoBmgJaA9DCH3Nctmo1HFAlIaUUpRoFUuqaBZHQLZhzRpDeCV1fZQoaAZoCWgPQwiF7LyNzTlxQJSGlFKUaBVLnmgWR0C2Yd1mFrVOdX2UKGgGaAloD0MIvMrapridcECUhpRSlGgVS6JoFkdAtmHpBNVR13V9lChoBmgJaA9DCCrEI/HyL3FAlIaUUpRoFUumaBZHQLZh/Rl6JIl1fZQoaAZoCWgPQwhoPBHEeTtzQJSGlFKUaBVLmWgWR0C2Yfo/JNj9dX2UKGgGaAloD0MISG5Nuu0gc0CUhpRSlGgVS8BoFkdAtmH/UI9kjHV9lChoBmgJaA9DCGn9LQG4mHFAlIaUUpRoFUuLaBZHQLZiEhHLA591fZQoaAZoCWgPQwgw9fOmIkBwQJSGlFKUaBVLsGgWR0C2Yi3889wFdX2UKGgGaAloD0MIXcDLDJvHcUCUhpRSlGgVS6VoFkdAtmJJnyup0nV9lChoBmgJaA9DCKslHeUgyXFAlIaUUpRoFUuuaBZHQLZiS1xbSql1fZQoaAZoCWgPQwjcoWExKt1zQJSGlFKUaBVL1WgWR0C2Yk7tRekYdX2UKGgGaAloD0MIB7MJMCwqcUCUhpRSlGgVS6loFkdAtmJX1dxAB3V9lChoBmgJaA9DCMr6zcR0fnBAlIaUUpRoFUujaBZHQLZiV8YQ8Ol1fZQoaAZoCWgPQwgtQUZAhfpyQJSGlFKUaBVLuWgWR0C2Ymbo4dZJdX2UKGgGaAloD0MIjnObcG/5cECUhpRSlGgVS6VoFkdAtmJmakRBeHV9lChoBmgJaA9DCF9/Ep87u3FAlIaUUpRoFUugaBZHQLZiejZteld1fZQoaAZoCWgPQwgpCB7f3oxxQJSGlFKUaBVLsmgWR0C2YoSuZCv6dX2UKGgGaAloD0MIpvCg2XUqckCUhpRSlGgVS65oFkdAtmKZM8HObHV9lChoBmgJaA9DCEoNbQA2jHFAlIaUUpRoFUuxaBZHQLZiptZFG5N1fZQoaAZoCWgPQwimgR/VMAhxQJSGlFKUaBVLqGgWR0C2YrIekpI+dX2UKGgGaAloD0MIumsJ+WBcckCUhpRSlGgVS7hoFkdAtmK+ois4k3V9lChoBmgJaA9DCHptNlZianNAlIaUUpRoFUu8aBZHQLZixhqCYkV1fZQoaAZoCWgPQwjlX8sr1+JzQJSGlFKUaBVLvGgWR0C2YtujdpIudX2UKGgGaAloD0MIutqK/WUvckCUhpRSlGgVS7JoFkdAtmLvZTQ3P3V9lChoBmgJaA9DCAOxbOYQ8W9AlIaUUpRoFUukaBZHQLZi+9/BnBd1fZQoaAZoCWgPQwhMjjulg+twQJSGlFKUaBVLo2gWR0C2Yv4+Sr5qdX2UKGgGaAloD0MIyHvVygTIcECUhpRSlGgVS5xoFkdAtmMPSro4dnV9lChoBmgJaA9DCBX9oZnngHJAlIaUUpRoFUu8aBZHQLZjFL0z0pV1fZQoaAZoCWgPQwh2GmmpvF1yQJSGlFKUaBVLuWgWR0C2YyAiqyWzdX2UKGgGaAloD0MII0vmWJ56cECUhpRSlGgVS6poFkdAtmMgQGwA2nV9lChoBmgJaA9DCF0xI7w9qXJAlIaUUpRoFUvDaBZHQLZjK6xPfsN1fZQoaAZoCWgPQwjcL5+s2OZxQJSGlFKUaBVLmWgWR0C2Yy5R4yGjdX2UKGgGaAloD0MIQ+T09bykckCUhpRSlGgVS6xoFkdAtmM38VHnU3V9lChoBmgJaA9DCGheDrvv/kpAlIaUUpRoFUt1aBZHQLZjNZ4wAVB1fZQoaAZoCWgPQwiy2vy/6jxEQJSGlFKUaBVLVmgWR0C2Y102DQJHdX2UKGgGaAloD0MITE9Y4oHickCUhpRSlGgVS5ZoFkdAtmNteqrBCXV9lChoBmgJaA9DCEPIef8fkHJAlIaUUpRoFUuwaBZHQLZjasqril11fZQoaAZoCWgPQwia7+AnzjtzQJSGlFKUaBVLv2gWR0C2Y239R77bdX2UKGgGaAloD0MIuhXCauwVcUCUhpRSlGgVS51oFkdAtmNuCmMwUXV9lChoBmgJaA9DCIS6SKGs7HJAlIaUUpRoFUulaBZHQLZjknPmgap1fZQoaAZoCWgPQwhxrfaw14dyQJSGlFKUaBVLqmgWR0C2Y7tD+irUdX2UKGgGaAloD0MIborHRTVBb0CUhpRSlGgVS51oFkdAtmPt1/2Cd3V9lChoBmgJaA9DCPKZ7J/n6nFAlIaUUpRoFUuuaBZHQLZj+f5DZ151fZQoaAZoCWgPQwikxRnDXJR0QJSGlFKUaBVL4WgWR0C2Y/djgAIZdX2UKGgGaAloD0MItB1TdyX5cECUhpRSlGgVS6VoFkdAtmP9InSfDnV9lChoBmgJaA9DCDoeM1DZJHNAlIaUUpRoFUvLaBZHQLZj/+7Dl5p1fZQoaAZoCWgPQwgnbD8ZI1FzQJSGlFKUaBVLxGgWR0C2ZAh4Y77sdX2UKGgGaAloD0MIls/yPPiuc0CUhpRSlGgVS9xoFkdAtmQYBo24u3V9lChoBmgJaA9DCK+0jNR7J3NAlIaUUpRoFUvWaBZHQLZkHEFW4mV1fZQoaAZoCWgPQwgSoRFsXGhxQJSGlFKUaBVLpGgWR0C2ZCFU+9rXdX2UKGgGaAloD0MIuYjvxCyAdECUhpRSlGgVS9NoFkdAtmQlfBvaUXV9lChoBmgJaA9DCBTMmIL1B3FAlIaUUpRoFUuiaBZHQLZkLYu01Il1fZQoaAZoCWgPQwg9C0J535JzQJSGlFKUaBVLo2gWR0C2ZC6E384xdX2UKGgGaAloD0MI3sZmR2qJdECUhpRSlGgVS69oFkdAtmQ5/CqIanV9lChoBmgJaA9DCKX4+ITsm3NAlIaUUpRoFUu9aBZHQLZkbJUo8ZF1fZQoaAZoCWgPQwjB4QUR6dtzQJSGlFKUaBVL4mgWR0C2ZGyKm8/VdX2UKGgGaAloD0MI7pOjAJGtcECUhpRSlGgVS6VoFkdAtmSrfJmuknV9lChoBmgJaA9DCBaFXRR9/nBAlIaUUpRoFUutaBZHQLZkq8eS0Sh1fZQoaAZoCWgPQwhhwf2AB4BxQJSGlFKUaBVLqWgWR0C2ZK1+iJwbdX2UKGgGaAloD0MIbVhTWRS1cUCUhpRSlGgVS7ZoFkdAtmTA7nxJ/XV9lChoBmgJaA9DCE+tvrpqM3NAlIaUUpRoFUu2aBZHQLZkyxZdOZd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2_2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a07f42b9c2b4972845578b939d6ca7805e8fbc8e0e9fcf7642ad73ff1c67b71
3
+ size 147267
ppo-LunarLander-v2_2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-LunarLander-v2_2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9a7307760>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9a73077f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9a7307880>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9a7307910>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff9a73079a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff9a7307a30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff9a7307ac0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9a7307b50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff9a7307be0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9a7307c70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9a7307d00>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9a7307d90>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ff9a72da740>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 5013504,
25
+ "_total_timesteps": 5000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1682688531348639667,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaC8LxxTDm7n8JAPaCNhjwiGay8ekVoPQAAgD8AAIA/xgFZPt6tFz8is4G+6RNBv4RHcD7uQHi+AAAAAAAAAACaBVm8SEGvuAEYJbiRI3az4qivOr4GRTcAAIA/AACAP5pjarxcW3S66La9NmlCsjGzYbO4G+/ctQAAgD8AAIA/zccMvbLXvj/LAoq+vG3oPUSsCT0IZ3w9AAAAAAAAAABm98+8e6qJumcpJjm6cyQ0LKs8O+9aQbgAAIA/AACAPzPfqL1Relg/olMUvgvHTr/JEky+IiqUvQAAAAAAAAAAZnJsPFLg7blqfIu68wzttTHLRbrqkKA5AACAPwAAgD8AVGG8A3NvP2g4GL1DUXu/QctivSVo47sAAAAAAAAAAGbOR7uN7rU/Wx+evsUp7T5d+Wc7uUSPPQAAAAAAAAAAwHTFvTEW2D5t0aw9kXQ6v5NxFL5I4eo9AAAAAAAAAACabMa8e5KDuofMHDMyPEIqOS69OjYOyrMAAIA/AACAP5pZ8jvhQJi6uvr9OLfIdDP3Q5i6uXEQuAAAgD8AAIA/zV4+vPZEQLqyePk7st4vM2d/C7qArWIzAACAPwAAgD/NSGW9GkSnP5ATOr63yQa/mCDdvcpBCb4AAAAAAAAAAE1HIr2PylG68zJ7PBonkDyOHAq8kNN6PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.0027007999999999477,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI63B0lW4kc0CUhpRSlIwBbJRLzYwBdJRHQLZgE1Oj7AN1fZQoaAZoCWgPQwhkkLsIU4JyQJSGlFKUaBVLxGgWR0C2YCNZmqYJdX2UKGgGaAloD0MIkrJF0q67c0CUhpRSlGgVS7BoFkdAtmAlQ/HHWHV9lChoBmgJaA9DCFeVfVeE0nFAlIaUUpRoFUuiaBZHQLZgLkD6nBN1fZQoaAZoCWgPQwjedMsOceJzQJSGlFKUaBVLwWgWR0C2YDZfdAPedX2UKGgGaAloD0MIVn4ZjJEfc0CUhpRSlGgVS8JoFkdAtmA5A+pwTHV9lChoBmgJaA9DCKxXkdEBwHFAlIaUUpRoFUuyaBZHQLZgTaBqbjN1fZQoaAZoCWgPQwiPi2oRUTtyQJSGlFKUaBVLumgWR0C2YF8xwhnrdX2UKGgGaAloD0MIVkRN9DmbcECUhpRSlGgVS7BoFkdAtmByxbB42XV9lChoBmgJaA9DCLMkQE3tKHNAlIaUUpRoFUuiaBZHQLZgddFvybx1fZQoaAZoCWgPQwhH/8u1qH5yQJSGlFKUaBVLqWgWR0C2YHoRNATqdX2UKGgGaAloD0MI0qqWdJRFUECUhpRSlGgVS2hoFkdAtmCBIsiB5HV9lChoBmgJaA9DCH8Udebe2XFAlIaUUpRoFUuwaBZHQLZgiU1yeZp1fZQoaAZoCWgPQwjWNVoONNtyQJSGlFKUaBVLv2gWR0C2YJ88xKxtdX2UKGgGaAloD0MICU/o9Wf0cUCUhpRSlGgVS6poFkdAtmCwiliz9nV9lChoBmgJaA9DCNoDrcAQWnJAlIaUUpRoFUu/aBZHQLZgtGtITXd1fZQoaAZoCWgPQwgIy9jQDaFxQJSGlFKUaBVLwmgWR0C2YMagAZKndX2UKGgGaAloD0MIlBRYAFPFcUCUhpRSlGgVS5loFkdAtmDTcO9WZXV9lChoBmgJaA9DCNdoOdBD8HBAlIaUUpRoFUuqaBZHQLZg0rYoRZl1fZQoaAZoCWgPQwj9LmzNltlyQJSGlFKUaBVLmWgWR0C2YNZcX3xndX2UKGgGaAloD0MIYd14dyQUcUCUhpRSlGgVS7FoFkdAtmDbd8Aq/nV9lChoBmgJaA9DCNi8qrNaHXJAlIaUUpRoFUuwaBZHQLZg4zS1E3N1fZQoaAZoCWgPQwgQsFbtGh1xQJSGlFKUaBVLkGgWR0C2YOKT0QK8dX2UKGgGaAloD0MIk3GMZE9GcECUhpRSlGgVS6loFkdAtmEP5JsfrHV9lChoBmgJaA9DCCzxgLKp025AlIaUUpRoFUuraBZHQLZhK/tIClt1fZQoaAZoCWgPQwjGwaVjjkNzQJSGlFKUaBVLpmgWR0C2YTKXfIjodX2UKGgGaAloD0MIAiuHFlknckCUhpRSlGgVS7JoFkdAtmE42Ifr8nV9lChoBmgJaA9DCCaqtwY2q3NAlIaUUpRoFUvGaBZHQLZhR8p1A7h1fZQoaAZoCWgPQwhzu5f7pMVxQJSGlFKUaBVLpWgWR0C2YVKKUFB6dX2UKGgGaAloD0MIUmStoRTRckCUhpRSlGgVS8xoFkdAtmFlirksBnV9lChoBmgJaA9DCJqV7UMeX3BAlIaUUpRoFUuqaBZHQLZhbySV4X51fZQoaAZoCWgPQwhjY15HnJhyQJSGlFKUaBVLuWgWR0C2YXrTDwYtdX2UKGgGaAloD0MIe2r11ZU5cUCUhpRSlGgVS6RoFkdAtmGM/FBIF3V9lChoBmgJaA9DCN+j/nrF8nBAlIaUUpRoFUu7aBZHQLZhlYbbUPR1fZQoaAZoCWgPQwi31awz/gtzQJSGlFKUaBVLqGgWR0C2YaA+Y+jedX2UKGgGaAloD0MIA7StZp1NckCUhpRSlGgVS65oFkdAtmGfPKMefnV9lChoBmgJaA9DCN6rVib8p3JAlIaUUpRoFUu9aBZHQLZhpxCpm291fZQoaAZoCWgPQwg1Bwjm6LNyQJSGlFKUaBVLymgWR0C2YbNtdiUgdX2UKGgGaAloD0MI9Ik8Sfo2c0CUhpRSlGgVS8xoFkdAtmHFVOsT4HV9lChoBmgJaA9DCH3Nctmo1HFAlIaUUpRoFUuqaBZHQLZhzRpDeCV1fZQoaAZoCWgPQwiF7LyNzTlxQJSGlFKUaBVLnmgWR0C2Yd1mFrVOdX2UKGgGaAloD0MIvMrapridcECUhpRSlGgVS6JoFkdAtmHpBNVR13V9lChoBmgJaA9DCCrEI/HyL3FAlIaUUpRoFUumaBZHQLZh/Rl6JIl1fZQoaAZoCWgPQwhoPBHEeTtzQJSGlFKUaBVLmWgWR0C2Yfo/JNj9dX2UKGgGaAloD0MISG5Nuu0gc0CUhpRSlGgVS8BoFkdAtmH/UI9kjHV9lChoBmgJaA9DCGn9LQG4mHFAlIaUUpRoFUuLaBZHQLZiEhHLA591fZQoaAZoCWgPQwgw9fOmIkBwQJSGlFKUaBVLsGgWR0C2Yi3889wFdX2UKGgGaAloD0MIXcDLDJvHcUCUhpRSlGgVS6VoFkdAtmJJnyup0nV9lChoBmgJaA9DCKslHeUgyXFAlIaUUpRoFUuuaBZHQLZiS1xbSql1fZQoaAZoCWgPQwjcoWExKt1zQJSGlFKUaBVL1WgWR0C2Yk7tRekYdX2UKGgGaAloD0MIB7MJMCwqcUCUhpRSlGgVS6loFkdAtmJX1dxAB3V9lChoBmgJaA9DCMr6zcR0fnBAlIaUUpRoFUujaBZHQLZiV8YQ8Ol1fZQoaAZoCWgPQwgtQUZAhfpyQJSGlFKUaBVLuWgWR0C2Ymbo4dZJdX2UKGgGaAloD0MIjnObcG/5cECUhpRSlGgVS6VoFkdAtmJmakRBeHV9lChoBmgJaA9DCF9/Ep87u3FAlIaUUpRoFUugaBZHQLZiejZteld1fZQoaAZoCWgPQwgpCB7f3oxxQJSGlFKUaBVLsmgWR0C2YoSuZCv6dX2UKGgGaAloD0MIpvCg2XUqckCUhpRSlGgVS65oFkdAtmKZM8HObHV9lChoBmgJaA9DCEoNbQA2jHFAlIaUUpRoFUuxaBZHQLZiptZFG5N1fZQoaAZoCWgPQwimgR/VMAhxQJSGlFKUaBVLqGgWR0C2YrIekpI+dX2UKGgGaAloD0MIumsJ+WBcckCUhpRSlGgVS7hoFkdAtmK+ois4k3V9lChoBmgJaA9DCHptNlZianNAlIaUUpRoFUu8aBZHQLZixhqCYkV1fZQoaAZoCWgPQwjlX8sr1+JzQJSGlFKUaBVLvGgWR0C2YtujdpIudX2UKGgGaAloD0MIutqK/WUvckCUhpRSlGgVS7JoFkdAtmLvZTQ3P3V9lChoBmgJaA9DCAOxbOYQ8W9AlIaUUpRoFUukaBZHQLZi+9/BnBd1fZQoaAZoCWgPQwhMjjulg+twQJSGlFKUaBVLo2gWR0C2Yv4+Sr5qdX2UKGgGaAloD0MIyHvVygTIcECUhpRSlGgVS5xoFkdAtmMPSro4dnV9lChoBmgJaA9DCBX9oZnngHJAlIaUUpRoFUu8aBZHQLZjFL0z0pV1fZQoaAZoCWgPQwh2GmmpvF1yQJSGlFKUaBVLuWgWR0C2YyAiqyWzdX2UKGgGaAloD0MII0vmWJ56cECUhpRSlGgVS6poFkdAtmMgQGwA2nV9lChoBmgJaA9DCF0xI7w9qXJAlIaUUpRoFUvDaBZHQLZjK6xPfsN1fZQoaAZoCWgPQwjcL5+s2OZxQJSGlFKUaBVLmWgWR0C2Yy5R4yGjdX2UKGgGaAloD0MIQ+T09bykckCUhpRSlGgVS6xoFkdAtmM38VHnU3V9lChoBmgJaA9DCGheDrvv/kpAlIaUUpRoFUt1aBZHQLZjNZ4wAVB1fZQoaAZoCWgPQwiy2vy/6jxEQJSGlFKUaBVLVmgWR0C2Y102DQJHdX2UKGgGaAloD0MITE9Y4oHickCUhpRSlGgVS5ZoFkdAtmNteqrBCXV9lChoBmgJaA9DCEPIef8fkHJAlIaUUpRoFUuwaBZHQLZjasqril11fZQoaAZoCWgPQwia7+AnzjtzQJSGlFKUaBVLv2gWR0C2Y239R77bdX2UKGgGaAloD0MIuhXCauwVcUCUhpRSlGgVS51oFkdAtmNuCmMwUXV9lChoBmgJaA9DCIS6SKGs7HJAlIaUUpRoFUulaBZHQLZjknPmgap1fZQoaAZoCWgPQwhxrfaw14dyQJSGlFKUaBVLqmgWR0C2Y7tD+irUdX2UKGgGaAloD0MIborHRTVBb0CUhpRSlGgVS51oFkdAtmPt1/2Cd3V9lChoBmgJaA9DCPKZ7J/n6nFAlIaUUpRoFUuuaBZHQLZj+f5DZ151fZQoaAZoCWgPQwikxRnDXJR0QJSGlFKUaBVL4WgWR0C2Y/djgAIZdX2UKGgGaAloD0MItB1TdyX5cECUhpRSlGgVS6VoFkdAtmP9InSfDnV9lChoBmgJaA9DCDoeM1DZJHNAlIaUUpRoFUvLaBZHQLZj/+7Dl5p1fZQoaAZoCWgPQwgnbD8ZI1FzQJSGlFKUaBVLxGgWR0C2ZAh4Y77sdX2UKGgGaAloD0MIls/yPPiuc0CUhpRSlGgVS9xoFkdAtmQYBo24u3V9lChoBmgJaA9DCK+0jNR7J3NAlIaUUpRoFUvWaBZHQLZkHEFW4mV1fZQoaAZoCWgPQwgSoRFsXGhxQJSGlFKUaBVLpGgWR0C2ZCFU+9rXdX2UKGgGaAloD0MIuYjvxCyAdECUhpRSlGgVS9NoFkdAtmQlfBvaUXV9lChoBmgJaA9DCBTMmIL1B3FAlIaUUpRoFUuiaBZHQLZkLYu01Il1fZQoaAZoCWgPQwg9C0J535JzQJSGlFKUaBVLo2gWR0C2ZC6E384xdX2UKGgGaAloD0MI3sZmR2qJdECUhpRSlGgVS69oFkdAtmQ5/CqIanV9lChoBmgJaA9DCKX4+ITsm3NAlIaUUpRoFUu9aBZHQLZkbJUo8ZF1fZQoaAZoCWgPQwjB4QUR6dtzQJSGlFKUaBVL4mgWR0C2ZGyKm8/VdX2UKGgGaAloD0MI7pOjAJGtcECUhpRSlGgVS6VoFkdAtmSrfJmuknV9lChoBmgJaA9DCBaFXRR9/nBAlIaUUpRoFUutaBZHQLZkq8eS0Sh1fZQoaAZoCWgPQwhhwf2AB4BxQJSGlFKUaBVLqWgWR0C2ZK1+iJwbdX2UKGgGaAloD0MIbVhTWRS1cUCUhpRSlGgVS7ZoFkdAtmTA7nxJ/XV9lChoBmgJaA9DCE+tvrpqM3NAlIaUUpRoFUu2aBZHQLZkyxZdOZd1ZS4="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 1530,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 2048,
82
+ "gamma": 0.999,
83
+ "gae_lambda": 0.98,
84
+ "ent_coef": 0.01,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 10,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
ppo-LunarLander-v2_2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49eebac8d4a010d68962b9d880b7e062fa5218b1183e1e1b4c20033f79cea6b5
3
+ size 87929
ppo-LunarLander-v2_2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fdb41848657c801a8e90003e9667e86a35e767a03d4dd71c720ec0d6f1be8d5
3
+ size 43329
ppo-LunarLander-v2_2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2_2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (188 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 297.8440851030259, "std_reward": 18.617639168917805, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-28T15:09:32.922677"}