addie11 commited on
Commit
d7889e0
1 Parent(s): 7268670

First model!

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - emotion
8
+ metrics:
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: distilbert-base-uncased-finetuned_emotionless
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: emotion
19
+ type: emotion
20
+ config: split
21
+ split: validation
22
+ args: split
23
+ metrics:
24
+ - name: F1
25
+ type: f1
26
+ value: 0.9353567216170068
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value: 0.935
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # distilbert-base-uncased-finetuned_emotionless
36
+
37
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.1613
40
+ - F1: 0.9354
41
+ - Accuracy: 0.935
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 64
62
+ - eval_batch_size: 64
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 2
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
71
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
72
+ | 0.2617 | 1.0 | 250 | 0.1919 | 0.9280 | 0.9275 |
73
+ | 0.1487 | 2.0 | 500 | 0.1613 | 0.9354 | 0.935 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.40.0
79
+ - Pytorch 2.3.1
80
+ - Datasets 2.20.0
81
+ - Tokenizers 0.19.1