|
|
|
|
|
|
|
|
|
import random |
|
from typing import Optional, Tuple |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from detectron2.config import CfgNode |
|
from detectron2.structures import Instances |
|
|
|
from densepose.converters.base import IntTupleBox |
|
|
|
from .densepose_cse_base import DensePoseCSEBaseSampler |
|
|
|
|
|
class DensePoseCSEConfidenceBasedSampler(DensePoseCSEBaseSampler): |
|
""" |
|
Samples DensePose data from DensePose predictions. |
|
Samples for each class are drawn using confidence value estimates. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
cfg: CfgNode, |
|
use_gt_categories: bool, |
|
embedder: torch.nn.Module, |
|
confidence_channel: str, |
|
count_per_class: int = 8, |
|
search_count_multiplier: Optional[float] = None, |
|
search_proportion: Optional[float] = None, |
|
): |
|
""" |
|
Constructor |
|
|
|
Args: |
|
cfg (CfgNode): the config of the model |
|
embedder (torch.nn.Module): necessary to compute mesh vertex embeddings |
|
confidence_channel (str): confidence channel to use for sampling; |
|
possible values: |
|
"coarse_segm_confidence": confidences for coarse segmentation |
|
(default: "coarse_segm_confidence") |
|
count_per_class (int): the sampler produces at most `count_per_class` |
|
samples for each category (default: 8) |
|
search_count_multiplier (float or None): if not None, the total number |
|
of the most confident estimates of a given class to consider is |
|
defined as `min(search_count_multiplier * count_per_class, N)`, |
|
where `N` is the total number of estimates of the class; cannot be |
|
specified together with `search_proportion` (default: None) |
|
search_proportion (float or None): if not None, the total number of the |
|
of the most confident estimates of a given class to consider is |
|
defined as `min(max(search_proportion * N, count_per_class), N)`, |
|
where `N` is the total number of estimates of the class; cannot be |
|
specified together with `search_count_multiplier` (default: None) |
|
""" |
|
super().__init__(cfg, use_gt_categories, embedder, count_per_class) |
|
self.confidence_channel = confidence_channel |
|
self.search_count_multiplier = search_count_multiplier |
|
self.search_proportion = search_proportion |
|
assert (search_count_multiplier is None) or (search_proportion is None), ( |
|
f"Cannot specify both search_count_multiplier (={search_count_multiplier})" |
|
f"and search_proportion (={search_proportion})" |
|
) |
|
|
|
def _produce_index_sample(self, values: torch.Tensor, count: int): |
|
""" |
|
Produce a sample of indices to select data based on confidences |
|
|
|
Args: |
|
values (torch.Tensor): a tensor of length k that contains confidences |
|
k: number of points labeled with part_id |
|
count (int): number of samples to produce, should be positive and <= k |
|
|
|
Return: |
|
list(int): indices of values (along axis 1) selected as a sample |
|
""" |
|
k = values.shape[1] |
|
if k == count: |
|
index_sample = list(range(k)) |
|
else: |
|
|
|
|
|
|
|
_, sorted_confidence_indices = torch.sort(values[0]) |
|
if self.search_count_multiplier is not None: |
|
search_count = min(int(count * self.search_count_multiplier), k) |
|
elif self.search_proportion is not None: |
|
search_count = min(max(int(k * self.search_proportion), count), k) |
|
else: |
|
search_count = min(count, k) |
|
sample_from_top = random.sample(range(search_count), count) |
|
index_sample = sorted_confidence_indices[-search_count:][sample_from_top] |
|
return index_sample |
|
|
|
def _produce_mask_and_results( |
|
self, instance: Instances, bbox_xywh: IntTupleBox |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Method to get labels and DensePose results from an instance |
|
|
|
Args: |
|
instance (Instances): an instance of |
|
`DensePoseEmbeddingPredictorOutputWithConfidences` |
|
bbox_xywh (IntTupleBox): the corresponding bounding box |
|
|
|
Return: |
|
mask (torch.Tensor): shape [H, W], DensePose segmentation mask |
|
embeddings (Tuple[torch.Tensor]): a tensor of shape [D, H, W] |
|
DensePose CSE Embeddings |
|
other_values: a tensor of shape [1, H, W], DensePose CSE confidence |
|
""" |
|
_, _, w, h = bbox_xywh |
|
densepose_output = instance.pred_densepose |
|
mask, embeddings, _ = super()._produce_mask_and_results(instance, bbox_xywh) |
|
other_values = F.interpolate( |
|
getattr(densepose_output, self.confidence_channel), |
|
size=(h, w), |
|
mode="bilinear", |
|
)[0].cpu() |
|
return mask, embeddings, other_values |
|
|