abhyudit309
commited on
Commit
•
6579914
1
Parent(s):
b7e0561
Upload model
Browse files- added_tokens.json +3 -0
- config.json +3169 -0
- dataset_statistics.json +627 -0
- generation_config.json +7 -0
- logs.txt +2155 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +989 -0
- preprocessor_config.json +114 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +53 -0
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<PAD>": 32000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,3169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openvla/openvla-7b",
|
3 |
+
"arch_specifier": "no-align+fused-gelu-mlp",
|
4 |
+
"architectures": [
|
5 |
+
"OpenVLAForActionPrediction"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "openvla/openvla-7b--configuration_prismatic.OpenVLAConfig",
|
9 |
+
"AutoModelForVision2Seq": "openvla/openvla-7b--modeling_prismatic.OpenVLAForActionPrediction"
|
10 |
+
},
|
11 |
+
"hf_llm_id": "meta-llama/Llama-2-7b-hf",
|
12 |
+
"image_resize_strategy": "resize-naive",
|
13 |
+
"image_sizes": [
|
14 |
+
224,
|
15 |
+
224
|
16 |
+
],
|
17 |
+
"llm_backbone_id": "llama2-7b-pure",
|
18 |
+
"llm_max_length": 2048,
|
19 |
+
"model_type": "openvla",
|
20 |
+
"n_action_bins": 256,
|
21 |
+
"norm_stats": {
|
22 |
+
"austin_buds_dataset_converted_externally_to_rlds": {
|
23 |
+
"action": {
|
24 |
+
"mask": [
|
25 |
+
true,
|
26 |
+
true,
|
27 |
+
true,
|
28 |
+
true,
|
29 |
+
true,
|
30 |
+
true,
|
31 |
+
false
|
32 |
+
],
|
33 |
+
"max": [
|
34 |
+
1.0,
|
35 |
+
1.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
1.0
|
41 |
+
],
|
42 |
+
"mean": [
|
43 |
+
-0.07678354531526566,
|
44 |
+
0.0036849044263362885,
|
45 |
+
0.05644911900162697,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.3510494828224182
|
50 |
+
],
|
51 |
+
"min": [
|
52 |
+
-1.0,
|
53 |
+
-1.0,
|
54 |
+
-1.0,
|
55 |
+
0.0,
|
56 |
+
0.0,
|
57 |
+
0.0,
|
58 |
+
0.0
|
59 |
+
],
|
60 |
+
"q01": [
|
61 |
+
-1.0,
|
62 |
+
-0.9599999785423279,
|
63 |
+
-0.8714285492897034,
|
64 |
+
0.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0
|
68 |
+
],
|
69 |
+
"q99": [
|
70 |
+
1.0,
|
71 |
+
0.8600000143051147,
|
72 |
+
1.0,
|
73 |
+
0.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
1.0
|
77 |
+
],
|
78 |
+
"std": [
|
79 |
+
0.6367740631103516,
|
80 |
+
0.37889179587364197,
|
81 |
+
0.47796326875686646,
|
82 |
+
0.0,
|
83 |
+
0.0,
|
84 |
+
0.0,
|
85 |
+
0.47721168398857117
|
86 |
+
]
|
87 |
+
},
|
88 |
+
"num_trajectories": 50,
|
89 |
+
"num_transitions": 34112,
|
90 |
+
"proprio": {
|
91 |
+
"max": [
|
92 |
+
0.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
0.0,
|
98 |
+
0.0
|
99 |
+
],
|
100 |
+
"mean": [
|
101 |
+
0.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
0.0,
|
107 |
+
0.0
|
108 |
+
],
|
109 |
+
"min": [
|
110 |
+
0.0,
|
111 |
+
0.0,
|
112 |
+
0.0,
|
113 |
+
0.0,
|
114 |
+
0.0,
|
115 |
+
0.0,
|
116 |
+
0.0
|
117 |
+
],
|
118 |
+
"q01": [
|
119 |
+
0.0,
|
120 |
+
0.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
0.0
|
126 |
+
],
|
127 |
+
"q99": [
|
128 |
+
0.0,
|
129 |
+
0.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
0.0
|
135 |
+
],
|
136 |
+
"std": [
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
0.0,
|
140 |
+
0.0,
|
141 |
+
0.0,
|
142 |
+
0.0,
|
143 |
+
0.0
|
144 |
+
]
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"austin_sailor_dataset_converted_externally_to_rlds": {
|
148 |
+
"action": {
|
149 |
+
"mask": [
|
150 |
+
true,
|
151 |
+
true,
|
152 |
+
true,
|
153 |
+
true,
|
154 |
+
true,
|
155 |
+
true,
|
156 |
+
false
|
157 |
+
],
|
158 |
+
"max": [
|
159 |
+
1.0,
|
160 |
+
1.0,
|
161 |
+
1.0,
|
162 |
+
0.0,
|
163 |
+
0.0,
|
164 |
+
0.375,
|
165 |
+
1.0
|
166 |
+
],
|
167 |
+
"mean": [
|
168 |
+
0.011825348250567913,
|
169 |
+
0.006461074110120535,
|
170 |
+
0.06023626774549484,
|
171 |
+
0.0,
|
172 |
+
0.0,
|
173 |
+
0.0016465914668515325,
|
174 |
+
0.5260950326919556
|
175 |
+
],
|
176 |
+
"min": [
|
177 |
+
-1.0,
|
178 |
+
-1.0,
|
179 |
+
-1.0,
|
180 |
+
0.0,
|
181 |
+
0.0,
|
182 |
+
-0.375,
|
183 |
+
0.0
|
184 |
+
],
|
185 |
+
"q01": [
|
186 |
+
-1.0,
|
187 |
+
-0.9828571677207947,
|
188 |
+
-0.6000000238418579,
|
189 |
+
0.0,
|
190 |
+
0.0,
|
191 |
+
-0.17249999940395355,
|
192 |
+
0.0
|
193 |
+
],
|
194 |
+
"q99": [
|
195 |
+
1.0,
|
196 |
+
0.9457142949104309,
|
197 |
+
1.0,
|
198 |
+
0.0,
|
199 |
+
0.0,
|
200 |
+
0.17892856895923615,
|
201 |
+
1.0
|
202 |
+
],
|
203 |
+
"std": [
|
204 |
+
0.46348899602890015,
|
205 |
+
0.41240179538726807,
|
206 |
+
0.411862850189209,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
0.0578610822558403,
|
210 |
+
0.49894046783447266
|
211 |
+
]
|
212 |
+
},
|
213 |
+
"num_trajectories": 240,
|
214 |
+
"num_transitions": 353094,
|
215 |
+
"proprio": {
|
216 |
+
"max": [
|
217 |
+
0.0,
|
218 |
+
0.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
0.0
|
224 |
+
],
|
225 |
+
"mean": [
|
226 |
+
0.0,
|
227 |
+
0.0,
|
228 |
+
0.0,
|
229 |
+
0.0,
|
230 |
+
0.0,
|
231 |
+
0.0,
|
232 |
+
0.0
|
233 |
+
],
|
234 |
+
"min": [
|
235 |
+
0.0,
|
236 |
+
0.0,
|
237 |
+
0.0,
|
238 |
+
0.0,
|
239 |
+
0.0,
|
240 |
+
0.0,
|
241 |
+
0.0
|
242 |
+
],
|
243 |
+
"q01": [
|
244 |
+
0.0,
|
245 |
+
0.0,
|
246 |
+
0.0,
|
247 |
+
0.0,
|
248 |
+
0.0,
|
249 |
+
0.0,
|
250 |
+
0.0
|
251 |
+
],
|
252 |
+
"q99": [
|
253 |
+
0.0,
|
254 |
+
0.0,
|
255 |
+
0.0,
|
256 |
+
0.0,
|
257 |
+
0.0,
|
258 |
+
0.0,
|
259 |
+
0.0
|
260 |
+
],
|
261 |
+
"std": [
|
262 |
+
0.0,
|
263 |
+
0.0,
|
264 |
+
0.0,
|
265 |
+
0.0,
|
266 |
+
0.0,
|
267 |
+
0.0,
|
268 |
+
0.0
|
269 |
+
]
|
270 |
+
}
|
271 |
+
},
|
272 |
+
"austin_sirius_dataset_converted_externally_to_rlds": {
|
273 |
+
"action": {
|
274 |
+
"mask": [
|
275 |
+
true,
|
276 |
+
true,
|
277 |
+
true,
|
278 |
+
true,
|
279 |
+
true,
|
280 |
+
true,
|
281 |
+
false
|
282 |
+
],
|
283 |
+
"max": [
|
284 |
+
1.0002285242080688,
|
285 |
+
0.960608720779419,
|
286 |
+
1.105179786682129,
|
287 |
+
0.0,
|
288 |
+
0.0,
|
289 |
+
0.341785728931427,
|
290 |
+
1.0
|
291 |
+
],
|
292 |
+
"mean": [
|
293 |
+
0.07747682929039001,
|
294 |
+
0.03195561468601227,
|
295 |
+
0.04244732856750488,
|
296 |
+
0.0,
|
297 |
+
0.0,
|
298 |
+
-0.01603456400334835,
|
299 |
+
0.43260177969932556
|
300 |
+
],
|
301 |
+
"min": [
|
302 |
+
-1.0183025598526,
|
303 |
+
-0.9800000190734863,
|
304 |
+
-0.9774575233459473,
|
305 |
+
0.0,
|
306 |
+
0.0,
|
307 |
+
-0.34607142210006714,
|
308 |
+
0.0
|
309 |
+
],
|
310 |
+
"q01": [
|
311 |
+
-0.780905865430832,
|
312 |
+
-0.5667179036140442,
|
313 |
+
-0.5254343223571777,
|
314 |
+
0.0,
|
315 |
+
0.0,
|
316 |
+
-0.28495091378688814,
|
317 |
+
0.0
|
318 |
+
],
|
319 |
+
"q99": [
|
320 |
+
0.9569637751579284,
|
321 |
+
0.6971374487876891,
|
322 |
+
0.8124888157844541,
|
323 |
+
0.0,
|
324 |
+
0.0,
|
325 |
+
0.1971428543329239,
|
326 |
+
1.0
|
327 |
+
],
|
328 |
+
"std": [
|
329 |
+
0.3906329572200775,
|
330 |
+
0.2998155355453491,
|
331 |
+
0.2782271206378937,
|
332 |
+
0.0,
|
333 |
+
0.0,
|
334 |
+
0.08120622485876083,
|
335 |
+
0.49528297781944275
|
336 |
+
]
|
337 |
+
},
|
338 |
+
"num_trajectories": 559,
|
339 |
+
"num_transitions": 279939,
|
340 |
+
"proprio": {
|
341 |
+
"max": [
|
342 |
+
0.0,
|
343 |
+
0.0,
|
344 |
+
0.0,
|
345 |
+
0.0,
|
346 |
+
0.0,
|
347 |
+
0.0,
|
348 |
+
0.0
|
349 |
+
],
|
350 |
+
"mean": [
|
351 |
+
0.0,
|
352 |
+
0.0,
|
353 |
+
0.0,
|
354 |
+
0.0,
|
355 |
+
0.0,
|
356 |
+
0.0,
|
357 |
+
0.0
|
358 |
+
],
|
359 |
+
"min": [
|
360 |
+
0.0,
|
361 |
+
0.0,
|
362 |
+
0.0,
|
363 |
+
0.0,
|
364 |
+
0.0,
|
365 |
+
0.0,
|
366 |
+
0.0
|
367 |
+
],
|
368 |
+
"q01": [
|
369 |
+
0.0,
|
370 |
+
0.0,
|
371 |
+
0.0,
|
372 |
+
0.0,
|
373 |
+
0.0,
|
374 |
+
0.0,
|
375 |
+
0.0
|
376 |
+
],
|
377 |
+
"q99": [
|
378 |
+
0.0,
|
379 |
+
0.0,
|
380 |
+
0.0,
|
381 |
+
0.0,
|
382 |
+
0.0,
|
383 |
+
0.0,
|
384 |
+
0.0
|
385 |
+
],
|
386 |
+
"std": [
|
387 |
+
0.0,
|
388 |
+
0.0,
|
389 |
+
0.0,
|
390 |
+
0.0,
|
391 |
+
0.0,
|
392 |
+
0.0,
|
393 |
+
0.0
|
394 |
+
]
|
395 |
+
}
|
396 |
+
},
|
397 |
+
"bc_z": {
|
398 |
+
"action": {
|
399 |
+
"mask": [
|
400 |
+
true,
|
401 |
+
true,
|
402 |
+
true,
|
403 |
+
true,
|
404 |
+
true,
|
405 |
+
true,
|
406 |
+
false
|
407 |
+
],
|
408 |
+
"max": [
|
409 |
+
0.2165454924106598,
|
410 |
+
0.1251407265663147,
|
411 |
+
0.10772687941789627,
|
412 |
+
0.33544227480888367,
|
413 |
+
0.28117990493774414,
|
414 |
+
0.40614867210388184,
|
415 |
+
1.0
|
416 |
+
],
|
417 |
+
"mean": [
|
418 |
+
-0.009958467446267605,
|
419 |
+
0.0008958321413956583,
|
420 |
+
0.004995597992092371,
|
421 |
+
0.00029755113064311445,
|
422 |
+
-0.008735382929444313,
|
423 |
+
-0.030693737789988518,
|
424 |
+
0.8344562649726868
|
425 |
+
],
|
426 |
+
"min": [
|
427 |
+
-0.1677047461271286,
|
428 |
+
-0.14630407094955444,
|
429 |
+
-0.10066790133714676,
|
430 |
+
-0.29421567916870117,
|
431 |
+
-0.32101404666900635,
|
432 |
+
-0.4635624885559082,
|
433 |
+
0.0
|
434 |
+
],
|
435 |
+
"q01": [
|
436 |
+
-0.09220654994249344,
|
437 |
+
-0.06456145539879798,
|
438 |
+
-0.049121275544166565,
|
439 |
+
-0.11594625547528267,
|
440 |
+
-0.14152548640966414,
|
441 |
+
-0.2251061636209488,
|
442 |
+
0.0
|
443 |
+
],
|
444 |
+
"q99": [
|
445 |
+
0.07628866866230968,
|
446 |
+
0.058019736707210584,
|
447 |
+
0.052540797740221024,
|
448 |
+
0.11740604028105736,
|
449 |
+
0.11703975558280955,
|
450 |
+
0.16729306846857078,
|
451 |
+
1.0
|
452 |
+
],
|
453 |
+
"std": [
|
454 |
+
0.03053455986082554,
|
455 |
+
0.0231423731893301,
|
456 |
+
0.020641816779971123,
|
457 |
+
0.04155943542718887,
|
458 |
+
0.046427831053733826,
|
459 |
+
0.0769818127155304,
|
460 |
+
0.3610210120677948
|
461 |
+
]
|
462 |
+
},
|
463 |
+
"num_trajectories": 43264,
|
464 |
+
"num_transitions": 6015535,
|
465 |
+
"proprio": {
|
466 |
+
"max": [
|
467 |
+
0.0,
|
468 |
+
0.0,
|
469 |
+
0.0,
|
470 |
+
0.0,
|
471 |
+
0.0,
|
472 |
+
0.0,
|
473 |
+
0.0
|
474 |
+
],
|
475 |
+
"mean": [
|
476 |
+
0.0,
|
477 |
+
0.0,
|
478 |
+
0.0,
|
479 |
+
0.0,
|
480 |
+
0.0,
|
481 |
+
0.0,
|
482 |
+
0.0
|
483 |
+
],
|
484 |
+
"min": [
|
485 |
+
0.0,
|
486 |
+
0.0,
|
487 |
+
0.0,
|
488 |
+
0.0,
|
489 |
+
0.0,
|
490 |
+
0.0,
|
491 |
+
0.0
|
492 |
+
],
|
493 |
+
"q01": [
|
494 |
+
0.0,
|
495 |
+
0.0,
|
496 |
+
0.0,
|
497 |
+
0.0,
|
498 |
+
0.0,
|
499 |
+
0.0,
|
500 |
+
0.0
|
501 |
+
],
|
502 |
+
"q99": [
|
503 |
+
0.0,
|
504 |
+
0.0,
|
505 |
+
0.0,
|
506 |
+
0.0,
|
507 |
+
0.0,
|
508 |
+
0.0,
|
509 |
+
0.0
|
510 |
+
],
|
511 |
+
"std": [
|
512 |
+
0.0,
|
513 |
+
0.0,
|
514 |
+
0.0,
|
515 |
+
0.0,
|
516 |
+
0.0,
|
517 |
+
0.0,
|
518 |
+
0.0
|
519 |
+
]
|
520 |
+
}
|
521 |
+
},
|
522 |
+
"berkeley_autolab_ur5": {
|
523 |
+
"action": {
|
524 |
+
"mask": [
|
525 |
+
true,
|
526 |
+
true,
|
527 |
+
true,
|
528 |
+
true,
|
529 |
+
true,
|
530 |
+
true,
|
531 |
+
false
|
532 |
+
],
|
533 |
+
"max": [
|
534 |
+
0.019999999552965164,
|
535 |
+
0.019999999552965164,
|
536 |
+
0.019999999552965164,
|
537 |
+
0.06666667014360428,
|
538 |
+
0.06666667014360428,
|
539 |
+
0.06666667014360428,
|
540 |
+
1.0
|
541 |
+
],
|
542 |
+
"mean": [
|
543 |
+
0.0005683620693162084,
|
544 |
+
0.001217700308188796,
|
545 |
+
-0.0005296372692100704,
|
546 |
+
0.00021029810886830091,
|
547 |
+
6.0695128922816366e-05,
|
548 |
+
0.001204986940138042,
|
549 |
+
0.6298308372497559
|
550 |
+
],
|
551 |
+
"min": [
|
552 |
+
-0.019999999552965164,
|
553 |
+
-0.019999999552965164,
|
554 |
+
-0.019999999552965164,
|
555 |
+
-0.06666667014360428,
|
556 |
+
-0.06666667014360428,
|
557 |
+
-0.06666667014360428,
|
558 |
+
0.0
|
559 |
+
],
|
560 |
+
"q01": [
|
561 |
+
-0.019999999552965164,
|
562 |
+
-0.019999999552965164,
|
563 |
+
-0.019999999552965164,
|
564 |
+
-0.02628571353852749,
|
565 |
+
-0.06666667014360428,
|
566 |
+
-0.03847619146108627,
|
567 |
+
0.0
|
568 |
+
],
|
569 |
+
"q99": [
|
570 |
+
0.019999999552965164,
|
571 |
+
0.019999999552965164,
|
572 |
+
0.019999999552965164,
|
573 |
+
0.031809523701667786,
|
574 |
+
0.06666667014360428,
|
575 |
+
0.036571428179740906,
|
576 |
+
1.0
|
577 |
+
],
|
578 |
+
"std": [
|
579 |
+
0.0115329809486866,
|
580 |
+
0.007990492507815361,
|
581 |
+
0.009577835910022259,
|
582 |
+
0.009432995691895485,
|
583 |
+
0.016427582129836082,
|
584 |
+
0.011053967289626598,
|
585 |
+
0.48267969489097595
|
586 |
+
]
|
587 |
+
},
|
588 |
+
"num_trajectories": 1000,
|
589 |
+
"num_transitions": 97939,
|
590 |
+
"proprio": {
|
591 |
+
"max": [
|
592 |
+
0.0,
|
593 |
+
0.0,
|
594 |
+
0.0,
|
595 |
+
0.0,
|
596 |
+
0.0,
|
597 |
+
0.0,
|
598 |
+
0.0
|
599 |
+
],
|
600 |
+
"mean": [
|
601 |
+
0.0,
|
602 |
+
0.0,
|
603 |
+
0.0,
|
604 |
+
0.0,
|
605 |
+
0.0,
|
606 |
+
0.0,
|
607 |
+
0.0
|
608 |
+
],
|
609 |
+
"min": [
|
610 |
+
0.0,
|
611 |
+
0.0,
|
612 |
+
0.0,
|
613 |
+
0.0,
|
614 |
+
0.0,
|
615 |
+
0.0,
|
616 |
+
0.0
|
617 |
+
],
|
618 |
+
"q01": [
|
619 |
+
0.0,
|
620 |
+
0.0,
|
621 |
+
0.0,
|
622 |
+
0.0,
|
623 |
+
0.0,
|
624 |
+
0.0,
|
625 |
+
0.0
|
626 |
+
],
|
627 |
+
"q99": [
|
628 |
+
0.0,
|
629 |
+
0.0,
|
630 |
+
0.0,
|
631 |
+
0.0,
|
632 |
+
0.0,
|
633 |
+
0.0,
|
634 |
+
0.0
|
635 |
+
],
|
636 |
+
"std": [
|
637 |
+
0.0,
|
638 |
+
0.0,
|
639 |
+
0.0,
|
640 |
+
0.0,
|
641 |
+
0.0,
|
642 |
+
0.0,
|
643 |
+
0.0
|
644 |
+
]
|
645 |
+
}
|
646 |
+
},
|
647 |
+
"berkeley_cable_routing": {
|
648 |
+
"action": {
|
649 |
+
"mask": [
|
650 |
+
true,
|
651 |
+
true,
|
652 |
+
true,
|
653 |
+
true,
|
654 |
+
true,
|
655 |
+
true,
|
656 |
+
false
|
657 |
+
],
|
658 |
+
"max": [
|
659 |
+
0.9633283019065857,
|
660 |
+
1.0,
|
661 |
+
1.0,
|
662 |
+
0.0,
|
663 |
+
0.0,
|
664 |
+
1.0,
|
665 |
+
0.0
|
666 |
+
],
|
667 |
+
"mean": [
|
668 |
+
-0.07139874249696732,
|
669 |
+
0.023609008640050888,
|
670 |
+
0.10241943597793579,
|
671 |
+
0.0,
|
672 |
+
0.0,
|
673 |
+
0.049671024084091187,
|
674 |
+
0.0
|
675 |
+
],
|
676 |
+
"min": [
|
677 |
+
-0.9809081554412842,
|
678 |
+
-0.9554349184036255,
|
679 |
+
-0.9994775056838989,
|
680 |
+
0.0,
|
681 |
+
0.0,
|
682 |
+
-1.0,
|
683 |
+
0.0
|
684 |
+
],
|
685 |
+
"q01": [
|
686 |
+
-0.5534318816661835,
|
687 |
+
-0.4797285574674606,
|
688 |
+
-0.5314934802055359,
|
689 |
+
0.0,
|
690 |
+
0.0,
|
691 |
+
-0.8855219376087189,
|
692 |
+
0.0
|
693 |
+
],
|
694 |
+
"q99": [
|
695 |
+
0.42652835428714786,
|
696 |
+
0.5000944086909298,
|
697 |
+
0.639823433756829,
|
698 |
+
0.0,
|
699 |
+
0.0,
|
700 |
+
0.984243879914284,
|
701 |
+
0.0
|
702 |
+
],
|
703 |
+
"std": [
|
704 |
+
0.1815500408411026,
|
705 |
+
0.1810990273952484,
|
706 |
+
0.21220779418945312,
|
707 |
+
0.0,
|
708 |
+
0.0,
|
709 |
+
0.3475511968135834,
|
710 |
+
0.0
|
711 |
+
]
|
712 |
+
},
|
713 |
+
"num_trajectories": 1647,
|
714 |
+
"num_transitions": 42328,
|
715 |
+
"proprio": {
|
716 |
+
"max": [
|
717 |
+
0.0,
|
718 |
+
0.0,
|
719 |
+
0.0,
|
720 |
+
0.0,
|
721 |
+
0.0,
|
722 |
+
0.0,
|
723 |
+
0.0
|
724 |
+
],
|
725 |
+
"mean": [
|
726 |
+
0.0,
|
727 |
+
0.0,
|
728 |
+
0.0,
|
729 |
+
0.0,
|
730 |
+
0.0,
|
731 |
+
0.0,
|
732 |
+
0.0
|
733 |
+
],
|
734 |
+
"min": [
|
735 |
+
0.0,
|
736 |
+
0.0,
|
737 |
+
0.0,
|
738 |
+
0.0,
|
739 |
+
0.0,
|
740 |
+
0.0,
|
741 |
+
0.0
|
742 |
+
],
|
743 |
+
"q01": [
|
744 |
+
0.0,
|
745 |
+
0.0,
|
746 |
+
0.0,
|
747 |
+
0.0,
|
748 |
+
0.0,
|
749 |
+
0.0,
|
750 |
+
0.0
|
751 |
+
],
|
752 |
+
"q99": [
|
753 |
+
0.0,
|
754 |
+
0.0,
|
755 |
+
0.0,
|
756 |
+
0.0,
|
757 |
+
0.0,
|
758 |
+
0.0,
|
759 |
+
0.0
|
760 |
+
],
|
761 |
+
"std": [
|
762 |
+
0.0,
|
763 |
+
0.0,
|
764 |
+
0.0,
|
765 |
+
0.0,
|
766 |
+
0.0,
|
767 |
+
0.0,
|
768 |
+
0.0
|
769 |
+
]
|
770 |
+
}
|
771 |
+
},
|
772 |
+
"berkeley_fanuc_manipulation": {
|
773 |
+
"action": {
|
774 |
+
"mask": [
|
775 |
+
true,
|
776 |
+
true,
|
777 |
+
true,
|
778 |
+
true,
|
779 |
+
true,
|
780 |
+
true,
|
781 |
+
false
|
782 |
+
],
|
783 |
+
"max": [
|
784 |
+
0.009999999776482582,
|
785 |
+
0.009999999776482582,
|
786 |
+
0.009999999776482582,
|
787 |
+
0.03490658476948738,
|
788 |
+
0.03490658476948738,
|
789 |
+
0.03490658476948738,
|
790 |
+
1.0
|
791 |
+
],
|
792 |
+
"mean": [
|
793 |
+
0.0007744057802483439,
|
794 |
+
-0.00031240080716088414,
|
795 |
+
-0.0015001941937953234,
|
796 |
+
-0.0007515158504247665,
|
797 |
+
-0.00015832878125365824,
|
798 |
+
0.00014327642566058785,
|
799 |
+
0.699295699596405
|
800 |
+
],
|
801 |
+
"min": [
|
802 |
+
-0.009999999776482582,
|
803 |
+
-0.009999999776482582,
|
804 |
+
-0.009999999776482582,
|
805 |
+
-0.03490658476948738,
|
806 |
+
-0.03490658476948738,
|
807 |
+
-0.03490658476948738,
|
808 |
+
0.0
|
809 |
+
],
|
810 |
+
"q01": [
|
811 |
+
-0.009999999776482582,
|
812 |
+
-0.009999999776482582,
|
813 |
+
-0.009999999776482582,
|
814 |
+
-0.03490658476948738,
|
815 |
+
0.0,
|
816 |
+
-0.03490658476948738,
|
817 |
+
0.0
|
818 |
+
],
|
819 |
+
"q99": [
|
820 |
+
0.009999999776482582,
|
821 |
+
0.009999999776482582,
|
822 |
+
0.009999999776482582,
|
823 |
+
0.03490658476948738,
|
824 |
+
0.0,
|
825 |
+
0.03490658476948738,
|
826 |
+
1.0
|
827 |
+
],
|
828 |
+
"std": [
|
829 |
+
0.0034070091787725687,
|
830 |
+
0.0049921851605176926,
|
831 |
+
0.005344334989786148,
|
832 |
+
0.00759894959628582,
|
833 |
+
0.004081866703927517,
|
834 |
+
0.008568956516683102,
|
835 |
+
0.4586937427520752
|
836 |
+
]
|
837 |
+
},
|
838 |
+
"num_trajectories": 415,
|
839 |
+
"num_transitions": 62613,
|
840 |
+
"proprio": {
|
841 |
+
"max": [
|
842 |
+
0.0,
|
843 |
+
0.0,
|
844 |
+
0.0,
|
845 |
+
0.0,
|
846 |
+
0.0,
|
847 |
+
0.0,
|
848 |
+
0.0
|
849 |
+
],
|
850 |
+
"mean": [
|
851 |
+
0.0,
|
852 |
+
0.0,
|
853 |
+
0.0,
|
854 |
+
0.0,
|
855 |
+
0.0,
|
856 |
+
0.0,
|
857 |
+
0.0
|
858 |
+
],
|
859 |
+
"min": [
|
860 |
+
0.0,
|
861 |
+
0.0,
|
862 |
+
0.0,
|
863 |
+
0.0,
|
864 |
+
0.0,
|
865 |
+
0.0,
|
866 |
+
0.0
|
867 |
+
],
|
868 |
+
"q01": [
|
869 |
+
0.0,
|
870 |
+
0.0,
|
871 |
+
0.0,
|
872 |
+
0.0,
|
873 |
+
0.0,
|
874 |
+
0.0,
|
875 |
+
0.0
|
876 |
+
],
|
877 |
+
"q99": [
|
878 |
+
0.0,
|
879 |
+
0.0,
|
880 |
+
0.0,
|
881 |
+
0.0,
|
882 |
+
0.0,
|
883 |
+
0.0,
|
884 |
+
0.0
|
885 |
+
],
|
886 |
+
"std": [
|
887 |
+
0.0,
|
888 |
+
0.0,
|
889 |
+
0.0,
|
890 |
+
0.0,
|
891 |
+
0.0,
|
892 |
+
0.0,
|
893 |
+
0.0
|
894 |
+
]
|
895 |
+
}
|
896 |
+
},
|
897 |
+
"bridge_orig": {
|
898 |
+
"action": {
|
899 |
+
"mask": [
|
900 |
+
true,
|
901 |
+
true,
|
902 |
+
true,
|
903 |
+
true,
|
904 |
+
true,
|
905 |
+
true,
|
906 |
+
false
|
907 |
+
],
|
908 |
+
"max": [
|
909 |
+
0.41691166162490845,
|
910 |
+
0.25864794850349426,
|
911 |
+
0.21218234300613403,
|
912 |
+
3.122201919555664,
|
913 |
+
1.8618112802505493,
|
914 |
+
6.280478477478027,
|
915 |
+
1.0
|
916 |
+
],
|
917 |
+
"mean": [
|
918 |
+
0.0002334194869035855,
|
919 |
+
0.00013004911306779832,
|
920 |
+
-0.00012762474943883717,
|
921 |
+
-0.0001556558854645118,
|
922 |
+
-0.0004039328487124294,
|
923 |
+
0.00023557482927571982,
|
924 |
+
0.5764579176902771
|
925 |
+
],
|
926 |
+
"min": [
|
927 |
+
-0.4007510244846344,
|
928 |
+
-0.13874775171279907,
|
929 |
+
-0.22553899884223938,
|
930 |
+
-3.2010786533355713,
|
931 |
+
-1.8618112802505493,
|
932 |
+
-6.279075622558594,
|
933 |
+
0.0
|
934 |
+
],
|
935 |
+
"q01": [
|
936 |
+
-0.02872725307941437,
|
937 |
+
-0.04170349963009357,
|
938 |
+
-0.026093858778476715,
|
939 |
+
-0.08092105075716972,
|
940 |
+
-0.09288699507713317,
|
941 |
+
-0.20718276381492615,
|
942 |
+
0.0
|
943 |
+
],
|
944 |
+
"q99": [
|
945 |
+
0.028309678435325586,
|
946 |
+
0.040855254605412394,
|
947 |
+
0.040161586627364146,
|
948 |
+
0.08192047759890528,
|
949 |
+
0.07792850524187081,
|
950 |
+
0.20382574498653397,
|
951 |
+
1.0
|
952 |
+
],
|
953 |
+
"std": [
|
954 |
+
0.009765930473804474,
|
955 |
+
0.013689135201275349,
|
956 |
+
0.012667362578213215,
|
957 |
+
0.028534092009067535,
|
958 |
+
0.030637972056865692,
|
959 |
+
0.07691419124603271,
|
960 |
+
0.4973701536655426
|
961 |
+
]
|
962 |
+
},
|
963 |
+
"num_trajectories": 60064,
|
964 |
+
"num_transitions": 2135463,
|
965 |
+
"proprio": {
|
966 |
+
"max": [
|
967 |
+
0.0,
|
968 |
+
0.0,
|
969 |
+
0.0,
|
970 |
+
0.0,
|
971 |
+
0.0,
|
972 |
+
0.0,
|
973 |
+
0.0
|
974 |
+
],
|
975 |
+
"mean": [
|
976 |
+
0.0,
|
977 |
+
0.0,
|
978 |
+
0.0,
|
979 |
+
0.0,
|
980 |
+
0.0,
|
981 |
+
0.0,
|
982 |
+
0.0
|
983 |
+
],
|
984 |
+
"min": [
|
985 |
+
0.0,
|
986 |
+
0.0,
|
987 |
+
0.0,
|
988 |
+
0.0,
|
989 |
+
0.0,
|
990 |
+
0.0,
|
991 |
+
0.0
|
992 |
+
],
|
993 |
+
"q01": [
|
994 |
+
0.0,
|
995 |
+
0.0,
|
996 |
+
0.0,
|
997 |
+
0.0,
|
998 |
+
0.0,
|
999 |
+
0.0,
|
1000 |
+
0.0
|
1001 |
+
],
|
1002 |
+
"q99": [
|
1003 |
+
0.0,
|
1004 |
+
0.0,
|
1005 |
+
0.0,
|
1006 |
+
0.0,
|
1007 |
+
0.0,
|
1008 |
+
0.0,
|
1009 |
+
0.0
|
1010 |
+
],
|
1011 |
+
"std": [
|
1012 |
+
0.0,
|
1013 |
+
0.0,
|
1014 |
+
0.0,
|
1015 |
+
0.0,
|
1016 |
+
0.0,
|
1017 |
+
0.0,
|
1018 |
+
0.0
|
1019 |
+
]
|
1020 |
+
}
|
1021 |
+
},
|
1022 |
+
"cmu_stretch": {
|
1023 |
+
"action": {
|
1024 |
+
"mask": [
|
1025 |
+
true,
|
1026 |
+
true,
|
1027 |
+
true,
|
1028 |
+
true,
|
1029 |
+
true,
|
1030 |
+
true,
|
1031 |
+
false
|
1032 |
+
],
|
1033 |
+
"max": [
|
1034 |
+
0.02338407188653946,
|
1035 |
+
0.0,
|
1036 |
+
0.023404927924275398,
|
1037 |
+
0.0,
|
1038 |
+
0.0,
|
1039 |
+
0.0,
|
1040 |
+
1.0
|
1041 |
+
],
|
1042 |
+
"mean": [
|
1043 |
+
0.00036304505192674696,
|
1044 |
+
0.0,
|
1045 |
+
0.0016466958913952112,
|
1046 |
+
0.0,
|
1047 |
+
0.0,
|
1048 |
+
0.0,
|
1049 |
+
0.3987048268318176
|
1050 |
+
],
|
1051 |
+
"min": [
|
1052 |
+
-0.019353797659277916,
|
1053 |
+
0.0,
|
1054 |
+
-0.02019215188920498,
|
1055 |
+
0.0,
|
1056 |
+
0.0,
|
1057 |
+
0.0,
|
1058 |
+
0.0
|
1059 |
+
],
|
1060 |
+
"q01": [
|
1061 |
+
-0.011175686959177256,
|
1062 |
+
0.0,
|
1063 |
+
-0.0032206363626755773,
|
1064 |
+
0.0,
|
1065 |
+
0.0,
|
1066 |
+
0.0,
|
1067 |
+
0.0
|
1068 |
+
],
|
1069 |
+
"q99": [
|
1070 |
+
0.014501785952597848,
|
1071 |
+
0.0,
|
1072 |
+
0.015056106168776728,
|
1073 |
+
0.0,
|
1074 |
+
0.0,
|
1075 |
+
0.0,
|
1076 |
+
1.0
|
1077 |
+
],
|
1078 |
+
"std": [
|
1079 |
+
0.004081828519701958,
|
1080 |
+
0.0,
|
1081 |
+
0.0037743328139185905,
|
1082 |
+
0.0,
|
1083 |
+
0.0,
|
1084 |
+
0.0,
|
1085 |
+
0.48963725566864014
|
1086 |
+
]
|
1087 |
+
},
|
1088 |
+
"num_trajectories": 135,
|
1089 |
+
"num_transitions": 25016,
|
1090 |
+
"proprio": {
|
1091 |
+
"max": [
|
1092 |
+
0.0,
|
1093 |
+
0.0,
|
1094 |
+
0.0,
|
1095 |
+
0.0,
|
1096 |
+
0.0,
|
1097 |
+
0.0,
|
1098 |
+
0.0
|
1099 |
+
],
|
1100 |
+
"mean": [
|
1101 |
+
0.0,
|
1102 |
+
0.0,
|
1103 |
+
0.0,
|
1104 |
+
0.0,
|
1105 |
+
0.0,
|
1106 |
+
0.0,
|
1107 |
+
0.0
|
1108 |
+
],
|
1109 |
+
"min": [
|
1110 |
+
0.0,
|
1111 |
+
0.0,
|
1112 |
+
0.0,
|
1113 |
+
0.0,
|
1114 |
+
0.0,
|
1115 |
+
0.0,
|
1116 |
+
0.0
|
1117 |
+
],
|
1118 |
+
"q01": [
|
1119 |
+
0.0,
|
1120 |
+
0.0,
|
1121 |
+
0.0,
|
1122 |
+
0.0,
|
1123 |
+
0.0,
|
1124 |
+
0.0,
|
1125 |
+
0.0
|
1126 |
+
],
|
1127 |
+
"q99": [
|
1128 |
+
0.0,
|
1129 |
+
0.0,
|
1130 |
+
0.0,
|
1131 |
+
0.0,
|
1132 |
+
0.0,
|
1133 |
+
0.0,
|
1134 |
+
0.0
|
1135 |
+
],
|
1136 |
+
"std": [
|
1137 |
+
0.0,
|
1138 |
+
0.0,
|
1139 |
+
0.0,
|
1140 |
+
0.0,
|
1141 |
+
0.0,
|
1142 |
+
0.0,
|
1143 |
+
0.0
|
1144 |
+
]
|
1145 |
+
}
|
1146 |
+
},
|
1147 |
+
"dlr_edan_shared_control_converted_externally_to_rlds": {
|
1148 |
+
"action": {
|
1149 |
+
"mask": [
|
1150 |
+
true,
|
1151 |
+
true,
|
1152 |
+
true,
|
1153 |
+
true,
|
1154 |
+
true,
|
1155 |
+
true,
|
1156 |
+
false
|
1157 |
+
],
|
1158 |
+
"max": [
|
1159 |
+
0.18991442024707794,
|
1160 |
+
0.0739002525806427,
|
1161 |
+
0.18064819276332855,
|
1162 |
+
0.0866486132144928,
|
1163 |
+
0.13464981317520142,
|
1164 |
+
0.16910280287265778,
|
1165 |
+
1.0
|
1166 |
+
],
|
1167 |
+
"mean": [
|
1168 |
+
0.006647810339927673,
|
1169 |
+
-0.0007657372043468058,
|
1170 |
+
0.006522852927446365,
|
1171 |
+
0.0011679717572405934,
|
1172 |
+
-0.006395625416189432,
|
1173 |
+
-0.011902998201549053,
|
1174 |
+
0.6985887289047241
|
1175 |
+
],
|
1176 |
+
"min": [
|
1177 |
+
-0.10054297000169754,
|
1178 |
+
-0.08427435159683228,
|
1179 |
+
-0.13533438742160797,
|
1180 |
+
-0.17556548118591309,
|
1181 |
+
-0.18485672771930695,
|
1182 |
+
-0.2680685818195343,
|
1183 |
+
0.0
|
1184 |
+
],
|
1185 |
+
"q01": [
|
1186 |
+
-0.02987122368067503,
|
1187 |
+
-0.06013262912631035,
|
1188 |
+
-0.08286409199237824,
|
1189 |
+
-0.05924444157630205,
|
1190 |
+
-0.15986866518855095,
|
1191 |
+
-0.15636983573436739,
|
1192 |
+
0.0
|
1193 |
+
],
|
1194 |
+
"q99": [
|
1195 |
+
0.08832092039287087,
|
1196 |
+
0.042126184627413736,
|
1197 |
+
0.11311905644834042,
|
1198 |
+
0.0643695573508739,
|
1199 |
+
0.03941855944693088,
|
1200 |
+
0.156646853685379,
|
1201 |
+
1.0
|
1202 |
+
],
|
1203 |
+
"std": [
|
1204 |
+
0.021393608301877975,
|
1205 |
+
0.01814231649041176,
|
1206 |
+
0.03374375030398369,
|
1207 |
+
0.01743541844189167,
|
1208 |
+
0.03394376486539841,
|
1209 |
+
0.04641875624656677,
|
1210 |
+
0.4588589072227478
|
1211 |
+
]
|
1212 |
+
},
|
1213 |
+
"num_trajectories": 104,
|
1214 |
+
"num_transitions": 8928,
|
1215 |
+
"proprio": {
|
1216 |
+
"max": [
|
1217 |
+
0.0,
|
1218 |
+
0.0,
|
1219 |
+
0.0,
|
1220 |
+
0.0,
|
1221 |
+
0.0,
|
1222 |
+
0.0,
|
1223 |
+
0.0
|
1224 |
+
],
|
1225 |
+
"mean": [
|
1226 |
+
0.0,
|
1227 |
+
0.0,
|
1228 |
+
0.0,
|
1229 |
+
0.0,
|
1230 |
+
0.0,
|
1231 |
+
0.0,
|
1232 |
+
0.0
|
1233 |
+
],
|
1234 |
+
"min": [
|
1235 |
+
0.0,
|
1236 |
+
0.0,
|
1237 |
+
0.0,
|
1238 |
+
0.0,
|
1239 |
+
0.0,
|
1240 |
+
0.0,
|
1241 |
+
0.0
|
1242 |
+
],
|
1243 |
+
"q01": [
|
1244 |
+
0.0,
|
1245 |
+
0.0,
|
1246 |
+
0.0,
|
1247 |
+
0.0,
|
1248 |
+
0.0,
|
1249 |
+
0.0,
|
1250 |
+
0.0
|
1251 |
+
],
|
1252 |
+
"q99": [
|
1253 |
+
0.0,
|
1254 |
+
0.0,
|
1255 |
+
0.0,
|
1256 |
+
0.0,
|
1257 |
+
0.0,
|
1258 |
+
0.0,
|
1259 |
+
0.0
|
1260 |
+
],
|
1261 |
+
"std": [
|
1262 |
+
0.0,
|
1263 |
+
0.0,
|
1264 |
+
0.0,
|
1265 |
+
0.0,
|
1266 |
+
0.0,
|
1267 |
+
0.0,
|
1268 |
+
0.0
|
1269 |
+
]
|
1270 |
+
}
|
1271 |
+
},
|
1272 |
+
"dobbe": {
|
1273 |
+
"action": {
|
1274 |
+
"mask": [
|
1275 |
+
true,
|
1276 |
+
true,
|
1277 |
+
true,
|
1278 |
+
true,
|
1279 |
+
true,
|
1280 |
+
true,
|
1281 |
+
false
|
1282 |
+
],
|
1283 |
+
"max": [
|
1284 |
+
38.590423583984375,
|
1285 |
+
17.932697296142578,
|
1286 |
+
4.843764305114746,
|
1287 |
+
1.4372116327285767,
|
1288 |
+
0.4340403974056244,
|
1289 |
+
1.2057193517684937,
|
1290 |
+
0.9998947381973267
|
1291 |
+
],
|
1292 |
+
"mean": [
|
1293 |
+
-0.0001120665911003016,
|
1294 |
+
0.0011229600058868527,
|
1295 |
+
-0.00010194431524723768,
|
1296 |
+
-7.371398532995954e-05,
|
1297 |
+
-0.00067531579406932,
|
1298 |
+
-5.6643435527803376e-05,
|
1299 |
+
0.6318281888961792
|
1300 |
+
],
|
1301 |
+
"min": [
|
1302 |
+
-5.700923442840576,
|
1303 |
+
-21.605947494506836,
|
1304 |
+
-123.72489929199219,
|
1305 |
+
-1.7229845523834229,
|
1306 |
+
-0.4998578727245331,
|
1307 |
+
-0.8867913484573364,
|
1308 |
+
1.4196479014572105e-06
|
1309 |
+
],
|
1310 |
+
"q01": [
|
1311 |
+
-0.01119564864784479,
|
1312 |
+
-0.014266146533191203,
|
1313 |
+
-0.0071747214533388615,
|
1314 |
+
-0.009444301575422287,
|
1315 |
+
-0.03990109823644161,
|
1316 |
+
-0.017422311007976532,
|
1317 |
+
4.003279136668425e-05
|
1318 |
+
],
|
1319 |
+
"q99": [
|
1320 |
+
0.01015154086053368,
|
1321 |
+
0.017181577533483497,
|
1322 |
+
0.007216989761218411,
|
1323 |
+
0.010380979906767595,
|
1324 |
+
0.03556173853576176,
|
1325 |
+
0.018032474815845446,
|
1326 |
+
0.9982578039169312
|
1327 |
+
],
|
1328 |
+
"std": [
|
1329 |
+
0.04264938458800316,
|
1330 |
+
0.04428559169173241,
|
1331 |
+
0.12224084138870239,
|
1332 |
+
0.005388413090258837,
|
1333 |
+
0.011246449314057827,
|
1334 |
+
0.006287882570177317,
|
1335 |
+
0.39732322096824646
|
1336 |
+
]
|
1337 |
+
},
|
1338 |
+
"num_trajectories": 5208,
|
1339 |
+
"num_transitions": 1139911,
|
1340 |
+
"proprio": {
|
1341 |
+
"max": [
|
1342 |
+
0.0,
|
1343 |
+
0.0,
|
1344 |
+
0.0,
|
1345 |
+
0.0,
|
1346 |
+
0.0,
|
1347 |
+
0.0,
|
1348 |
+
0.0
|
1349 |
+
],
|
1350 |
+
"mean": [
|
1351 |
+
0.0,
|
1352 |
+
0.0,
|
1353 |
+
0.0,
|
1354 |
+
0.0,
|
1355 |
+
0.0,
|
1356 |
+
0.0,
|
1357 |
+
0.0
|
1358 |
+
],
|
1359 |
+
"min": [
|
1360 |
+
0.0,
|
1361 |
+
0.0,
|
1362 |
+
0.0,
|
1363 |
+
0.0,
|
1364 |
+
0.0,
|
1365 |
+
0.0,
|
1366 |
+
0.0
|
1367 |
+
],
|
1368 |
+
"q01": [
|
1369 |
+
0.0,
|
1370 |
+
0.0,
|
1371 |
+
0.0,
|
1372 |
+
0.0,
|
1373 |
+
0.0,
|
1374 |
+
0.0,
|
1375 |
+
0.0
|
1376 |
+
],
|
1377 |
+
"q99": [
|
1378 |
+
0.0,
|
1379 |
+
0.0,
|
1380 |
+
0.0,
|
1381 |
+
0.0,
|
1382 |
+
0.0,
|
1383 |
+
0.0,
|
1384 |
+
0.0
|
1385 |
+
],
|
1386 |
+
"std": [
|
1387 |
+
0.0,
|
1388 |
+
0.0,
|
1389 |
+
0.0,
|
1390 |
+
0.0,
|
1391 |
+
0.0,
|
1392 |
+
0.0,
|
1393 |
+
0.0
|
1394 |
+
]
|
1395 |
+
}
|
1396 |
+
},
|
1397 |
+
"fmb_dataset": {
|
1398 |
+
"action": {
|
1399 |
+
"mask": [
|
1400 |
+
true,
|
1401 |
+
true,
|
1402 |
+
true,
|
1403 |
+
true,
|
1404 |
+
true,
|
1405 |
+
true,
|
1406 |
+
false
|
1407 |
+
],
|
1408 |
+
"max": [
|
1409 |
+
1.399999976158142,
|
1410 |
+
1.0,
|
1411 |
+
1.399999976158142,
|
1412 |
+
1.0,
|
1413 |
+
1.0,
|
1414 |
+
1.0,
|
1415 |
+
1.0
|
1416 |
+
],
|
1417 |
+
"mean": [
|
1418 |
+
0.059029702097177505,
|
1419 |
+
-0.06476633995771408,
|
1420 |
+
-0.09787475317716599,
|
1421 |
+
0.004325388930737972,
|
1422 |
+
0.00028963794466108084,
|
1423 |
+
-0.04457257315516472,
|
1424 |
+
0.7336440086364746
|
1425 |
+
],
|
1426 |
+
"min": [
|
1427 |
+
-1.399999976158142,
|
1428 |
+
-1.399999976158142,
|
1429 |
+
-1.0,
|
1430 |
+
-1.0,
|
1431 |
+
-1.0,
|
1432 |
+
-1.0,
|
1433 |
+
0.0
|
1434 |
+
],
|
1435 |
+
"q01": [
|
1436 |
+
-0.8257142901420593,
|
1437 |
+
-1.399999976158142,
|
1438 |
+
-1.0,
|
1439 |
+
-1.0,
|
1440 |
+
-0.3028571307659149,
|
1441 |
+
-1.0,
|
1442 |
+
0.0
|
1443 |
+
],
|
1444 |
+
"q99": [
|
1445 |
+
1.0,
|
1446 |
+
0.5257142782211304,
|
1447 |
+
1.0,
|
1448 |
+
1.0,
|
1449 |
+
0.3400000035762787,
|
1450 |
+
1.0,
|
1451 |
+
1.0
|
1452 |
+
],
|
1453 |
+
"std": [
|
1454 |
+
0.28809213638305664,
|
1455 |
+
0.2820415794849396,
|
1456 |
+
0.4626740515232086,
|
1457 |
+
0.3266514539718628,
|
1458 |
+
0.10842999070882797,
|
1459 |
+
0.3440099358558655,
|
1460 |
+
0.4435282051563263
|
1461 |
+
]
|
1462 |
+
},
|
1463 |
+
"num_trajectories": 8612,
|
1464 |
+
"num_transitions": 1137459,
|
1465 |
+
"proprio": {
|
1466 |
+
"max": [
|
1467 |
+
0.0,
|
1468 |
+
0.0,
|
1469 |
+
0.0,
|
1470 |
+
0.0,
|
1471 |
+
0.0,
|
1472 |
+
0.0,
|
1473 |
+
0.0
|
1474 |
+
],
|
1475 |
+
"mean": [
|
1476 |
+
0.0,
|
1477 |
+
0.0,
|
1478 |
+
0.0,
|
1479 |
+
0.0,
|
1480 |
+
0.0,
|
1481 |
+
0.0,
|
1482 |
+
0.0
|
1483 |
+
],
|
1484 |
+
"min": [
|
1485 |
+
0.0,
|
1486 |
+
0.0,
|
1487 |
+
0.0,
|
1488 |
+
0.0,
|
1489 |
+
0.0,
|
1490 |
+
0.0,
|
1491 |
+
0.0
|
1492 |
+
],
|
1493 |
+
"q01": [
|
1494 |
+
0.0,
|
1495 |
+
0.0,
|
1496 |
+
0.0,
|
1497 |
+
0.0,
|
1498 |
+
0.0,
|
1499 |
+
0.0,
|
1500 |
+
0.0
|
1501 |
+
],
|
1502 |
+
"q99": [
|
1503 |
+
0.0,
|
1504 |
+
0.0,
|
1505 |
+
0.0,
|
1506 |
+
0.0,
|
1507 |
+
0.0,
|
1508 |
+
0.0,
|
1509 |
+
0.0
|
1510 |
+
],
|
1511 |
+
"std": [
|
1512 |
+
0.0,
|
1513 |
+
0.0,
|
1514 |
+
0.0,
|
1515 |
+
0.0,
|
1516 |
+
0.0,
|
1517 |
+
0.0,
|
1518 |
+
0.0
|
1519 |
+
]
|
1520 |
+
}
|
1521 |
+
},
|
1522 |
+
"fractal20220817_data": {
|
1523 |
+
"action": {
|
1524 |
+
"mask": [
|
1525 |
+
true,
|
1526 |
+
true,
|
1527 |
+
true,
|
1528 |
+
true,
|
1529 |
+
true,
|
1530 |
+
true,
|
1531 |
+
false
|
1532 |
+
],
|
1533 |
+
"max": [
|
1534 |
+
2.9984593391418457,
|
1535 |
+
22.09052848815918,
|
1536 |
+
2.7507524490356445,
|
1537 |
+
1.570636510848999,
|
1538 |
+
1.5321086645126343,
|
1539 |
+
1.5691522359848022,
|
1540 |
+
1.0
|
1541 |
+
],
|
1542 |
+
"mean": [
|
1543 |
+
0.006987582892179489,
|
1544 |
+
0.006265917327255011,
|
1545 |
+
-0.01262515690177679,
|
1546 |
+
0.04333311319351196,
|
1547 |
+
-0.005756212864071131,
|
1548 |
+
0.0009130256366916001,
|
1549 |
+
0.5354204773902893
|
1550 |
+
],
|
1551 |
+
"min": [
|
1552 |
+
-2.0204520225524902,
|
1553 |
+
-5.497899532318115,
|
1554 |
+
-2.031663417816162,
|
1555 |
+
-1.569917917251587,
|
1556 |
+
-1.569892168045044,
|
1557 |
+
-1.570419430732727,
|
1558 |
+
0.0
|
1559 |
+
],
|
1560 |
+
"q01": [
|
1561 |
+
-0.22453527510166169,
|
1562 |
+
-0.14820013284683228,
|
1563 |
+
-0.231589707583189,
|
1564 |
+
-0.3517994859814644,
|
1565 |
+
-0.4193011274933815,
|
1566 |
+
-0.43643461108207704,
|
1567 |
+
0.0
|
1568 |
+
],
|
1569 |
+
"q99": [
|
1570 |
+
0.17824687153100965,
|
1571 |
+
0.14938379630446405,
|
1572 |
+
0.21842354819178575,
|
1573 |
+
0.5892666035890578,
|
1574 |
+
0.35272657424211445,
|
1575 |
+
0.44796681255102094,
|
1576 |
+
1.0
|
1577 |
+
],
|
1578 |
+
"std": [
|
1579 |
+
0.0692116990685463,
|
1580 |
+
0.05970962345600128,
|
1581 |
+
0.07353084534406662,
|
1582 |
+
0.15610496699810028,
|
1583 |
+
0.13164450228214264,
|
1584 |
+
0.14593800902366638,
|
1585 |
+
0.497110515832901
|
1586 |
+
]
|
1587 |
+
},
|
1588 |
+
"num_trajectories": 87212,
|
1589 |
+
"num_transitions": 3786400,
|
1590 |
+
"proprio": {
|
1591 |
+
"max": [
|
1592 |
+
0.0,
|
1593 |
+
0.0,
|
1594 |
+
0.0,
|
1595 |
+
0.0,
|
1596 |
+
0.0,
|
1597 |
+
0.0,
|
1598 |
+
0.0
|
1599 |
+
],
|
1600 |
+
"mean": [
|
1601 |
+
0.0,
|
1602 |
+
0.0,
|
1603 |
+
0.0,
|
1604 |
+
0.0,
|
1605 |
+
0.0,
|
1606 |
+
0.0,
|
1607 |
+
0.0
|
1608 |
+
],
|
1609 |
+
"min": [
|
1610 |
+
0.0,
|
1611 |
+
0.0,
|
1612 |
+
0.0,
|
1613 |
+
0.0,
|
1614 |
+
0.0,
|
1615 |
+
0.0,
|
1616 |
+
0.0
|
1617 |
+
],
|
1618 |
+
"q01": [
|
1619 |
+
0.0,
|
1620 |
+
0.0,
|
1621 |
+
0.0,
|
1622 |
+
0.0,
|
1623 |
+
0.0,
|
1624 |
+
0.0,
|
1625 |
+
0.0
|
1626 |
+
],
|
1627 |
+
"q99": [
|
1628 |
+
0.0,
|
1629 |
+
0.0,
|
1630 |
+
0.0,
|
1631 |
+
0.0,
|
1632 |
+
0.0,
|
1633 |
+
0.0,
|
1634 |
+
0.0
|
1635 |
+
],
|
1636 |
+
"std": [
|
1637 |
+
0.0,
|
1638 |
+
0.0,
|
1639 |
+
0.0,
|
1640 |
+
0.0,
|
1641 |
+
0.0,
|
1642 |
+
0.0,
|
1643 |
+
0.0
|
1644 |
+
]
|
1645 |
+
}
|
1646 |
+
},
|
1647 |
+
"furniture_bench_dataset_converted_externally_to_rlds": {
|
1648 |
+
"action": {
|
1649 |
+
"mask": [
|
1650 |
+
true,
|
1651 |
+
true,
|
1652 |
+
true,
|
1653 |
+
true,
|
1654 |
+
true,
|
1655 |
+
true,
|
1656 |
+
false
|
1657 |
+
],
|
1658 |
+
"max": [
|
1659 |
+
0.10000000149011612,
|
1660 |
+
0.10000000149011612,
|
1661 |
+
0.10000000149011612,
|
1662 |
+
0.8651833534240723,
|
1663 |
+
1.0909736156463623,
|
1664 |
+
2.863185405731201,
|
1665 |
+
1.0
|
1666 |
+
],
|
1667 |
+
"mean": [
|
1668 |
+
0.00014610752987209707,
|
1669 |
+
0.0010830952087417245,
|
1670 |
+
0.0006224989192560315,
|
1671 |
+
-0.003303206292912364,
|
1672 |
+
-0.0026880695950239897,
|
1673 |
+
0.018242603167891502,
|
1674 |
+
0.48854944109916687
|
1675 |
+
],
|
1676 |
+
"min": [
|
1677 |
+
-0.10495579987764359,
|
1678 |
+
-0.10939455777406693,
|
1679 |
+
-0.10000000149011612,
|
1680 |
+
-0.971906840801239,
|
1681 |
+
-1.0475432872772217,
|
1682 |
+
-3.06000018119812,
|
1683 |
+
0.0
|
1684 |
+
],
|
1685 |
+
"q01": [
|
1686 |
+
-0.053988199681043625,
|
1687 |
+
-0.05049169331789017,
|
1688 |
+
-0.032499241530895236,
|
1689 |
+
-0.1953887003660202,
|
1690 |
+
-0.41674559473991396,
|
1691 |
+
-0.8886768388748169,
|
1692 |
+
0.0
|
1693 |
+
],
|
1694 |
+
"q99": [
|
1695 |
+
0.05414841488003723,
|
1696 |
+
0.04965164884924884,
|
1697 |
+
0.060055799782276154,
|
1698 |
+
0.18231668293476103,
|
1699 |
+
0.39867786407470646,
|
1700 |
+
0.8772023963928218,
|
1701 |
+
1.0
|
1702 |
+
],
|
1703 |
+
"std": [
|
1704 |
+
0.01610708422958851,
|
1705 |
+
0.014891477301716805,
|
1706 |
+
0.014014219865202904,
|
1707 |
+
0.058274295181035995,
|
1708 |
+
0.11417088657617569,
|
1709 |
+
0.33479776978492737,
|
1710 |
+
0.49991825222969055
|
1711 |
+
]
|
1712 |
+
},
|
1713 |
+
"num_trajectories": 5100,
|
1714 |
+
"num_transitions": 3948057,
|
1715 |
+
"proprio": {
|
1716 |
+
"max": [
|
1717 |
+
0.0,
|
1718 |
+
0.0,
|
1719 |
+
0.0,
|
1720 |
+
0.0,
|
1721 |
+
0.0,
|
1722 |
+
0.0,
|
1723 |
+
0.0
|
1724 |
+
],
|
1725 |
+
"mean": [
|
1726 |
+
0.0,
|
1727 |
+
0.0,
|
1728 |
+
0.0,
|
1729 |
+
0.0,
|
1730 |
+
0.0,
|
1731 |
+
0.0,
|
1732 |
+
0.0
|
1733 |
+
],
|
1734 |
+
"min": [
|
1735 |
+
0.0,
|
1736 |
+
0.0,
|
1737 |
+
0.0,
|
1738 |
+
0.0,
|
1739 |
+
0.0,
|
1740 |
+
0.0,
|
1741 |
+
0.0
|
1742 |
+
],
|
1743 |
+
"q01": [
|
1744 |
+
0.0,
|
1745 |
+
0.0,
|
1746 |
+
0.0,
|
1747 |
+
0.0,
|
1748 |
+
0.0,
|
1749 |
+
0.0,
|
1750 |
+
0.0
|
1751 |
+
],
|
1752 |
+
"q99": [
|
1753 |
+
0.0,
|
1754 |
+
0.0,
|
1755 |
+
0.0,
|
1756 |
+
0.0,
|
1757 |
+
0.0,
|
1758 |
+
0.0,
|
1759 |
+
0.0
|
1760 |
+
],
|
1761 |
+
"std": [
|
1762 |
+
0.0,
|
1763 |
+
0.0,
|
1764 |
+
0.0,
|
1765 |
+
0.0,
|
1766 |
+
0.0,
|
1767 |
+
0.0,
|
1768 |
+
0.0
|
1769 |
+
]
|
1770 |
+
}
|
1771 |
+
},
|
1772 |
+
"iamlab_cmu_pickup_insert_converted_externally_to_rlds": {
|
1773 |
+
"action": {
|
1774 |
+
"mask": [
|
1775 |
+
true,
|
1776 |
+
true,
|
1777 |
+
true,
|
1778 |
+
true,
|
1779 |
+
true,
|
1780 |
+
true,
|
1781 |
+
false
|
1782 |
+
],
|
1783 |
+
"max": [
|
1784 |
+
0.6634981632232666,
|
1785 |
+
0.23428471386432648,
|
1786 |
+
0.4308285415172577,
|
1787 |
+
3.1415927410125732,
|
1788 |
+
0.13647015392780304,
|
1789 |
+
3.141592502593994,
|
1790 |
+
1.0
|
1791 |
+
],
|
1792 |
+
"mean": [
|
1793 |
+
0.5274372696876526,
|
1794 |
+
0.02858201041817665,
|
1795 |
+
0.18712575733661652,
|
1796 |
+
1.2339589595794678,
|
1797 |
+
0.03226623684167862,
|
1798 |
+
-1.4199490547180176,
|
1799 |
+
0.5550631880760193
|
1800 |
+
],
|
1801 |
+
"min": [
|
1802 |
+
0.3071657121181488,
|
1803 |
+
-0.29754969477653503,
|
1804 |
+
0.06578229367733002,
|
1805 |
+
-3.1415927410125732,
|
1806 |
+
-0.04584203287959099,
|
1807 |
+
-3.141592502593994,
|
1808 |
+
0.0
|
1809 |
+
],
|
1810 |
+
"q01": [
|
1811 |
+
0.3148897051811218,
|
1812 |
+
-0.20317550599575043,
|
1813 |
+
0.06785467118024827,
|
1814 |
+
-3.140952730178833,
|
1815 |
+
-0.029743434861302376,
|
1816 |
+
-3.141091251373291,
|
1817 |
+
0.0
|
1818 |
+
],
|
1819 |
+
"q99": [
|
1820 |
+
0.6472805738449097,
|
1821 |
+
0.20846802592277527,
|
1822 |
+
0.36855655312538155,
|
1823 |
+
3.1409926891326903,
|
1824 |
+
0.11424950212240226,
|
1825 |
+
3.1410969257354737,
|
1826 |
+
1.0
|
1827 |
+
],
|
1828 |
+
"std": [
|
1829 |
+
0.08108345419168472,
|
1830 |
+
0.1116757020354271,
|
1831 |
+
0.07747554779052734,
|
1832 |
+
2.8737246990203857,
|
1833 |
+
0.02774704433977604,
|
1834 |
+
2.7678682804107666,
|
1835 |
+
0.49695101380348206
|
1836 |
+
]
|
1837 |
+
},
|
1838 |
+
"num_trajectories": 631,
|
1839 |
+
"num_transitions": 146241,
|
1840 |
+
"proprio": {
|
1841 |
+
"max": [
|
1842 |
+
0.0,
|
1843 |
+
0.0,
|
1844 |
+
0.0,
|
1845 |
+
0.0,
|
1846 |
+
0.0,
|
1847 |
+
0.0,
|
1848 |
+
0.0
|
1849 |
+
],
|
1850 |
+
"mean": [
|
1851 |
+
0.0,
|
1852 |
+
0.0,
|
1853 |
+
0.0,
|
1854 |
+
0.0,
|
1855 |
+
0.0,
|
1856 |
+
0.0,
|
1857 |
+
0.0
|
1858 |
+
],
|
1859 |
+
"min": [
|
1860 |
+
0.0,
|
1861 |
+
0.0,
|
1862 |
+
0.0,
|
1863 |
+
0.0,
|
1864 |
+
0.0,
|
1865 |
+
0.0,
|
1866 |
+
0.0
|
1867 |
+
],
|
1868 |
+
"q01": [
|
1869 |
+
0.0,
|
1870 |
+
0.0,
|
1871 |
+
0.0,
|
1872 |
+
0.0,
|
1873 |
+
0.0,
|
1874 |
+
0.0,
|
1875 |
+
0.0
|
1876 |
+
],
|
1877 |
+
"q99": [
|
1878 |
+
0.0,
|
1879 |
+
0.0,
|
1880 |
+
0.0,
|
1881 |
+
0.0,
|
1882 |
+
0.0,
|
1883 |
+
0.0,
|
1884 |
+
0.0
|
1885 |
+
],
|
1886 |
+
"std": [
|
1887 |
+
0.0,
|
1888 |
+
0.0,
|
1889 |
+
0.0,
|
1890 |
+
0.0,
|
1891 |
+
0.0,
|
1892 |
+
0.0,
|
1893 |
+
0.0
|
1894 |
+
]
|
1895 |
+
}
|
1896 |
+
},
|
1897 |
+
"jaco_play": {
|
1898 |
+
"action": {
|
1899 |
+
"mask": [
|
1900 |
+
true,
|
1901 |
+
true,
|
1902 |
+
true,
|
1903 |
+
true,
|
1904 |
+
true,
|
1905 |
+
true,
|
1906 |
+
false
|
1907 |
+
],
|
1908 |
+
"max": [
|
1909 |
+
0.20000000298023224,
|
1910 |
+
0.20000000298023224,
|
1911 |
+
0.20000000298023224,
|
1912 |
+
0.0,
|
1913 |
+
0.0,
|
1914 |
+
0.0,
|
1915 |
+
1.0
|
1916 |
+
],
|
1917 |
+
"mean": [
|
1918 |
+
0.0009658430935814977,
|
1919 |
+
-0.00580078037455678,
|
1920 |
+
-0.00395062193274498,
|
1921 |
+
0.0,
|
1922 |
+
0.0,
|
1923 |
+
0.0,
|
1924 |
+
0.34934908151626587
|
1925 |
+
],
|
1926 |
+
"min": [
|
1927 |
+
-0.20000000298023224,
|
1928 |
+
-0.20000000298023224,
|
1929 |
+
-0.20000000298023224,
|
1930 |
+
0.0,
|
1931 |
+
0.0,
|
1932 |
+
0.0,
|
1933 |
+
0.0
|
1934 |
+
],
|
1935 |
+
"q01": [
|
1936 |
+
-0.20000000298023224,
|
1937 |
+
-0.20000000298023224,
|
1938 |
+
-0.20000000298023224,
|
1939 |
+
0.0,
|
1940 |
+
0.0,
|
1941 |
+
0.0,
|
1942 |
+
0.0
|
1943 |
+
],
|
1944 |
+
"q99": [
|
1945 |
+
0.20000000298023224,
|
1946 |
+
0.20000000298023224,
|
1947 |
+
0.20000000298023224,
|
1948 |
+
0.0,
|
1949 |
+
0.0,
|
1950 |
+
0.0,
|
1951 |
+
1.0
|
1952 |
+
],
|
1953 |
+
"std": [
|
1954 |
+
0.12235074490308762,
|
1955 |
+
0.09678777307271957,
|
1956 |
+
0.11155334860086441,
|
1957 |
+
0.0,
|
1958 |
+
0.0,
|
1959 |
+
0.0,
|
1960 |
+
0.4768252968788147
|
1961 |
+
]
|
1962 |
+
},
|
1963 |
+
"num_trajectories": 1085,
|
1964 |
+
"num_transitions": 77965,
|
1965 |
+
"proprio": {
|
1966 |
+
"max": [
|
1967 |
+
0.0,
|
1968 |
+
0.0,
|
1969 |
+
0.0,
|
1970 |
+
0.0,
|
1971 |
+
0.0,
|
1972 |
+
0.0,
|
1973 |
+
0.0
|
1974 |
+
],
|
1975 |
+
"mean": [
|
1976 |
+
0.0,
|
1977 |
+
0.0,
|
1978 |
+
0.0,
|
1979 |
+
0.0,
|
1980 |
+
0.0,
|
1981 |
+
0.0,
|
1982 |
+
0.0
|
1983 |
+
],
|
1984 |
+
"min": [
|
1985 |
+
0.0,
|
1986 |
+
0.0,
|
1987 |
+
0.0,
|
1988 |
+
0.0,
|
1989 |
+
0.0,
|
1990 |
+
0.0,
|
1991 |
+
0.0
|
1992 |
+
],
|
1993 |
+
"q01": [
|
1994 |
+
0.0,
|
1995 |
+
0.0,
|
1996 |
+
0.0,
|
1997 |
+
0.0,
|
1998 |
+
0.0,
|
1999 |
+
0.0,
|
2000 |
+
0.0
|
2001 |
+
],
|
2002 |
+
"q99": [
|
2003 |
+
0.0,
|
2004 |
+
0.0,
|
2005 |
+
0.0,
|
2006 |
+
0.0,
|
2007 |
+
0.0,
|
2008 |
+
0.0,
|
2009 |
+
0.0
|
2010 |
+
],
|
2011 |
+
"std": [
|
2012 |
+
0.0,
|
2013 |
+
0.0,
|
2014 |
+
0.0,
|
2015 |
+
0.0,
|
2016 |
+
0.0,
|
2017 |
+
0.0,
|
2018 |
+
0.0
|
2019 |
+
]
|
2020 |
+
}
|
2021 |
+
},
|
2022 |
+
"kuka": {
|
2023 |
+
"action": {
|
2024 |
+
"mask": [
|
2025 |
+
true,
|
2026 |
+
true,
|
2027 |
+
true,
|
2028 |
+
true,
|
2029 |
+
true,
|
2030 |
+
true,
|
2031 |
+
false
|
2032 |
+
],
|
2033 |
+
"max": [
|
2034 |
+
0.1697135865688324,
|
2035 |
+
0.2777623236179352,
|
2036 |
+
0.43710532784461975,
|
2037 |
+
0.0,
|
2038 |
+
0.0,
|
2039 |
+
1.9684287309646606,
|
2040 |
+
1.0
|
2041 |
+
],
|
2042 |
+
"mean": [
|
2043 |
+
-0.0004668905457947403,
|
2044 |
+
0.00040138536132872105,
|
2045 |
+
-0.001280792523175478,
|
2046 |
+
0.0,
|
2047 |
+
0.0,
|
2048 |
+
-0.03722453489899635,
|
2049 |
+
0.4131543040275574
|
2050 |
+
],
|
2051 |
+
"min": [
|
2052 |
+
-0.159867063164711,
|
2053 |
+
-0.2892282009124756,
|
2054 |
+
-0.2795473635196686,
|
2055 |
+
0.0,
|
2056 |
+
0.0,
|
2057 |
+
-1.9875637292861938,
|
2058 |
+
0.0
|
2059 |
+
],
|
2060 |
+
"q01": [
|
2061 |
+
-0.06619441494345665,
|
2062 |
+
-0.08713878810405731,
|
2063 |
+
-0.15083016991615295,
|
2064 |
+
0.0,
|
2065 |
+
0.0,
|
2066 |
+
-0.5415697038173676,
|
2067 |
+
0.0
|
2068 |
+
],
|
2069 |
+
"q99": [
|
2070 |
+
0.06601839080452929,
|
2071 |
+
0.08732476785779003,
|
2072 |
+
0.18168179214000715,
|
2073 |
+
0.0,
|
2074 |
+
0.0,
|
2075 |
+
0.2923380345106127,
|
2076 |
+
1.0
|
2077 |
+
],
|
2078 |
+
"std": [
|
2079 |
+
0.02083250693976879,
|
2080 |
+
0.02915887162089348,
|
2081 |
+
0.06422865390777588,
|
2082 |
+
0.0,
|
2083 |
+
0.0,
|
2084 |
+
0.14224295318126678,
|
2085 |
+
0.49086448550224304
|
2086 |
+
]
|
2087 |
+
},
|
2088 |
+
"num_trajectories": 209880,
|
2089 |
+
"num_transitions": 2455879,
|
2090 |
+
"proprio": {
|
2091 |
+
"max": [
|
2092 |
+
0.0,
|
2093 |
+
0.0,
|
2094 |
+
0.0,
|
2095 |
+
0.0,
|
2096 |
+
0.0,
|
2097 |
+
0.0,
|
2098 |
+
0.0
|
2099 |
+
],
|
2100 |
+
"mean": [
|
2101 |
+
0.0,
|
2102 |
+
0.0,
|
2103 |
+
0.0,
|
2104 |
+
0.0,
|
2105 |
+
0.0,
|
2106 |
+
0.0,
|
2107 |
+
0.0
|
2108 |
+
],
|
2109 |
+
"min": [
|
2110 |
+
0.0,
|
2111 |
+
0.0,
|
2112 |
+
0.0,
|
2113 |
+
0.0,
|
2114 |
+
0.0,
|
2115 |
+
0.0,
|
2116 |
+
0.0
|
2117 |
+
],
|
2118 |
+
"q01": [
|
2119 |
+
0.0,
|
2120 |
+
0.0,
|
2121 |
+
0.0,
|
2122 |
+
0.0,
|
2123 |
+
0.0,
|
2124 |
+
0.0,
|
2125 |
+
0.0
|
2126 |
+
],
|
2127 |
+
"q99": [
|
2128 |
+
0.0,
|
2129 |
+
0.0,
|
2130 |
+
0.0,
|
2131 |
+
0.0,
|
2132 |
+
0.0,
|
2133 |
+
0.0,
|
2134 |
+
0.0
|
2135 |
+
],
|
2136 |
+
"std": [
|
2137 |
+
0.0,
|
2138 |
+
0.0,
|
2139 |
+
0.0,
|
2140 |
+
0.0,
|
2141 |
+
0.0,
|
2142 |
+
0.0,
|
2143 |
+
0.0
|
2144 |
+
]
|
2145 |
+
}
|
2146 |
+
},
|
2147 |
+
"nyu_franka_play_dataset_converted_externally_to_rlds": {
|
2148 |
+
"action": {
|
2149 |
+
"mask": [
|
2150 |
+
true,
|
2151 |
+
true,
|
2152 |
+
true,
|
2153 |
+
true,
|
2154 |
+
true,
|
2155 |
+
true,
|
2156 |
+
false
|
2157 |
+
],
|
2158 |
+
"max": [
|
2159 |
+
0.06424188613891602,
|
2160 |
+
0.07027634978294373,
|
2161 |
+
0.06129661202430725,
|
2162 |
+
6.281067848205566,
|
2163 |
+
0.1967729926109314,
|
2164 |
+
0.26377415657043457,
|
2165 |
+
1.0
|
2166 |
+
],
|
2167 |
+
"mean": [
|
2168 |
+
0.001021989737637341,
|
2169 |
+
-0.00012002651783404872,
|
2170 |
+
0.00032894269679673016,
|
2171 |
+
0.0015034361276775599,
|
2172 |
+
-0.002198522910475731,
|
2173 |
+
-0.001663230243138969,
|
2174 |
+
0.7230083346366882
|
2175 |
+
],
|
2176 |
+
"min": [
|
2177 |
+
-0.05952230095863342,
|
2178 |
+
-0.07232445478439331,
|
2179 |
+
-0.06730806827545166,
|
2180 |
+
-6.278434753417969,
|
2181 |
+
-0.21479034423828125,
|
2182 |
+
-0.3627619743347168,
|
2183 |
+
0.0
|
2184 |
+
],
|
2185 |
+
"q01": [
|
2186 |
+
-0.03199600875377655,
|
2187 |
+
-0.032861671447753905,
|
2188 |
+
-0.03368805110454559,
|
2189 |
+
-0.12080862045288086,
|
2190 |
+
-0.12175218224525451,
|
2191 |
+
-0.11370223641395569,
|
2192 |
+
0.0
|
2193 |
+
],
|
2194 |
+
"q99": [
|
2195 |
+
0.03101520001888276,
|
2196 |
+
0.0373908892273903,
|
2197 |
+
0.03646374464035038,
|
2198 |
+
0.11764093399047852,
|
2199 |
+
0.1258920183777809,
|
2200 |
+
0.09366151213645942,
|
2201 |
+
1.0
|
2202 |
+
],
|
2203 |
+
"std": [
|
2204 |
+
0.01327415369451046,
|
2205 |
+
0.013215910643339157,
|
2206 |
+
0.012822109274566174,
|
2207 |
+
0.2732451558113098,
|
2208 |
+
0.057022541761398315,
|
2209 |
+
0.039172880351543427,
|
2210 |
+
0.44752755761146545
|
2211 |
+
]
|
2212 |
+
},
|
2213 |
+
"num_trajectories": 456,
|
2214 |
+
"num_transitions": 44875,
|
2215 |
+
"proprio": {
|
2216 |
+
"max": [
|
2217 |
+
0.0,
|
2218 |
+
0.0,
|
2219 |
+
0.0,
|
2220 |
+
0.0,
|
2221 |
+
0.0,
|
2222 |
+
0.0,
|
2223 |
+
0.0
|
2224 |
+
],
|
2225 |
+
"mean": [
|
2226 |
+
0.0,
|
2227 |
+
0.0,
|
2228 |
+
0.0,
|
2229 |
+
0.0,
|
2230 |
+
0.0,
|
2231 |
+
0.0,
|
2232 |
+
0.0
|
2233 |
+
],
|
2234 |
+
"min": [
|
2235 |
+
0.0,
|
2236 |
+
0.0,
|
2237 |
+
0.0,
|
2238 |
+
0.0,
|
2239 |
+
0.0,
|
2240 |
+
0.0,
|
2241 |
+
0.0
|
2242 |
+
],
|
2243 |
+
"q01": [
|
2244 |
+
0.0,
|
2245 |
+
0.0,
|
2246 |
+
0.0,
|
2247 |
+
0.0,
|
2248 |
+
0.0,
|
2249 |
+
0.0,
|
2250 |
+
0.0
|
2251 |
+
],
|
2252 |
+
"q99": [
|
2253 |
+
0.0,
|
2254 |
+
0.0,
|
2255 |
+
0.0,
|
2256 |
+
0.0,
|
2257 |
+
0.0,
|
2258 |
+
0.0,
|
2259 |
+
0.0
|
2260 |
+
],
|
2261 |
+
"std": [
|
2262 |
+
0.0,
|
2263 |
+
0.0,
|
2264 |
+
0.0,
|
2265 |
+
0.0,
|
2266 |
+
0.0,
|
2267 |
+
0.0,
|
2268 |
+
0.0
|
2269 |
+
]
|
2270 |
+
}
|
2271 |
+
},
|
2272 |
+
"roboturk": {
|
2273 |
+
"action": {
|
2274 |
+
"mask": [
|
2275 |
+
true,
|
2276 |
+
true,
|
2277 |
+
true,
|
2278 |
+
true,
|
2279 |
+
true,
|
2280 |
+
true,
|
2281 |
+
false
|
2282 |
+
],
|
2283 |
+
"max": [
|
2284 |
+
0.39124172925949097,
|
2285 |
+
0.4601028263568878,
|
2286 |
+
0.4870833456516266,
|
2287 |
+
1.816888689994812,
|
2288 |
+
1.8240282535552979,
|
2289 |
+
1.4824820756912231,
|
2290 |
+
1.0
|
2291 |
+
],
|
2292 |
+
"mean": [
|
2293 |
+
0.0014448732836171985,
|
2294 |
+
-0.0015945249469950795,
|
2295 |
+
-0.0011753785656765103,
|
2296 |
+
0.0023012510500848293,
|
2297 |
+
-0.0009382463176734746,
|
2298 |
+
-0.00011485807772260159,
|
2299 |
+
0.5746025443077087
|
2300 |
+
],
|
2301 |
+
"min": [
|
2302 |
+
-0.6546999216079712,
|
2303 |
+
-0.6365841031074524,
|
2304 |
+
-0.4217723608016968,
|
2305 |
+
-1.6695482730865479,
|
2306 |
+
-1.8023357391357422,
|
2307 |
+
-1.4630827903747559,
|
2308 |
+
0.0
|
2309 |
+
],
|
2310 |
+
"q01": [
|
2311 |
+
-0.1342635464668274,
|
2312 |
+
-0.19996687173843383,
|
2313 |
+
-0.1482972100377083,
|
2314 |
+
-0.20720748245716095,
|
2315 |
+
-0.09676413893699647,
|
2316 |
+
-0.18075634717941286,
|
2317 |
+
0.0
|
2318 |
+
],
|
2319 |
+
"q99": [
|
2320 |
+
0.14956976801157001,
|
2321 |
+
0.1805950567126275,
|
2322 |
+
0.18841815620660796,
|
2323 |
+
0.21615413755178453,
|
2324 |
+
0.09457383215427405,
|
2325 |
+
0.18543301910162005,
|
2326 |
+
1.0
|
2327 |
+
],
|
2328 |
+
"std": [
|
2329 |
+
0.04935386776924133,
|
2330 |
+
0.0635455846786499,
|
2331 |
+
0.061164740473032,
|
2332 |
+
0.09553450345993042,
|
2333 |
+
0.08420111238956451,
|
2334 |
+
0.06517903506755829,
|
2335 |
+
0.49452081322669983
|
2336 |
+
]
|
2337 |
+
},
|
2338 |
+
"num_trajectories": 1995,
|
2339 |
+
"num_transitions": 187507,
|
2340 |
+
"proprio": {
|
2341 |
+
"max": [
|
2342 |
+
0.0,
|
2343 |
+
0.0,
|
2344 |
+
0.0,
|
2345 |
+
0.0,
|
2346 |
+
0.0,
|
2347 |
+
0.0,
|
2348 |
+
0.0
|
2349 |
+
],
|
2350 |
+
"mean": [
|
2351 |
+
0.0,
|
2352 |
+
0.0,
|
2353 |
+
0.0,
|
2354 |
+
0.0,
|
2355 |
+
0.0,
|
2356 |
+
0.0,
|
2357 |
+
0.0
|
2358 |
+
],
|
2359 |
+
"min": [
|
2360 |
+
0.0,
|
2361 |
+
0.0,
|
2362 |
+
0.0,
|
2363 |
+
0.0,
|
2364 |
+
0.0,
|
2365 |
+
0.0,
|
2366 |
+
0.0
|
2367 |
+
],
|
2368 |
+
"q01": [
|
2369 |
+
0.0,
|
2370 |
+
0.0,
|
2371 |
+
0.0,
|
2372 |
+
0.0,
|
2373 |
+
0.0,
|
2374 |
+
0.0,
|
2375 |
+
0.0
|
2376 |
+
],
|
2377 |
+
"q99": [
|
2378 |
+
0.0,
|
2379 |
+
0.0,
|
2380 |
+
0.0,
|
2381 |
+
0.0,
|
2382 |
+
0.0,
|
2383 |
+
0.0,
|
2384 |
+
0.0
|
2385 |
+
],
|
2386 |
+
"std": [
|
2387 |
+
0.0,
|
2388 |
+
0.0,
|
2389 |
+
0.0,
|
2390 |
+
0.0,
|
2391 |
+
0.0,
|
2392 |
+
0.0,
|
2393 |
+
0.0
|
2394 |
+
]
|
2395 |
+
}
|
2396 |
+
},
|
2397 |
+
"stanford_hydra_dataset_converted_externally_to_rlds": {
|
2398 |
+
"action": {
|
2399 |
+
"mask": [
|
2400 |
+
true,
|
2401 |
+
true,
|
2402 |
+
true,
|
2403 |
+
true,
|
2404 |
+
true,
|
2405 |
+
true,
|
2406 |
+
false
|
2407 |
+
],
|
2408 |
+
"max": [
|
2409 |
+
0.02499854564666748,
|
2410 |
+
0.02499903365969658,
|
2411 |
+
0.024999922141432762,
|
2412 |
+
0.24974457919597626,
|
2413 |
+
0.24997030198574066,
|
2414 |
+
0.24999946355819702,
|
2415 |
+
1.0
|
2416 |
+
],
|
2417 |
+
"mean": [
|
2418 |
+
0.0007790001109242439,
|
2419 |
+
0.00013707754260394722,
|
2420 |
+
-0.0002548607881180942,
|
2421 |
+
0.0012903271708637476,
|
2422 |
+
-0.004751681815832853,
|
2423 |
+
0.002692886395379901,
|
2424 |
+
0.48855218291282654
|
2425 |
+
],
|
2426 |
+
"min": [
|
2427 |
+
-0.024999044835567474,
|
2428 |
+
-0.024999700486660004,
|
2429 |
+
-0.02499929815530777,
|
2430 |
+
-0.24993225932121277,
|
2431 |
+
-0.2499666064977646,
|
2432 |
+
-0.2499932497739792,
|
2433 |
+
0.0
|
2434 |
+
],
|
2435 |
+
"q01": [
|
2436 |
+
-0.019992006458342076,
|
2437 |
+
-0.02415412735193968,
|
2438 |
+
-0.022941758055239916,
|
2439 |
+
-0.11085530579090118,
|
2440 |
+
-0.12024572037160397,
|
2441 |
+
-0.13314770206809043,
|
2442 |
+
0.0
|
2443 |
+
],
|
2444 |
+
"q99": [
|
2445 |
+
0.022886231057345868,
|
2446 |
+
0.022358838934451335,
|
2447 |
+
0.02410089675337076,
|
2448 |
+
0.12370114490389822,
|
2449 |
+
0.11323311634361738,
|
2450 |
+
0.18474749639630164,
|
2451 |
+
1.0
|
2452 |
+
],
|
2453 |
+
"std": [
|
2454 |
+
0.008022161200642586,
|
2455 |
+
0.009131459519267082,
|
2456 |
+
0.009574338793754578,
|
2457 |
+
0.04122216999530792,
|
2458 |
+
0.0384303517639637,
|
2459 |
+
0.04606688767671585,
|
2460 |
+
0.49976691603660583
|
2461 |
+
]
|
2462 |
+
},
|
2463 |
+
"num_trajectories": 570,
|
2464 |
+
"num_transitions": 358234,
|
2465 |
+
"proprio": {
|
2466 |
+
"max": [
|
2467 |
+
0.0,
|
2468 |
+
0.0,
|
2469 |
+
0.0,
|
2470 |
+
0.0,
|
2471 |
+
0.0,
|
2472 |
+
0.0,
|
2473 |
+
0.0
|
2474 |
+
],
|
2475 |
+
"mean": [
|
2476 |
+
0.0,
|
2477 |
+
0.0,
|
2478 |
+
0.0,
|
2479 |
+
0.0,
|
2480 |
+
0.0,
|
2481 |
+
0.0,
|
2482 |
+
0.0
|
2483 |
+
],
|
2484 |
+
"min": [
|
2485 |
+
0.0,
|
2486 |
+
0.0,
|
2487 |
+
0.0,
|
2488 |
+
0.0,
|
2489 |
+
0.0,
|
2490 |
+
0.0,
|
2491 |
+
0.0
|
2492 |
+
],
|
2493 |
+
"q01": [
|
2494 |
+
0.0,
|
2495 |
+
0.0,
|
2496 |
+
0.0,
|
2497 |
+
0.0,
|
2498 |
+
0.0,
|
2499 |
+
0.0,
|
2500 |
+
0.0
|
2501 |
+
],
|
2502 |
+
"q99": [
|
2503 |
+
0.0,
|
2504 |
+
0.0,
|
2505 |
+
0.0,
|
2506 |
+
0.0,
|
2507 |
+
0.0,
|
2508 |
+
0.0,
|
2509 |
+
0.0
|
2510 |
+
],
|
2511 |
+
"std": [
|
2512 |
+
0.0,
|
2513 |
+
0.0,
|
2514 |
+
0.0,
|
2515 |
+
0.0,
|
2516 |
+
0.0,
|
2517 |
+
0.0,
|
2518 |
+
0.0
|
2519 |
+
]
|
2520 |
+
}
|
2521 |
+
},
|
2522 |
+
"taco_play": {
|
2523 |
+
"action": {
|
2524 |
+
"mask": [
|
2525 |
+
true,
|
2526 |
+
true,
|
2527 |
+
true,
|
2528 |
+
true,
|
2529 |
+
true,
|
2530 |
+
true,
|
2531 |
+
false
|
2532 |
+
],
|
2533 |
+
"max": [
|
2534 |
+
1.4915844202041626,
|
2535 |
+
2.1842432022094727,
|
2536 |
+
2.6836395263671875,
|
2537 |
+
5.035226821899414,
|
2538 |
+
2.665864944458008,
|
2539 |
+
4.250768661499023,
|
2540 |
+
1.0
|
2541 |
+
],
|
2542 |
+
"mean": [
|
2543 |
+
-0.003845922416076064,
|
2544 |
+
0.009671456180512905,
|
2545 |
+
0.012780580669641495,
|
2546 |
+
-0.005403771996498108,
|
2547 |
+
-0.009606587700545788,
|
2548 |
+
-0.002480733208358288,
|
2549 |
+
0.4263913035392761
|
2550 |
+
],
|
2551 |
+
"min": [
|
2552 |
+
-4.242457866668701,
|
2553 |
+
-3.192805051803589,
|
2554 |
+
-1.3371467590332031,
|
2555 |
+
-4.202683448791504,
|
2556 |
+
-2.6722638607025146,
|
2557 |
+
-3.3467135429382324,
|
2558 |
+
0.0
|
2559 |
+
],
|
2560 |
+
"q01": [
|
2561 |
+
-0.7106140398979186,
|
2562 |
+
-1.056944659948349,
|
2563 |
+
-0.5878450274467468,
|
2564 |
+
-0.7682853937149048,
|
2565 |
+
-0.7180147767066956,
|
2566 |
+
-1.5527938604354858,
|
2567 |
+
0.0
|
2568 |
+
],
|
2569 |
+
"q99": [
|
2570 |
+
0.6482916426658629,
|
2571 |
+
1.0051310062408447,
|
2572 |
+
0.9480248689651489,
|
2573 |
+
0.6926478147506714,
|
2574 |
+
0.6351067513227462,
|
2575 |
+
1.628010264635086,
|
2576 |
+
1.0
|
2577 |
+
],
|
2578 |
+
"std": [
|
2579 |
+
0.23254038393497467,
|
2580 |
+
0.36298269033432007,
|
2581 |
+
0.28692901134490967,
|
2582 |
+
0.2617705166339874,
|
2583 |
+
0.2438892275094986,
|
2584 |
+
0.5216503143310547,
|
2585 |
+
0.4946896731853485
|
2586 |
+
]
|
2587 |
+
},
|
2588 |
+
"num_trajectories": 3603,
|
2589 |
+
"num_transitions": 237798,
|
2590 |
+
"proprio": {
|
2591 |
+
"max": [
|
2592 |
+
0.0,
|
2593 |
+
0.0,
|
2594 |
+
0.0,
|
2595 |
+
0.0,
|
2596 |
+
0.0,
|
2597 |
+
0.0,
|
2598 |
+
0.0
|
2599 |
+
],
|
2600 |
+
"mean": [
|
2601 |
+
0.0,
|
2602 |
+
0.0,
|
2603 |
+
0.0,
|
2604 |
+
0.0,
|
2605 |
+
0.0,
|
2606 |
+
0.0,
|
2607 |
+
0.0
|
2608 |
+
],
|
2609 |
+
"min": [
|
2610 |
+
0.0,
|
2611 |
+
0.0,
|
2612 |
+
0.0,
|
2613 |
+
0.0,
|
2614 |
+
0.0,
|
2615 |
+
0.0,
|
2616 |
+
0.0
|
2617 |
+
],
|
2618 |
+
"q01": [
|
2619 |
+
0.0,
|
2620 |
+
0.0,
|
2621 |
+
0.0,
|
2622 |
+
0.0,
|
2623 |
+
0.0,
|
2624 |
+
0.0,
|
2625 |
+
0.0
|
2626 |
+
],
|
2627 |
+
"q99": [
|
2628 |
+
0.0,
|
2629 |
+
0.0,
|
2630 |
+
0.0,
|
2631 |
+
0.0,
|
2632 |
+
0.0,
|
2633 |
+
0.0,
|
2634 |
+
0.0
|
2635 |
+
],
|
2636 |
+
"std": [
|
2637 |
+
0.0,
|
2638 |
+
0.0,
|
2639 |
+
0.0,
|
2640 |
+
0.0,
|
2641 |
+
0.0,
|
2642 |
+
0.0,
|
2643 |
+
0.0
|
2644 |
+
]
|
2645 |
+
}
|
2646 |
+
},
|
2647 |
+
"toto": {
|
2648 |
+
"action": {
|
2649 |
+
"mask": [
|
2650 |
+
true,
|
2651 |
+
true,
|
2652 |
+
true,
|
2653 |
+
true,
|
2654 |
+
true,
|
2655 |
+
true,
|
2656 |
+
false
|
2657 |
+
],
|
2658 |
+
"max": [
|
2659 |
+
0.6839867234230042,
|
2660 |
+
0.4454185664653778,
|
2661 |
+
0.7984078526496887,
|
2662 |
+
2.120781660079956,
|
2663 |
+
1.371164321899414,
|
2664 |
+
1.4118704795837402,
|
2665 |
+
0.0
|
2666 |
+
],
|
2667 |
+
"mean": [
|
2668 |
+
0.38542115688323975,
|
2669 |
+
0.007769413758069277,
|
2670 |
+
0.3632740378379822,
|
2671 |
+
-0.6652036905288696,
|
2672 |
+
0.1890396922826767,
|
2673 |
+
0.03298724442720413,
|
2674 |
+
0.0
|
2675 |
+
],
|
2676 |
+
"min": [
|
2677 |
+
0.09922284632921219,
|
2678 |
+
-0.5180193781852722,
|
2679 |
+
0.13791072368621826,
|
2680 |
+
-2.635117530822754,
|
2681 |
+
-1.0734480619430542,
|
2682 |
+
-1.9282547235488892,
|
2683 |
+
0.0
|
2684 |
+
],
|
2685 |
+
"q01": [
|
2686 |
+
0.1756722891330719,
|
2687 |
+
-0.3077590811252594,
|
2688 |
+
0.235383919775486,
|
2689 |
+
-2.0908505964279174,
|
2690 |
+
-0.6191593289375306,
|
2691 |
+
-0.7488683319091797,
|
2692 |
+
0.0
|
2693 |
+
],
|
2694 |
+
"q99": [
|
2695 |
+
0.6136963081359863,
|
2696 |
+
0.33704194784164443,
|
2697 |
+
0.6681221985816956,
|
2698 |
+
0.7422861719131538,
|
2699 |
+
0.7955395007133507,
|
2700 |
+
0.740464625358582,
|
2701 |
+
0.0
|
2702 |
+
],
|
2703 |
+
"std": [
|
2704 |
+
0.12211652100086212,
|
2705 |
+
0.19378550350666046,
|
2706 |
+
0.10178236663341522,
|
2707 |
+
0.5725259184837341,
|
2708 |
+
0.29884573817253113,
|
2709 |
+
0.3259911835193634,
|
2710 |
+
0.0
|
2711 |
+
]
|
2712 |
+
},
|
2713 |
+
"num_trajectories": 1003,
|
2714 |
+
"num_transitions": 325699,
|
2715 |
+
"proprio": {
|
2716 |
+
"max": [
|
2717 |
+
0.0,
|
2718 |
+
0.0,
|
2719 |
+
0.0,
|
2720 |
+
0.0,
|
2721 |
+
0.0,
|
2722 |
+
0.0,
|
2723 |
+
0.0
|
2724 |
+
],
|
2725 |
+
"mean": [
|
2726 |
+
0.0,
|
2727 |
+
0.0,
|
2728 |
+
0.0,
|
2729 |
+
0.0,
|
2730 |
+
0.0,
|
2731 |
+
0.0,
|
2732 |
+
0.0
|
2733 |
+
],
|
2734 |
+
"min": [
|
2735 |
+
0.0,
|
2736 |
+
0.0,
|
2737 |
+
0.0,
|
2738 |
+
0.0,
|
2739 |
+
0.0,
|
2740 |
+
0.0,
|
2741 |
+
0.0
|
2742 |
+
],
|
2743 |
+
"q01": [
|
2744 |
+
0.0,
|
2745 |
+
0.0,
|
2746 |
+
0.0,
|
2747 |
+
0.0,
|
2748 |
+
0.0,
|
2749 |
+
0.0,
|
2750 |
+
0.0
|
2751 |
+
],
|
2752 |
+
"q99": [
|
2753 |
+
0.0,
|
2754 |
+
0.0,
|
2755 |
+
0.0,
|
2756 |
+
0.0,
|
2757 |
+
0.0,
|
2758 |
+
0.0,
|
2759 |
+
0.0
|
2760 |
+
],
|
2761 |
+
"std": [
|
2762 |
+
0.0,
|
2763 |
+
0.0,
|
2764 |
+
0.0,
|
2765 |
+
0.0,
|
2766 |
+
0.0,
|
2767 |
+
0.0,
|
2768 |
+
0.0
|
2769 |
+
]
|
2770 |
+
}
|
2771 |
+
},
|
2772 |
+
"ucsd_kitchen_dataset_converted_externally_to_rlds": {
|
2773 |
+
"action": {
|
2774 |
+
"mask": [
|
2775 |
+
true,
|
2776 |
+
true,
|
2777 |
+
true,
|
2778 |
+
true,
|
2779 |
+
true,
|
2780 |
+
true,
|
2781 |
+
false
|
2782 |
+
],
|
2783 |
+
"max": [
|
2784 |
+
678.0,
|
2785 |
+
400.0,
|
2786 |
+
507.0,
|
2787 |
+
180.00001525878906,
|
2788 |
+
6.000013828277588,
|
2789 |
+
116.99998474121094,
|
2790 |
+
1.0
|
2791 |
+
],
|
2792 |
+
"mean": [
|
2793 |
+
410.37567138671875,
|
2794 |
+
116.9518814086914,
|
2795 |
+
192.35032653808594,
|
2796 |
+
-121.22441864013672,
|
2797 |
+
-33.84893035888672,
|
2798 |
+
50.016136169433594,
|
2799 |
+
0.741813600063324
|
2800 |
+
],
|
2801 |
+
"min": [
|
2802 |
+
172.0,
|
2803 |
+
-166.0,
|
2804 |
+
-99.99999237060547,
|
2805 |
+
-180.00001525878906,
|
2806 |
+
-89.0,
|
2807 |
+
-96.00010681152344,
|
2808 |
+
0.0
|
2809 |
+
],
|
2810 |
+
"q01": [
|
2811 |
+
200.00001052856445,
|
2812 |
+
-102.31004211425781,
|
2813 |
+
-94.99993370056153,
|
2814 |
+
-180.00001525878906,
|
2815 |
+
-88.00001525878906,
|
2816 |
+
-38.999977111816406,
|
2817 |
+
0.0
|
2818 |
+
],
|
2819 |
+
"q99": [
|
2820 |
+
637.0,
|
2821 |
+
368.30999999999995,
|
2822 |
+
493.0,
|
2823 |
+
180.00001525878906,
|
2824 |
+
0.999983012676239,
|
2825 |
+
105.00001525878906,
|
2826 |
+
1.0
|
2827 |
+
],
|
2828 |
+
"std": [
|
2829 |
+
122.81494903564453,
|
2830 |
+
108.8009033203125,
|
2831 |
+
130.303466796875,
|
2832 |
+
116.28205108642578,
|
2833 |
+
27.621843338012695,
|
2834 |
+
41.02094650268555,
|
2835 |
+
0.43763357400894165
|
2836 |
+
]
|
2837 |
+
},
|
2838 |
+
"num_trajectories": 150,
|
2839 |
+
"num_transitions": 3970,
|
2840 |
+
"proprio": {
|
2841 |
+
"max": [
|
2842 |
+
0.0,
|
2843 |
+
0.0,
|
2844 |
+
0.0,
|
2845 |
+
0.0,
|
2846 |
+
0.0,
|
2847 |
+
0.0,
|
2848 |
+
0.0
|
2849 |
+
],
|
2850 |
+
"mean": [
|
2851 |
+
0.0,
|
2852 |
+
0.0,
|
2853 |
+
0.0,
|
2854 |
+
0.0,
|
2855 |
+
0.0,
|
2856 |
+
0.0,
|
2857 |
+
0.0
|
2858 |
+
],
|
2859 |
+
"min": [
|
2860 |
+
0.0,
|
2861 |
+
0.0,
|
2862 |
+
0.0,
|
2863 |
+
0.0,
|
2864 |
+
0.0,
|
2865 |
+
0.0,
|
2866 |
+
0.0
|
2867 |
+
],
|
2868 |
+
"q01": [
|
2869 |
+
0.0,
|
2870 |
+
0.0,
|
2871 |
+
0.0,
|
2872 |
+
0.0,
|
2873 |
+
0.0,
|
2874 |
+
0.0,
|
2875 |
+
0.0
|
2876 |
+
],
|
2877 |
+
"q99": [
|
2878 |
+
0.0,
|
2879 |
+
0.0,
|
2880 |
+
0.0,
|
2881 |
+
0.0,
|
2882 |
+
0.0,
|
2883 |
+
0.0,
|
2884 |
+
0.0
|
2885 |
+
],
|
2886 |
+
"std": [
|
2887 |
+
0.0,
|
2888 |
+
0.0,
|
2889 |
+
0.0,
|
2890 |
+
0.0,
|
2891 |
+
0.0,
|
2892 |
+
0.0,
|
2893 |
+
0.0
|
2894 |
+
]
|
2895 |
+
}
|
2896 |
+
},
|
2897 |
+
"utaustin_mutex": {
|
2898 |
+
"action": {
|
2899 |
+
"mask": [
|
2900 |
+
true,
|
2901 |
+
true,
|
2902 |
+
true,
|
2903 |
+
true,
|
2904 |
+
true,
|
2905 |
+
true,
|
2906 |
+
false
|
2907 |
+
],
|
2908 |
+
"max": [
|
2909 |
+
1.0,
|
2910 |
+
1.0,
|
2911 |
+
1.0,
|
2912 |
+
0.375,
|
2913 |
+
0.375,
|
2914 |
+
0.375,
|
2915 |
+
1.0
|
2916 |
+
],
|
2917 |
+
"mean": [
|
2918 |
+
0.06176406890153885,
|
2919 |
+
-0.005005486309528351,
|
2920 |
+
0.10216785222291946,
|
2921 |
+
-0.03314131125807762,
|
2922 |
+
0.013895004987716675,
|
2923 |
+
-0.011317633092403412,
|
2924 |
+
0.5038976669311523
|
2925 |
+
],
|
2926 |
+
"min": [
|
2927 |
+
-1.0,
|
2928 |
+
-1.0,
|
2929 |
+
-1.0,
|
2930 |
+
-0.375,
|
2931 |
+
-0.375,
|
2932 |
+
-0.375,
|
2933 |
+
0.0
|
2934 |
+
],
|
2935 |
+
"q01": [
|
2936 |
+
-0.4285714328289032,
|
2937 |
+
-0.9800000190734863,
|
2938 |
+
-0.5571428537368774,
|
2939 |
+
-0.375,
|
2940 |
+
-0.15642857551574707,
|
2941 |
+
-0.335357129573822,
|
2942 |
+
0.0
|
2943 |
+
],
|
2944 |
+
"q99": [
|
2945 |
+
0.5914285778999329,
|
2946 |
+
0.9714285731315613,
|
2947 |
+
1.0,
|
2948 |
+
0.3278571367263794,
|
2949 |
+
0.207857146859169,
|
2950 |
+
0.25607141852378845,
|
2951 |
+
1.0
|
2952 |
+
],
|
2953 |
+
"std": [
|
2954 |
+
0.1875014752149582,
|
2955 |
+
0.4468473494052887,
|
2956 |
+
0.3792876601219177,
|
2957 |
+
0.14097853004932404,
|
2958 |
+
0.06453701853752136,
|
2959 |
+
0.11765272170305252,
|
2960 |
+
0.501045286655426
|
2961 |
+
]
|
2962 |
+
},
|
2963 |
+
"num_trajectories": 1500,
|
2964 |
+
"num_transitions": 361883,
|
2965 |
+
"proprio": {
|
2966 |
+
"max": [
|
2967 |
+
0.0,
|
2968 |
+
0.0,
|
2969 |
+
0.0,
|
2970 |
+
0.0,
|
2971 |
+
0.0,
|
2972 |
+
0.0,
|
2973 |
+
0.0
|
2974 |
+
],
|
2975 |
+
"mean": [
|
2976 |
+
0.0,
|
2977 |
+
0.0,
|
2978 |
+
0.0,
|
2979 |
+
0.0,
|
2980 |
+
0.0,
|
2981 |
+
0.0,
|
2982 |
+
0.0
|
2983 |
+
],
|
2984 |
+
"min": [
|
2985 |
+
0.0,
|
2986 |
+
0.0,
|
2987 |
+
0.0,
|
2988 |
+
0.0,
|
2989 |
+
0.0,
|
2990 |
+
0.0,
|
2991 |
+
0.0
|
2992 |
+
],
|
2993 |
+
"q01": [
|
2994 |
+
0.0,
|
2995 |
+
0.0,
|
2996 |
+
0.0,
|
2997 |
+
0.0,
|
2998 |
+
0.0,
|
2999 |
+
0.0,
|
3000 |
+
0.0
|
3001 |
+
],
|
3002 |
+
"q99": [
|
3003 |
+
0.0,
|
3004 |
+
0.0,
|
3005 |
+
0.0,
|
3006 |
+
0.0,
|
3007 |
+
0.0,
|
3008 |
+
0.0,
|
3009 |
+
0.0
|
3010 |
+
],
|
3011 |
+
"std": [
|
3012 |
+
0.0,
|
3013 |
+
0.0,
|
3014 |
+
0.0,
|
3015 |
+
0.0,
|
3016 |
+
0.0,
|
3017 |
+
0.0,
|
3018 |
+
0.0
|
3019 |
+
]
|
3020 |
+
}
|
3021 |
+
},
|
3022 |
+
"viola": {
|
3023 |
+
"action": {
|
3024 |
+
"mask": [
|
3025 |
+
true,
|
3026 |
+
true,
|
3027 |
+
true,
|
3028 |
+
true,
|
3029 |
+
true,
|
3030 |
+
true,
|
3031 |
+
false
|
3032 |
+
],
|
3033 |
+
"max": [
|
3034 |
+
1.0,
|
3035 |
+
1.0,
|
3036 |
+
1.0,
|
3037 |
+
0.375,
|
3038 |
+
0.36321428418159485,
|
3039 |
+
0.375,
|
3040 |
+
1.0
|
3041 |
+
],
|
3042 |
+
"mean": [
|
3043 |
+
0.04761844128370285,
|
3044 |
+
-0.029204415157437325,
|
3045 |
+
0.05586736649274826,
|
3046 |
+
-0.002618510741740465,
|
3047 |
+
0.006867344491183758,
|
3048 |
+
-0.01682133786380291,
|
3049 |
+
0.7323777675628662
|
3050 |
+
],
|
3051 |
+
"min": [
|
3052 |
+
-1.0,
|
3053 |
+
-1.0,
|
3054 |
+
-1.0,
|
3055 |
+
-0.375,
|
3056 |
+
-0.375,
|
3057 |
+
-0.375,
|
3058 |
+
0.0
|
3059 |
+
],
|
3060 |
+
"q01": [
|
3061 |
+
-0.9628571271896362,
|
3062 |
+
-1.0,
|
3063 |
+
-1.0,
|
3064 |
+
-0.26249998807907104,
|
3065 |
+
-0.21321429312229156,
|
3066 |
+
-0.3385714292526245,
|
3067 |
+
0.0
|
3068 |
+
],
|
3069 |
+
"q99": [
|
3070 |
+
0.9114285707473755,
|
3071 |
+
0.868571400642395,
|
3072 |
+
1.0,
|
3073 |
+
0.2817857265472412,
|
3074 |
+
0.2239285707473755,
|
3075 |
+
0.3557142913341522,
|
3076 |
+
1.0
|
3077 |
+
],
|
3078 |
+
"std": [
|
3079 |
+
0.39157867431640625,
|
3080 |
+
0.4076525568962097,
|
3081 |
+
0.40077948570251465,
|
3082 |
+
0.10023996233940125,
|
3083 |
+
0.0844319611787796,
|
3084 |
+
0.10375042259693146,
|
3085 |
+
0.44260647892951965
|
3086 |
+
]
|
3087 |
+
},
|
3088 |
+
"num_trajectories": 150,
|
3089 |
+
"num_transitions": 76324,
|
3090 |
+
"proprio": {
|
3091 |
+
"max": [
|
3092 |
+
0.0,
|
3093 |
+
0.0,
|
3094 |
+
0.0,
|
3095 |
+
0.0,
|
3096 |
+
0.0,
|
3097 |
+
0.0,
|
3098 |
+
0.0
|
3099 |
+
],
|
3100 |
+
"mean": [
|
3101 |
+
0.0,
|
3102 |
+
0.0,
|
3103 |
+
0.0,
|
3104 |
+
0.0,
|
3105 |
+
0.0,
|
3106 |
+
0.0,
|
3107 |
+
0.0
|
3108 |
+
],
|
3109 |
+
"min": [
|
3110 |
+
0.0,
|
3111 |
+
0.0,
|
3112 |
+
0.0,
|
3113 |
+
0.0,
|
3114 |
+
0.0,
|
3115 |
+
0.0,
|
3116 |
+
0.0
|
3117 |
+
],
|
3118 |
+
"q01": [
|
3119 |
+
0.0,
|
3120 |
+
0.0,
|
3121 |
+
0.0,
|
3122 |
+
0.0,
|
3123 |
+
0.0,
|
3124 |
+
0.0,
|
3125 |
+
0.0
|
3126 |
+
],
|
3127 |
+
"q99": [
|
3128 |
+
0.0,
|
3129 |
+
0.0,
|
3130 |
+
0.0,
|
3131 |
+
0.0,
|
3132 |
+
0.0,
|
3133 |
+
0.0,
|
3134 |
+
0.0
|
3135 |
+
],
|
3136 |
+
"std": [
|
3137 |
+
0.0,
|
3138 |
+
0.0,
|
3139 |
+
0.0,
|
3140 |
+
0.0,
|
3141 |
+
0.0,
|
3142 |
+
0.0,
|
3143 |
+
0.0
|
3144 |
+
]
|
3145 |
+
}
|
3146 |
+
}
|
3147 |
+
},
|
3148 |
+
"output_projector_states": false,
|
3149 |
+
"pad_to_multiple_of": 64,
|
3150 |
+
"pad_token_id": 32000,
|
3151 |
+
"text_config": {
|
3152 |
+
"model_type": "llama",
|
3153 |
+
"pad_token_id": 32000,
|
3154 |
+
"torch_dtype": "bfloat16",
|
3155 |
+
"vocab_size": 32064
|
3156 |
+
},
|
3157 |
+
"timm_model_ids": [
|
3158 |
+
"vit_large_patch14_reg4_dinov2.lvd142m",
|
3159 |
+
"vit_so400m_patch14_siglip_224"
|
3160 |
+
],
|
3161 |
+
"timm_override_act_layers": [
|
3162 |
+
null,
|
3163 |
+
null
|
3164 |
+
],
|
3165 |
+
"torch_dtype": "bfloat16",
|
3166 |
+
"transformers_version": "4.40.1",
|
3167 |
+
"use_fused_vision_backbone": true,
|
3168 |
+
"vision_backbone_id": "dinosiglip-vit-so-224px"
|
3169 |
+
}
|
dataset_statistics.json
ADDED
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"maniskill_dataset_converted_externally_to_rlds": {
|
3 |
+
"action": {
|
4 |
+
"mean": [
|
5 |
+
0.001753032673150301,
|
6 |
+
0.004022886045277119,
|
7 |
+
0.0018199377227574587,
|
8 |
+
0.0012986620422452688,
|
9 |
+
0.001954670064151287,
|
10 |
+
-0.008406715467572212,
|
11 |
+
-0.1669192761182785
|
12 |
+
],
|
13 |
+
"std": [
|
14 |
+
0.0249963216483593,
|
15 |
+
0.07045494765043259,
|
16 |
+
0.04063529893755913,
|
17 |
+
0.04287172481417656,
|
18 |
+
0.04291927441954613,
|
19 |
+
0.11181189864873886,
|
20 |
+
0.9687231183052063
|
21 |
+
],
|
22 |
+
"max": [
|
23 |
+
1.0,
|
24 |
+
1.0,
|
25 |
+
0.9904654026031494,
|
26 |
+
0.9965949058532715,
|
27 |
+
0.9993983507156372,
|
28 |
+
0.9999291896820068,
|
29 |
+
1.0800000429153442
|
30 |
+
],
|
31 |
+
"min": [
|
32 |
+
-1.0,
|
33 |
+
-1.0,
|
34 |
+
-0.8282245397567749,
|
35 |
+
-0.955905556678772,
|
36 |
+
-0.9993988275527954,
|
37 |
+
-0.9999651312828064,
|
38 |
+
-1.0
|
39 |
+
],
|
40 |
+
"q01": [
|
41 |
+
-0.053749379515647885,
|
42 |
+
-0.1874772420525551,
|
43 |
+
-0.0887893095612526,
|
44 |
+
-0.10677555210888386,
|
45 |
+
-0.13712280973792076,
|
46 |
+
-0.30810734152793884,
|
47 |
+
-1.0
|
48 |
+
],
|
49 |
+
"q99": [
|
50 |
+
0.07217406630516066,
|
51 |
+
0.1822862920165062,
|
52 |
+
0.11025339215993885,
|
53 |
+
0.15626964762806908,
|
54 |
+
0.17284625649452212,
|
55 |
+
0.3177985239028931,
|
56 |
+
1.0
|
57 |
+
],
|
58 |
+
"mask": [
|
59 |
+
true,
|
60 |
+
true,
|
61 |
+
true,
|
62 |
+
true,
|
63 |
+
true,
|
64 |
+
true,
|
65 |
+
false
|
66 |
+
]
|
67 |
+
},
|
68 |
+
"proprio": {
|
69 |
+
"mean": [
|
70 |
+
0.0,
|
71 |
+
0.0,
|
72 |
+
0.0,
|
73 |
+
0.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0
|
77 |
+
],
|
78 |
+
"std": [
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
0.0,
|
84 |
+
0.0,
|
85 |
+
0.0
|
86 |
+
],
|
87 |
+
"max": [
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
0.0,
|
93 |
+
0.0,
|
94 |
+
0.0
|
95 |
+
],
|
96 |
+
"min": [
|
97 |
+
0.0,
|
98 |
+
0.0,
|
99 |
+
0.0,
|
100 |
+
0.0,
|
101 |
+
0.0,
|
102 |
+
0.0,
|
103 |
+
0.0
|
104 |
+
],
|
105 |
+
"q01": [
|
106 |
+
0.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
0.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
"q99": [
|
115 |
+
0.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
0.0,
|
121 |
+
0.0
|
122 |
+
]
|
123 |
+
},
|
124 |
+
"num_transitions": 4537402,
|
125 |
+
"num_trajectories": 30213
|
126 |
+
},
|
127 |
+
"cmu_franka_exploration_dataset_converted_externally_to_rlds": {
|
128 |
+
"action": {
|
129 |
+
"mean": [
|
130 |
+
0.023629561066627502,
|
131 |
+
0.005161500535905361,
|
132 |
+
-0.015222280286252499,
|
133 |
+
0.04188229888677597,
|
134 |
+
0.0046763550490140915,
|
135 |
+
0.09881123155355453,
|
136 |
+
0.30000001192092896
|
137 |
+
],
|
138 |
+
"std": [
|
139 |
+
0.11304982006549835,
|
140 |
+
0.11631360650062561,
|
141 |
+
0.07852676510810852,
|
142 |
+
0.19957201182842255,
|
143 |
+
0.09077262878417969,
|
144 |
+
1.0257258415222168,
|
145 |
+
0.45825448632240295
|
146 |
+
],
|
147 |
+
"max": [
|
148 |
+
0.4725336730480194,
|
149 |
+
0.3901922404766083,
|
150 |
+
0.10486119985580444,
|
151 |
+
0.9421265721321106,
|
152 |
+
0.5169905424118042,
|
153 |
+
6.256486415863037,
|
154 |
+
1.0
|
155 |
+
],
|
156 |
+
"min": [
|
157 |
+
-0.1463591456413269,
|
158 |
+
-0.4534304141998291,
|
159 |
+
-0.3293706774711609,
|
160 |
+
-0.2900730073451996,
|
161 |
+
-0.48279625177383423,
|
162 |
+
-6.289149761199951,
|
163 |
+
0.0
|
164 |
+
],
|
165 |
+
"q01": [
|
166 |
+
-0.09845174193382263,
|
167 |
+
-0.39011656552553176,
|
168 |
+
-0.3058631345629692,
|
169 |
+
-0.18888406455516815,
|
170 |
+
-0.20234539553523065,
|
171 |
+
-0.675922526717186,
|
172 |
+
0.0
|
173 |
+
],
|
174 |
+
"q99": [
|
175 |
+
0.4625110590457916,
|
176 |
+
0.32559849202632896,
|
177 |
+
0.0893813088536262,
|
178 |
+
0.8969308358430862,
|
179 |
+
0.3370739933848377,
|
180 |
+
5.3530522727966305,
|
181 |
+
1.0
|
182 |
+
],
|
183 |
+
"mask": [
|
184 |
+
true,
|
185 |
+
true,
|
186 |
+
true,
|
187 |
+
true,
|
188 |
+
true,
|
189 |
+
true,
|
190 |
+
false
|
191 |
+
]
|
192 |
+
},
|
193 |
+
"proprio": {
|
194 |
+
"mean": [
|
195 |
+
0.0,
|
196 |
+
0.0,
|
197 |
+
0.0,
|
198 |
+
0.0,
|
199 |
+
0.0,
|
200 |
+
0.0,
|
201 |
+
0.0
|
202 |
+
],
|
203 |
+
"std": [
|
204 |
+
0.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
0.0,
|
210 |
+
0.0
|
211 |
+
],
|
212 |
+
"max": [
|
213 |
+
0.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
0.0,
|
219 |
+
0.0
|
220 |
+
],
|
221 |
+
"min": [
|
222 |
+
0.0,
|
223 |
+
0.0,
|
224 |
+
0.0,
|
225 |
+
0.0,
|
226 |
+
0.0,
|
227 |
+
0.0,
|
228 |
+
0.0
|
229 |
+
],
|
230 |
+
"q01": [
|
231 |
+
0.0,
|
232 |
+
0.0,
|
233 |
+
0.0,
|
234 |
+
0.0,
|
235 |
+
0.0,
|
236 |
+
0.0,
|
237 |
+
0.0
|
238 |
+
],
|
239 |
+
"q99": [
|
240 |
+
0.0,
|
241 |
+
0.0,
|
242 |
+
0.0,
|
243 |
+
0.0,
|
244 |
+
0.0,
|
245 |
+
0.0,
|
246 |
+
0.0
|
247 |
+
]
|
248 |
+
},
|
249 |
+
"num_transitions": 1990,
|
250 |
+
"num_trajectories": 199
|
251 |
+
},
|
252 |
+
"kaist_nonprehensile_converted_externally_to_rlds": {
|
253 |
+
"action": {
|
254 |
+
"mean": [
|
255 |
+
0.001946943229995668,
|
256 |
+
0.00023607404727954417,
|
257 |
+
0.000902869098354131,
|
258 |
+
-0.0022928407415747643,
|
259 |
+
0.00011903639096999541,
|
260 |
+
-0.0036542697343975306,
|
261 |
+
0.0
|
262 |
+
],
|
263 |
+
"std": [
|
264 |
+
0.014686590991914272,
|
265 |
+
0.016561254858970642,
|
266 |
+
0.012853579595685005,
|
267 |
+
0.02320992574095726,
|
268 |
+
0.02049344778060913,
|
269 |
+
0.02003857120871544,
|
270 |
+
0.0
|
271 |
+
],
|
272 |
+
"max": [
|
273 |
+
0.019999999552965164,
|
274 |
+
0.019999999552965164,
|
275 |
+
0.019999999552965164,
|
276 |
+
0.029999999329447746,
|
277 |
+
0.029999999329447746,
|
278 |
+
0.029999999329447746,
|
279 |
+
0.0
|
280 |
+
],
|
281 |
+
"min": [
|
282 |
+
-0.019999999552965164,
|
283 |
+
-0.019999999552965164,
|
284 |
+
-0.019999999552965164,
|
285 |
+
-0.029999999329447746,
|
286 |
+
-0.029999999329447746,
|
287 |
+
-0.029999999329447746,
|
288 |
+
0.0
|
289 |
+
],
|
290 |
+
"q01": [
|
291 |
+
-0.019999999552965164,
|
292 |
+
-0.019999999552965164,
|
293 |
+
-0.019999999552965164,
|
294 |
+
-0.029999999329447746,
|
295 |
+
-0.029999999329447746,
|
296 |
+
-0.029999999329447746,
|
297 |
+
0.0
|
298 |
+
],
|
299 |
+
"q99": [
|
300 |
+
0.019999999552965164,
|
301 |
+
0.019999999552965164,
|
302 |
+
0.019999999552965164,
|
303 |
+
0.029999999329447746,
|
304 |
+
0.029999999329447746,
|
305 |
+
0.029999999329447746,
|
306 |
+
0.0
|
307 |
+
],
|
308 |
+
"mask": [
|
309 |
+
true,
|
310 |
+
true,
|
311 |
+
true,
|
312 |
+
true,
|
313 |
+
true,
|
314 |
+
true,
|
315 |
+
false
|
316 |
+
]
|
317 |
+
},
|
318 |
+
"proprio": {
|
319 |
+
"mean": [
|
320 |
+
0.0,
|
321 |
+
0.0,
|
322 |
+
0.0,
|
323 |
+
0.0,
|
324 |
+
0.0,
|
325 |
+
0.0,
|
326 |
+
0.0
|
327 |
+
],
|
328 |
+
"std": [
|
329 |
+
0.0,
|
330 |
+
0.0,
|
331 |
+
0.0,
|
332 |
+
0.0,
|
333 |
+
0.0,
|
334 |
+
0.0,
|
335 |
+
0.0
|
336 |
+
],
|
337 |
+
"max": [
|
338 |
+
0.0,
|
339 |
+
0.0,
|
340 |
+
0.0,
|
341 |
+
0.0,
|
342 |
+
0.0,
|
343 |
+
0.0,
|
344 |
+
0.0
|
345 |
+
],
|
346 |
+
"min": [
|
347 |
+
0.0,
|
348 |
+
0.0,
|
349 |
+
0.0,
|
350 |
+
0.0,
|
351 |
+
0.0,
|
352 |
+
0.0,
|
353 |
+
0.0
|
354 |
+
],
|
355 |
+
"q01": [
|
356 |
+
0.0,
|
357 |
+
0.0,
|
358 |
+
0.0,
|
359 |
+
0.0,
|
360 |
+
0.0,
|
361 |
+
0.0,
|
362 |
+
0.0
|
363 |
+
],
|
364 |
+
"q99": [
|
365 |
+
0.0,
|
366 |
+
0.0,
|
367 |
+
0.0,
|
368 |
+
0.0,
|
369 |
+
0.0,
|
370 |
+
0.0,
|
371 |
+
0.0
|
372 |
+
]
|
373 |
+
},
|
374 |
+
"num_transitions": 32429,
|
375 |
+
"num_trajectories": 201
|
376 |
+
},
|
377 |
+
"stanford_robocook_converted_externally_to_rlds": {
|
378 |
+
"action": {
|
379 |
+
"mean": [
|
380 |
+
-2.678420059964992e-06,
|
381 |
+
1.8303692286281148e-06,
|
382 |
+
-0.0013767639175057411,
|
383 |
+
-2.3712427719146945e-05,
|
384 |
+
-0.00010789699445012957,
|
385 |
+
-4.2797779315151274e-05,
|
386 |
+
-2.897957165259868e-05
|
387 |
+
],
|
388 |
+
"std": [
|
389 |
+
0.0022755141835659742,
|
390 |
+
0.002386162057518959,
|
391 |
+
0.010277057066559792,
|
392 |
+
0.0005761811626143754,
|
393 |
+
0.0015414082445204258,
|
394 |
+
0.0006268072756938636,
|
395 |
+
0.002792784245684743
|
396 |
+
],
|
397 |
+
"max": [
|
398 |
+
0.056665658950805664,
|
399 |
+
0.05632849037647247,
|
400 |
+
0.11884553730487823,
|
401 |
+
0.022299306467175484,
|
402 |
+
0.02912251278758049,
|
403 |
+
0.010286045260727406,
|
404 |
+
0.042904630303382874
|
405 |
+
],
|
406 |
+
"min": [
|
407 |
+
-0.05887693166732788,
|
408 |
+
-0.05669987574219704,
|
409 |
+
-0.11804911494255066,
|
410 |
+
-0.012663912028074265,
|
411 |
+
-0.030290456488728523,
|
412 |
+
-0.01201140508055687,
|
413 |
+
-0.05652061104774475
|
414 |
+
],
|
415 |
+
"q01": [
|
416 |
+
-0.0024662628769874574,
|
417 |
+
-0.002278556525707245,
|
418 |
+
-0.012126719951629639,
|
419 |
+
-0.0013559132115915419,
|
420 |
+
-0.0035992980259470643,
|
421 |
+
-0.0011550676298793406,
|
422 |
+
-0.003419263679534197
|
423 |
+
],
|
424 |
+
"q99": [
|
425 |
+
0.0031803366541862345,
|
426 |
+
0.003376326411962505,
|
427 |
+
0.0002590838074684092,
|
428 |
+
0.001089718458242705,
|
429 |
+
0.0019524201226886323,
|
430 |
+
0.0008385598671156899,
|
431 |
+
0.013301393277942958
|
432 |
+
],
|
433 |
+
"mask": [
|
434 |
+
true,
|
435 |
+
true,
|
436 |
+
true,
|
437 |
+
true,
|
438 |
+
true,
|
439 |
+
true,
|
440 |
+
false
|
441 |
+
]
|
442 |
+
},
|
443 |
+
"proprio": {
|
444 |
+
"mean": [
|
445 |
+
0.0,
|
446 |
+
0.0,
|
447 |
+
0.0,
|
448 |
+
0.0,
|
449 |
+
0.0,
|
450 |
+
0.0,
|
451 |
+
0.0
|
452 |
+
],
|
453 |
+
"std": [
|
454 |
+
0.0,
|
455 |
+
0.0,
|
456 |
+
0.0,
|
457 |
+
0.0,
|
458 |
+
0.0,
|
459 |
+
0.0,
|
460 |
+
0.0
|
461 |
+
],
|
462 |
+
"max": [
|
463 |
+
0.0,
|
464 |
+
0.0,
|
465 |
+
0.0,
|
466 |
+
0.0,
|
467 |
+
0.0,
|
468 |
+
0.0,
|
469 |
+
0.0
|
470 |
+
],
|
471 |
+
"min": [
|
472 |
+
0.0,
|
473 |
+
0.0,
|
474 |
+
0.0,
|
475 |
+
0.0,
|
476 |
+
0.0,
|
477 |
+
0.0,
|
478 |
+
0.0
|
479 |
+
],
|
480 |
+
"q01": [
|
481 |
+
0.0,
|
482 |
+
0.0,
|
483 |
+
0.0,
|
484 |
+
0.0,
|
485 |
+
0.0,
|
486 |
+
0.0,
|
487 |
+
0.0
|
488 |
+
],
|
489 |
+
"q99": [
|
490 |
+
0.0,
|
491 |
+
0.0,
|
492 |
+
0.0,
|
493 |
+
0.0,
|
494 |
+
0.0,
|
495 |
+
0.0,
|
496 |
+
0.0
|
497 |
+
]
|
498 |
+
},
|
499 |
+
"num_transitions": 112980,
|
500 |
+
"num_trajectories": 2460
|
501 |
+
},
|
502 |
+
"cmu_play_fusion": {
|
503 |
+
"action": {
|
504 |
+
"mean": [
|
505 |
+
0.0005235312273725867,
|
506 |
+
4.235409141983837e-05,
|
507 |
+
-0.00017124312580563128,
|
508 |
+
-0.0001588397572049871,
|
509 |
+
4.5165429582993966e-06,
|
510 |
+
0.5705317854881287,
|
511 |
+
0.002441484946757555
|
512 |
+
],
|
513 |
+
"std": [
|
514 |
+
0.0018017141846939921,
|
515 |
+
0.002387305023148656,
|
516 |
+
0.0018721572123467922,
|
517 |
+
0.005302113015204668,
|
518 |
+
0.007521406747400761,
|
519 |
+
0.49449095129966736,
|
520 |
+
0.04930602014064789
|
521 |
+
],
|
522 |
+
"max": [
|
523 |
+
0.012690633535385132,
|
524 |
+
0.01298077404499054,
|
525 |
+
0.015158325433731079,
|
526 |
+
0.4699133038520813,
|
527 |
+
1.000421166419983,
|
528 |
+
1.0,
|
529 |
+
1.0
|
530 |
+
],
|
531 |
+
"min": [
|
532 |
+
-0.009934544563293457,
|
533 |
+
-0.025727394968271255,
|
534 |
+
-0.010410726070404053,
|
535 |
+
-0.48077064752578735,
|
536 |
+
-1.0008366107940674,
|
537 |
+
0.0,
|
538 |
+
0.0
|
539 |
+
],
|
540 |
+
"q01": [
|
541 |
+
-0.004354403614997864,
|
542 |
+
-0.006213024510070681,
|
543 |
+
-0.003597210943698883,
|
544 |
+
-0.004367449581623078,
|
545 |
+
-0.005852417796850204,
|
546 |
+
0.0,
|
547 |
+
0.0
|
548 |
+
],
|
549 |
+
"q99": [
|
550 |
+
0.00525536358356476,
|
551 |
+
0.006261475905776026,
|
552 |
+
0.0057483944296836875,
|
553 |
+
0.005373069681227213,
|
554 |
+
0.006020984072238213,
|
555 |
+
1.0,
|
556 |
+
0.0
|
557 |
+
],
|
558 |
+
"mask": [
|
559 |
+
true,
|
560 |
+
true,
|
561 |
+
true,
|
562 |
+
true,
|
563 |
+
true,
|
564 |
+
true,
|
565 |
+
false
|
566 |
+
]
|
567 |
+
},
|
568 |
+
"proprio": {
|
569 |
+
"mean": [
|
570 |
+
0.0,
|
571 |
+
0.0,
|
572 |
+
0.0,
|
573 |
+
0.0,
|
574 |
+
0.0,
|
575 |
+
0.0,
|
576 |
+
0.0
|
577 |
+
],
|
578 |
+
"std": [
|
579 |
+
0.0,
|
580 |
+
0.0,
|
581 |
+
0.0,
|
582 |
+
0.0,
|
583 |
+
0.0,
|
584 |
+
0.0,
|
585 |
+
0.0
|
586 |
+
],
|
587 |
+
"max": [
|
588 |
+
0.0,
|
589 |
+
0.0,
|
590 |
+
0.0,
|
591 |
+
0.0,
|
592 |
+
0.0,
|
593 |
+
0.0,
|
594 |
+
0.0
|
595 |
+
],
|
596 |
+
"min": [
|
597 |
+
0.0,
|
598 |
+
0.0,
|
599 |
+
0.0,
|
600 |
+
0.0,
|
601 |
+
0.0,
|
602 |
+
0.0,
|
603 |
+
0.0
|
604 |
+
],
|
605 |
+
"q01": [
|
606 |
+
0.0,
|
607 |
+
0.0,
|
608 |
+
0.0,
|
609 |
+
0.0,
|
610 |
+
0.0,
|
611 |
+
0.0,
|
612 |
+
0.0
|
613 |
+
],
|
614 |
+
"q99": [
|
615 |
+
0.0,
|
616 |
+
0.0,
|
617 |
+
0.0,
|
618 |
+
0.0,
|
619 |
+
0.0,
|
620 |
+
0.0,
|
621 |
+
0.0
|
622 |
+
]
|
623 |
+
},
|
624 |
+
"num_transitions": 235922,
|
625 |
+
"num_trajectories": 576
|
626 |
+
}
|
627 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 32000,
|
6 |
+
"transformers_version": "4.40.1"
|
7 |
+
}
|
logs.txt
ADDED
@@ -0,0 +1,2155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metrics at Step 0:
|
2 |
+
Train Loss: 11.283738136291504
|
3 |
+
Action Accuracy: 0.0803571417927742
|
4 |
+
L1 Loss: 0.49411764705882355
|
5 |
+
|
6 |
+
Metrics at Step 100:
|
7 |
+
Train Loss: 4.692451477050781
|
8 |
+
Action Accuracy: 0.0982142835855484
|
9 |
+
L1 Loss: 0.5128151260504202
|
10 |
+
|
11 |
+
Metrics at Step 200:
|
12 |
+
Train Loss: 3.888653516769409
|
13 |
+
Action Accuracy: 0.1517857164144516
|
14 |
+
L1 Loss: 0.5456582633053222
|
15 |
+
|
16 |
+
Metrics at Step 300:
|
17 |
+
Train Loss: 3.634946346282959
|
18 |
+
Action Accuracy: 0.2142857164144516
|
19 |
+
L1 Loss: 0.41064425770308116
|
20 |
+
|
21 |
+
Metrics at Step 400:
|
22 |
+
Train Loss: 3.6455233097076416
|
23 |
+
Action Accuracy: 0.2410714328289032
|
24 |
+
L1 Loss: 0.5002100840336134
|
25 |
+
|
26 |
+
Metrics at Step 500:
|
27 |
+
Train Loss: 3.5222232341766357
|
28 |
+
Action Accuracy: 0.2678571343421936
|
29 |
+
L1 Loss: 0.45315126050420174
|
30 |
+
|
31 |
+
Metrics at Step 600:
|
32 |
+
Train Loss: 2.8315274715423584
|
33 |
+
Action Accuracy: 0.3928571343421936
|
34 |
+
L1 Loss: 0.2766106442577031
|
35 |
+
|
36 |
+
Metrics at Step 700:
|
37 |
+
Train Loss: 3.6869568824768066
|
38 |
+
Action Accuracy: 0.2410714328289032
|
39 |
+
L1 Loss: 0.49565826330532214
|
40 |
+
|
41 |
+
Metrics at Step 800:
|
42 |
+
Train Loss: 3.497051477432251
|
43 |
+
Action Accuracy: 0.2232142835855484
|
44 |
+
L1 Loss: 0.4337535014005602
|
45 |
+
|
46 |
+
Metrics at Step 900:
|
47 |
+
Train Loss: 3.1197683811187744
|
48 |
+
Action Accuracy: 0.2946428656578064
|
49 |
+
L1 Loss: 0.2939775910364145
|
50 |
+
|
51 |
+
Metrics at Step 1000:
|
52 |
+
Train Loss: 3.154481887817383
|
53 |
+
Action Accuracy: 0.2857142984867096
|
54 |
+
L1 Loss: 0.3914565826330532
|
55 |
+
|
56 |
+
Metrics at Step 1100:
|
57 |
+
Train Loss: 3.4265575408935547
|
58 |
+
Action Accuracy: 0.2857142984867096
|
59 |
+
L1 Loss: 0.41036414565826335
|
60 |
+
|
61 |
+
Metrics at Step 1200:
|
62 |
+
Train Loss: 3.5959086418151855
|
63 |
+
Action Accuracy: 0.2410714328289032
|
64 |
+
L1 Loss: 0.3147058823529412
|
65 |
+
|
66 |
+
Metrics at Step 1300:
|
67 |
+
Train Loss: 3.138047218322754
|
68 |
+
Action Accuracy: 0.3035714328289032
|
69 |
+
L1 Loss: 0.298109243697479
|
70 |
+
|
71 |
+
Metrics at Step 1400:
|
72 |
+
Train Loss: 3.4500045776367188
|
73 |
+
Action Accuracy: 0.2232142835855484
|
74 |
+
L1 Loss: 0.37492997198879546
|
75 |
+
|
76 |
+
Metrics at Step 1500:
|
77 |
+
Train Loss: 2.579338788986206
|
78 |
+
Action Accuracy: 0.4196428656578064
|
79 |
+
L1 Loss: 0.1864145658263305
|
80 |
+
|
81 |
+
Metrics at Step 1600:
|
82 |
+
Train Loss: 2.755974292755127
|
83 |
+
Action Accuracy: 0.3839285671710968
|
84 |
+
L1 Loss: 0.2477591036414566
|
85 |
+
|
86 |
+
Metrics at Step 1700:
|
87 |
+
Train Loss: 3.2012226581573486
|
88 |
+
Action Accuracy: 0.2767857015132904
|
89 |
+
L1 Loss: 0.35749299719887956
|
90 |
+
|
91 |
+
Metrics at Step 1800:
|
92 |
+
Train Loss: 3.4083454608917236
|
93 |
+
Action Accuracy: 0.2321428507566452
|
94 |
+
L1 Loss: 0.4197478991596639
|
95 |
+
|
96 |
+
Metrics at Step 1900:
|
97 |
+
Train Loss: 2.676654815673828
|
98 |
+
Action Accuracy: 0.3928571343421936
|
99 |
+
L1 Loss: 0.27464985994397756
|
100 |
+
|
101 |
+
Metrics at Step 2000:
|
102 |
+
Train Loss: 3.176718235015869
|
103 |
+
Action Accuracy: 0.3125
|
104 |
+
L1 Loss: 0.3396358543417367
|
105 |
+
|
106 |
+
Metrics at Step 2100:
|
107 |
+
Train Loss: 2.7569656372070312
|
108 |
+
Action Accuracy: 0.3660714328289032
|
109 |
+
L1 Loss: 0.2807422969187675
|
110 |
+
|
111 |
+
Metrics at Step 2200:
|
112 |
+
Train Loss: 2.7209908962249756
|
113 |
+
Action Accuracy: 0.3839285671710968
|
114 |
+
L1 Loss: 0.30007002801120447
|
115 |
+
|
116 |
+
Metrics at Step 2300:
|
117 |
+
Train Loss: 2.164219379425049
|
118 |
+
Action Accuracy: 0.4464285671710968
|
119 |
+
L1 Loss: 0.14138655462184874
|
120 |
+
|
121 |
+
Metrics at Step 2400:
|
122 |
+
Train Loss: 2.434448719024658
|
123 |
+
Action Accuracy: 0.4196428656578064
|
124 |
+
L1 Loss: 0.21960784313725493
|
125 |
+
|
126 |
+
Metrics at Step 2500:
|
127 |
+
Train Loss: 2.8976306915283203
|
128 |
+
Action Accuracy: 0.3392857015132904
|
129 |
+
L1 Loss: 0.27948179271708684
|
130 |
+
|
131 |
+
Metrics at Step 2600:
|
132 |
+
Train Loss: 2.4756674766540527
|
133 |
+
Action Accuracy: 0.4285714328289032
|
134 |
+
L1 Loss: 0.1957282913165266
|
135 |
+
|
136 |
+
Metrics at Step 2700:
|
137 |
+
Train Loss: 2.775954484939575
|
138 |
+
Action Accuracy: 0.3392857015132904
|
139 |
+
L1 Loss: 0.17801120448179272
|
140 |
+
|
141 |
+
Metrics at Step 2800:
|
142 |
+
Train Loss: 2.9459335803985596
|
143 |
+
Action Accuracy: 0.3214285671710968
|
144 |
+
L1 Loss: 0.2936274509803921
|
145 |
+
|
146 |
+
Metrics at Step 2900:
|
147 |
+
Train Loss: 3.008369207382202
|
148 |
+
Action Accuracy: 0.3125
|
149 |
+
L1 Loss: 0.3667366946778712
|
150 |
+
|
151 |
+
Metrics at Step 3000:
|
152 |
+
Train Loss: 2.796247720718384
|
153 |
+
Action Accuracy: 0.3482142984867096
|
154 |
+
L1 Loss: 0.18921568627450983
|
155 |
+
|
156 |
+
Metrics at Step 3100:
|
157 |
+
Train Loss: 2.702439069747925
|
158 |
+
Action Accuracy: 0.4107142984867096
|
159 |
+
L1 Loss: 0.26512605042016807
|
160 |
+
|
161 |
+
Metrics at Step 3200:
|
162 |
+
Train Loss: 2.6889519691467285
|
163 |
+
Action Accuracy: 0.3214285671710968
|
164 |
+
L1 Loss: 0.19894957983193276
|
165 |
+
|
166 |
+
Metrics at Step 3300:
|
167 |
+
Train Loss: 2.443497896194458
|
168 |
+
Action Accuracy: 0.4375
|
169 |
+
L1 Loss: 0.24369747899159663
|
170 |
+
|
171 |
+
Metrics at Step 3400:
|
172 |
+
Train Loss: 2.836542844772339
|
173 |
+
Action Accuracy: 0.3482142984867096
|
174 |
+
L1 Loss: 0.2812324929971989
|
175 |
+
|
176 |
+
Metrics at Step 3500:
|
177 |
+
Train Loss: 3.1418747901916504
|
178 |
+
Action Accuracy: 0.25
|
179 |
+
L1 Loss: 0.37745098039215685
|
180 |
+
|
181 |
+
Metrics at Step 3600:
|
182 |
+
Train Loss: 2.194730758666992
|
183 |
+
Action Accuracy: 0.4910714328289032
|
184 |
+
L1 Loss: 0.12058823529411765
|
185 |
+
|
186 |
+
Metrics at Step 3700:
|
187 |
+
Train Loss: 2.4688100814819336
|
188 |
+
Action Accuracy: 0.4107142984867096
|
189 |
+
L1 Loss: 0.19180672268907561
|
190 |
+
|
191 |
+
Metrics at Step 3800:
|
192 |
+
Train Loss: 2.6065316200256348
|
193 |
+
Action Accuracy: 0.375
|
194 |
+
L1 Loss: 0.244187675070028
|
195 |
+
|
196 |
+
Metrics at Step 3900:
|
197 |
+
Train Loss: 2.84863543510437
|
198 |
+
Action Accuracy: 0.3482142984867096
|
199 |
+
L1 Loss: 0.2939775910364145
|
200 |
+
|
201 |
+
Metrics at Step 4000:
|
202 |
+
Train Loss: 2.6200811862945557
|
203 |
+
Action Accuracy: 0.375
|
204 |
+
L1 Loss: 0.1873249299719888
|
205 |
+
|
206 |
+
Metrics at Step 4100:
|
207 |
+
Train Loss: 2.3722083568573
|
208 |
+
Action Accuracy: 0.4285714328289032
|
209 |
+
L1 Loss: 0.1861344537815126
|
210 |
+
|
211 |
+
Metrics at Step 4200:
|
212 |
+
Train Loss: 2.768663167953491
|
213 |
+
Action Accuracy: 0.3303571343421936
|
214 |
+
L1 Loss: 0.2873249299719888
|
215 |
+
|
216 |
+
Metrics at Step 4300:
|
217 |
+
Train Loss: 2.703707456588745
|
218 |
+
Action Accuracy: 0.3839285671710968
|
219 |
+
L1 Loss: 0.26701680672268907
|
220 |
+
|
221 |
+
Metrics at Step 4400:
|
222 |
+
Train Loss: 2.809208393096924
|
223 |
+
Action Accuracy: 0.3392857015132904
|
224 |
+
L1 Loss: 0.25350140056022413
|
225 |
+
|
226 |
+
Metrics at Step 4500:
|
227 |
+
Train Loss: 2.7848126888275146
|
228 |
+
Action Accuracy: 0.3303571343421936
|
229 |
+
L1 Loss: 0.29873949579831927
|
230 |
+
|
231 |
+
Metrics at Step 4600:
|
232 |
+
Train Loss: 2.895956039428711
|
233 |
+
Action Accuracy: 0.3035714328289032
|
234 |
+
L1 Loss: 0.1908263305322129
|
235 |
+
|
236 |
+
Metrics at Step 4700:
|
237 |
+
Train Loss: 2.7759158611297607
|
238 |
+
Action Accuracy: 0.3482142984867096
|
239 |
+
L1 Loss: 0.21617647058823528
|
240 |
+
|
241 |
+
Metrics at Step 4800:
|
242 |
+
Train Loss: 2.7032222747802734
|
243 |
+
Action Accuracy: 0.3928571343421936
|
244 |
+
L1 Loss: 0.2804621848739496
|
245 |
+
|
246 |
+
Metrics at Step 4900:
|
247 |
+
Train Loss: 2.4150681495666504
|
248 |
+
Action Accuracy: 0.4017857015132904
|
249 |
+
L1 Loss: 0.16995798319327732
|
250 |
+
|
251 |
+
Metrics at Step 5000:
|
252 |
+
Train Loss: 3.1961159706115723
|
253 |
+
Action Accuracy: 0.2678571343421936
|
254 |
+
L1 Loss: 0.25028011204481787
|
255 |
+
|
256 |
+
Metrics at Step 5100:
|
257 |
+
Train Loss: 2.8850667476654053
|
258 |
+
Action Accuracy: 0.3214285671710968
|
259 |
+
L1 Loss: 0.35329131652661067
|
260 |
+
|
261 |
+
Metrics at Step 5200:
|
262 |
+
Train Loss: 2.7104954719543457
|
263 |
+
Action Accuracy: 0.375
|
264 |
+
L1 Loss: 0.32436974789915973
|
265 |
+
|
266 |
+
Metrics at Step 5300:
|
267 |
+
Train Loss: 2.311286211013794
|
268 |
+
Action Accuracy: 0.4821428656578064
|
269 |
+
L1 Loss: 0.275
|
270 |
+
|
271 |
+
Metrics at Step 5400:
|
272 |
+
Train Loss: 2.4624624252319336
|
273 |
+
Action Accuracy: 0.3928571343421936
|
274 |
+
L1 Loss: 0.15763305322128848
|
275 |
+
|
276 |
+
Metrics at Step 5500:
|
277 |
+
Train Loss: 2.592292070388794
|
278 |
+
Action Accuracy: 0.4107142984867096
|
279 |
+
L1 Loss: 0.2157563025210084
|
280 |
+
|
281 |
+
Metrics at Step 5600:
|
282 |
+
Train Loss: 2.832019329071045
|
283 |
+
Action Accuracy: 0.3482142984867096
|
284 |
+
L1 Loss: 0.2832633053221288
|
285 |
+
|
286 |
+
Metrics at Step 5700:
|
287 |
+
Train Loss: 2.1792399883270264
|
288 |
+
Action Accuracy: 0.4732142984867096
|
289 |
+
L1 Loss: 0.24075630252100838
|
290 |
+
|
291 |
+
Metrics at Step 5800:
|
292 |
+
Train Loss: 2.580368995666504
|
293 |
+
Action Accuracy: 0.3571428656578064
|
294 |
+
L1 Loss: 0.21715686274509802
|
295 |
+
|
296 |
+
Metrics at Step 5900:
|
297 |
+
Train Loss: 2.545167922973633
|
298 |
+
Action Accuracy: 0.3928571343421936
|
299 |
+
L1 Loss: 0.22170868347338937
|
300 |
+
|
301 |
+
Metrics at Step 6000:
|
302 |
+
Train Loss: 2.6547164916992188
|
303 |
+
Action Accuracy: 0.3928571343421936
|
304 |
+
L1 Loss: 0.2558823529411765
|
305 |
+
|
306 |
+
Metrics at Step 6100:
|
307 |
+
Train Loss: 3.080561399459839
|
308 |
+
Action Accuracy: 0.2589285671710968
|
309 |
+
L1 Loss: 0.3215686274509804
|
310 |
+
|
311 |
+
Metrics at Step 6200:
|
312 |
+
Train Loss: 2.2589054107666016
|
313 |
+
Action Accuracy: 0.4375
|
314 |
+
L1 Loss: 0.12415966386554622
|
315 |
+
|
316 |
+
Metrics at Step 6300:
|
317 |
+
Train Loss: 2.6764681339263916
|
318 |
+
Action Accuracy: 0.3482142984867096
|
319 |
+
L1 Loss: 0.16603641456582635
|
320 |
+
|
321 |
+
Metrics at Step 6400:
|
322 |
+
Train Loss: 2.434628486633301
|
323 |
+
Action Accuracy: 0.4375
|
324 |
+
L1 Loss: 0.18585434173669468
|
325 |
+
|
326 |
+
Metrics at Step 6500:
|
327 |
+
Train Loss: 2.758328676223755
|
328 |
+
Action Accuracy: 0.3392857015132904
|
329 |
+
L1 Loss: 0.2639355742296919
|
330 |
+
|
331 |
+
Metrics at Step 6600:
|
332 |
+
Train Loss: 2.548478364944458
|
333 |
+
Action Accuracy: 0.3928571343421936
|
334 |
+
L1 Loss: 0.20406162464985994
|
335 |
+
|
336 |
+
Metrics at Step 6700:
|
337 |
+
Train Loss: 2.6916017532348633
|
338 |
+
Action Accuracy: 0.3482142984867096
|
339 |
+
L1 Loss: 0.19628851540616246
|
340 |
+
|
341 |
+
Metrics at Step 6800:
|
342 |
+
Train Loss: 2.7832138538360596
|
343 |
+
Action Accuracy: 0.3660714328289032
|
344 |
+
L1 Loss: 0.34026610644257704
|
345 |
+
|
346 |
+
Metrics at Step 6900:
|
347 |
+
Train Loss: 2.2392587661743164
|
348 |
+
Action Accuracy: 0.4642857015132904
|
349 |
+
L1 Loss: 0.16939775910364144
|
350 |
+
|
351 |
+
Metrics at Step 7000:
|
352 |
+
Train Loss: 2.7706143856048584
|
353 |
+
Action Accuracy: 0.3125
|
354 |
+
L1 Loss: 0.2600140056022409
|
355 |
+
|
356 |
+
Metrics at Step 7100:
|
357 |
+
Train Loss: 2.784031629562378
|
358 |
+
Action Accuracy: 0.3125
|
359 |
+
L1 Loss: 0.2258403361344538
|
360 |
+
|
361 |
+
Metrics at Step 7200:
|
362 |
+
Train Loss: 2.8159115314483643
|
363 |
+
Action Accuracy: 0.3214285671710968
|
364 |
+
L1 Loss: 0.28095238095238095
|
365 |
+
|
366 |
+
Metrics at Step 7300:
|
367 |
+
Train Loss: 2.9562976360321045
|
368 |
+
Action Accuracy: 0.2946428656578064
|
369 |
+
L1 Loss: 0.2387955182072829
|
370 |
+
|
371 |
+
Metrics at Step 7400:
|
372 |
+
Train Loss: 2.8249378204345703
|
373 |
+
Action Accuracy: 0.3482142984867096
|
374 |
+
L1 Loss: 0.24348739495798322
|
375 |
+
|
376 |
+
Metrics at Step 7500:
|
377 |
+
Train Loss: 2.4500956535339355
|
378 |
+
Action Accuracy: 0.4285714328289032
|
379 |
+
L1 Loss: 0.18515406162464987
|
380 |
+
|
381 |
+
Metrics at Step 7600:
|
382 |
+
Train Loss: 2.624094009399414
|
383 |
+
Action Accuracy: 0.3303571343421936
|
384 |
+
L1 Loss: 0.1623249299719888
|
385 |
+
|
386 |
+
Metrics at Step 7700:
|
387 |
+
Train Loss: 2.7082910537719727
|
388 |
+
Action Accuracy: 0.3660714328289032
|
389 |
+
L1 Loss: 0.2553921568627451
|
390 |
+
|
391 |
+
Metrics at Step 7800:
|
392 |
+
Train Loss: 2.7804114818573
|
393 |
+
Action Accuracy: 0.3125
|
394 |
+
L1 Loss: 0.1747198879551821
|
395 |
+
|
396 |
+
Metrics at Step 7900:
|
397 |
+
Train Loss: 2.593278408050537
|
398 |
+
Action Accuracy: 0.3928571343421936
|
399 |
+
L1 Loss: 0.19747899159663865
|
400 |
+
|
401 |
+
Metrics at Step 8000:
|
402 |
+
Train Loss: 2.336899757385254
|
403 |
+
Action Accuracy: 0.4017857015132904
|
404 |
+
L1 Loss: 0.14362745098039215
|
405 |
+
|
406 |
+
Metrics at Step 8100:
|
407 |
+
Train Loss: 2.684706687927246
|
408 |
+
Action Accuracy: 0.3392857015132904
|
409 |
+
L1 Loss: 0.24642857142857144
|
410 |
+
|
411 |
+
Metrics at Step 8200:
|
412 |
+
Train Loss: 2.4176714420318604
|
413 |
+
Action Accuracy: 0.3928571343421936
|
414 |
+
L1 Loss: 0.17556022408963584
|
415 |
+
|
416 |
+
Metrics at Step 8300:
|
417 |
+
Train Loss: 2.5105082988739014
|
418 |
+
Action Accuracy: 0.4285714328289032
|
419 |
+
L1 Loss: 0.30238095238095236
|
420 |
+
|
421 |
+
Metrics at Step 8400:
|
422 |
+
Train Loss: 2.901784658432007
|
423 |
+
Action Accuracy: 0.2767857015132904
|
424 |
+
L1 Loss: 0.20896358543417365
|
425 |
+
|
426 |
+
Metrics at Step 8500:
|
427 |
+
Train Loss: 2.6758129596710205
|
428 |
+
Action Accuracy: 0.3660714328289032
|
429 |
+
L1 Loss: 0.1835434173669468
|
430 |
+
|
431 |
+
Metrics at Step 8600:
|
432 |
+
Train Loss: 2.4930522441864014
|
433 |
+
Action Accuracy: 0.4196428656578064
|
434 |
+
L1 Loss: 0.19740896358543417
|
435 |
+
|
436 |
+
Metrics at Step 8700:
|
437 |
+
Train Loss: 2.3012773990631104
|
438 |
+
Action Accuracy: 0.4285714328289032
|
439 |
+
L1 Loss: 0.14068627450980392
|
440 |
+
|
441 |
+
Metrics at Step 8800:
|
442 |
+
Train Loss: 2.4025990962982178
|
443 |
+
Action Accuracy: 0.4285714328289032
|
444 |
+
L1 Loss: 0.21428571428571427
|
445 |
+
|
446 |
+
Metrics at Step 8900:
|
447 |
+
Train Loss: 2.356821060180664
|
448 |
+
Action Accuracy: 0.4196428656578064
|
449 |
+
L1 Loss: 0.20994397759103642
|
450 |
+
|
451 |
+
Metrics at Step 9000:
|
452 |
+
Train Loss: 2.2955434322357178
|
453 |
+
Action Accuracy: 0.4464285671710968
|
454 |
+
L1 Loss: 0.1719887955182073
|
455 |
+
|
456 |
+
Metrics at Step 9100:
|
457 |
+
Train Loss: 2.8176116943359375
|
458 |
+
Action Accuracy: 0.2946428656578064
|
459 |
+
L1 Loss: 0.25042016806722683
|
460 |
+
|
461 |
+
Metrics at Step 9200:
|
462 |
+
Train Loss: 2.1161410808563232
|
463 |
+
Action Accuracy: 0.4732142984867096
|
464 |
+
L1 Loss: 0.09432773109243699
|
465 |
+
|
466 |
+
Metrics at Step 9300:
|
467 |
+
Train Loss: 2.8030076026916504
|
468 |
+
Action Accuracy: 0.3482142984867096
|
469 |
+
L1 Loss: 0.22570028011204485
|
470 |
+
|
471 |
+
Metrics at Step 9400:
|
472 |
+
Train Loss: 2.458373546600342
|
473 |
+
Action Accuracy: 0.3928571343421936
|
474 |
+
L1 Loss: 0.319327731092437
|
475 |
+
|
476 |
+
Metrics at Step 9500:
|
477 |
+
Train Loss: 2.299978494644165
|
478 |
+
Action Accuracy: 0.4285714328289032
|
479 |
+
L1 Loss: 0.15049019607843137
|
480 |
+
|
481 |
+
Metrics at Step 9600:
|
482 |
+
Train Loss: 2.7978646755218506
|
483 |
+
Action Accuracy: 0.3482142984867096
|
484 |
+
L1 Loss: 0.3095238095238095
|
485 |
+
|
486 |
+
Metrics at Step 9700:
|
487 |
+
Train Loss: 2.780874729156494
|
488 |
+
Action Accuracy: 0.3125
|
489 |
+
L1 Loss: 0.1904761904761905
|
490 |
+
|
491 |
+
Metrics at Step 9800:
|
492 |
+
Train Loss: 2.6058645248413086
|
493 |
+
Action Accuracy: 0.3928571343421936
|
494 |
+
L1 Loss: 0.23795518207282912
|
495 |
+
|
496 |
+
Metrics at Step 9900:
|
497 |
+
Train Loss: 2.6323556900024414
|
498 |
+
Action Accuracy: 0.3482142984867096
|
499 |
+
L1 Loss: 0.17976190476190476
|
500 |
+
|
501 |
+
Metrics at Step 10000:
|
502 |
+
Train Loss: 2.754030704498291
|
503 |
+
Action Accuracy: 0.3839285671710968
|
504 |
+
L1 Loss: 0.20392156862745095
|
505 |
+
|
506 |
+
Metrics at Step 10100:
|
507 |
+
Train Loss: 2.5260138511657715
|
508 |
+
Action Accuracy: 0.3839285671710968
|
509 |
+
L1 Loss: 0.20742296918767508
|
510 |
+
|
511 |
+
Metrics at Step 10200:
|
512 |
+
Train Loss: 2.861302614212036
|
513 |
+
Action Accuracy: 0.3035714328289032
|
514 |
+
L1 Loss: 0.2377450980392157
|
515 |
+
|
516 |
+
Metrics at Step 10300:
|
517 |
+
Train Loss: 2.481553554534912
|
518 |
+
Action Accuracy: 0.3482142984867096
|
519 |
+
L1 Loss: 0.259733893557423
|
520 |
+
|
521 |
+
Metrics at Step 10400:
|
522 |
+
Train Loss: 2.623908042907715
|
523 |
+
Action Accuracy: 0.3125
|
524 |
+
L1 Loss: 0.24376750700280111
|
525 |
+
|
526 |
+
Metrics at Step 10500:
|
527 |
+
Train Loss: 2.6209018230438232
|
528 |
+
Action Accuracy: 0.4017857015132904
|
529 |
+
L1 Loss: 0.22675070028011204
|
530 |
+
|
531 |
+
Metrics at Step 10600:
|
532 |
+
Train Loss: 2.1404707431793213
|
533 |
+
Action Accuracy: 0.4375
|
534 |
+
L1 Loss: 0.08991596638655462
|
535 |
+
|
536 |
+
Metrics at Step 10700:
|
537 |
+
Train Loss: 2.4306416511535645
|
538 |
+
Action Accuracy: 0.375
|
539 |
+
L1 Loss: 0.1775910364145658
|
540 |
+
|
541 |
+
Metrics at Step 10800:
|
542 |
+
Train Loss: 2.4611377716064453
|
543 |
+
Action Accuracy: 0.4285714328289032
|
544 |
+
L1 Loss: 0.19222689075630253
|
545 |
+
|
546 |
+
Metrics at Step 10900:
|
547 |
+
Train Loss: 2.2476696968078613
|
548 |
+
Action Accuracy: 0.4017857015132904
|
549 |
+
L1 Loss: 0.10392156862745099
|
550 |
+
|
551 |
+
Metrics at Step 11000:
|
552 |
+
Train Loss: 2.800825595855713
|
553 |
+
Action Accuracy: 0.3482142984867096
|
554 |
+
L1 Loss: 0.3211484593837535
|
555 |
+
|
556 |
+
Metrics at Step 11100:
|
557 |
+
Train Loss: 2.439239025115967
|
558 |
+
Action Accuracy: 0.4196428656578064
|
559 |
+
L1 Loss: 0.14593837535014004
|
560 |
+
|
561 |
+
Metrics at Step 11200:
|
562 |
+
Train Loss: 2.7753474712371826
|
563 |
+
Action Accuracy: 0.3839285671710968
|
564 |
+
L1 Loss: 0.2259103641456583
|
565 |
+
|
566 |
+
Metrics at Step 11300:
|
567 |
+
Train Loss: 1.9552767276763916
|
568 |
+
Action Accuracy: 0.5267857313156128
|
569 |
+
L1 Loss: 0.16400560224089636
|
570 |
+
|
571 |
+
Metrics at Step 11400:
|
572 |
+
Train Loss: 2.696350336074829
|
573 |
+
Action Accuracy: 0.3571428656578064
|
574 |
+
L1 Loss: 0.2548319327731093
|
575 |
+
|
576 |
+
Metrics at Step 11500:
|
577 |
+
Train Loss: 2.6713144779205322
|
578 |
+
Action Accuracy: 0.3839285671710968
|
579 |
+
L1 Loss: 0.2954481792717087
|
580 |
+
|
581 |
+
Metrics at Step 11600:
|
582 |
+
Train Loss: 2.5589704513549805
|
583 |
+
Action Accuracy: 0.375
|
584 |
+
L1 Loss: 0.18123249299719887
|
585 |
+
|
586 |
+
Metrics at Step 11700:
|
587 |
+
Train Loss: 3.0028443336486816
|
588 |
+
Action Accuracy: 0.3125
|
589 |
+
L1 Loss: 0.31953781512605045
|
590 |
+
|
591 |
+
Metrics at Step 11800:
|
592 |
+
Train Loss: 2.381074905395508
|
593 |
+
Action Accuracy: 0.4642857015132904
|
594 |
+
L1 Loss: 0.21204481792717086
|
595 |
+
|
596 |
+
Metrics at Step 11900:
|
597 |
+
Train Loss: 2.067065477371216
|
598 |
+
Action Accuracy: 0.4910714328289032
|
599 |
+
L1 Loss: 0.19677871148459383
|
600 |
+
|
601 |
+
Metrics at Step 12000:
|
602 |
+
Train Loss: 3.0575480461120605
|
603 |
+
Action Accuracy: 0.2589285671710968
|
604 |
+
L1 Loss: 0.2623249299719888
|
605 |
+
|
606 |
+
Metrics at Step 12100:
|
607 |
+
Train Loss: 2.7219786643981934
|
608 |
+
Action Accuracy: 0.3571428656578064
|
609 |
+
L1 Loss: 0.17976190476190476
|
610 |
+
|
611 |
+
Metrics at Step 12200:
|
612 |
+
Train Loss: 2.729116201400757
|
613 |
+
Action Accuracy: 0.3035714328289032
|
614 |
+
L1 Loss: 0.18690476190476188
|
615 |
+
|
616 |
+
Metrics at Step 12300:
|
617 |
+
Train Loss: 2.499894142150879
|
618 |
+
Action Accuracy: 0.3482142984867096
|
619 |
+
L1 Loss: 0.1272408963585434
|
620 |
+
|
621 |
+
Metrics at Step 12400:
|
622 |
+
Train Loss: 2.5197713375091553
|
623 |
+
Action Accuracy: 0.3125
|
624 |
+
L1 Loss: 0.15686274509803924
|
625 |
+
|
626 |
+
Metrics at Step 12500:
|
627 |
+
Train Loss: 1.9609370231628418
|
628 |
+
Action Accuracy: 0.4732142984867096
|
629 |
+
L1 Loss: 0.14061624649859944
|
630 |
+
|
631 |
+
Metrics at Step 12600:
|
632 |
+
Train Loss: 2.483083963394165
|
633 |
+
Action Accuracy: 0.3660714328289032
|
634 |
+
L1 Loss: 0.19901960784313724
|
635 |
+
|
636 |
+
Metrics at Step 12700:
|
637 |
+
Train Loss: 2.4976046085357666
|
638 |
+
Action Accuracy: 0.4017857015132904
|
639 |
+
L1 Loss: 0.2111344537815126
|
640 |
+
|
641 |
+
Metrics at Step 12800:
|
642 |
+
Train Loss: 2.525709629058838
|
643 |
+
Action Accuracy: 0.3392857015132904
|
644 |
+
L1 Loss: 0.2103641456582633
|
645 |
+
|
646 |
+
Metrics at Step 12900:
|
647 |
+
Train Loss: 2.679342269897461
|
648 |
+
Action Accuracy: 0.3482142984867096
|
649 |
+
L1 Loss: 0.2876750700280112
|
650 |
+
|
651 |
+
Metrics at Step 13000:
|
652 |
+
Train Loss: 2.5020804405212402
|
653 |
+
Action Accuracy: 0.3928571343421936
|
654 |
+
L1 Loss: 0.16393557422969188
|
655 |
+
|
656 |
+
Metrics at Step 13100:
|
657 |
+
Train Loss: 2.1561121940612793
|
658 |
+
Action Accuracy: 0.4017857015132904
|
659 |
+
L1 Loss: 0.16372549019607846
|
660 |
+
|
661 |
+
Metrics at Step 13200:
|
662 |
+
Train Loss: 2.3236947059631348
|
663 |
+
Action Accuracy: 0.4285714328289032
|
664 |
+
L1 Loss: 0.18599439775910365
|
665 |
+
|
666 |
+
Metrics at Step 13300:
|
667 |
+
Train Loss: 2.866992950439453
|
668 |
+
Action Accuracy: 0.3035714328289032
|
669 |
+
L1 Loss: 0.28032212885154056
|
670 |
+
|
671 |
+
Metrics at Step 13400:
|
672 |
+
Train Loss: 2.7574410438537598
|
673 |
+
Action Accuracy: 0.3392857015132904
|
674 |
+
L1 Loss: 0.16680672268907565
|
675 |
+
|
676 |
+
Metrics at Step 13500:
|
677 |
+
Train Loss: 2.1679110527038574
|
678 |
+
Action Accuracy: 0.4196428656578064
|
679 |
+
L1 Loss: 0.10497198879551821
|
680 |
+
|
681 |
+
Metrics at Step 13600:
|
682 |
+
Train Loss: 2.735081672668457
|
683 |
+
Action Accuracy: 0.3571428656578064
|
684 |
+
L1 Loss: 0.21477591036414564
|
685 |
+
|
686 |
+
Metrics at Step 13700:
|
687 |
+
Train Loss: 2.6060729026794434
|
688 |
+
Action Accuracy: 0.4017857015132904
|
689 |
+
L1 Loss: 0.21834733893557426
|
690 |
+
|
691 |
+
Metrics at Step 13800:
|
692 |
+
Train Loss: 2.2805371284484863
|
693 |
+
Action Accuracy: 0.4285714328289032
|
694 |
+
L1 Loss: 0.19593837535014005
|
695 |
+
|
696 |
+
Metrics at Step 13900:
|
697 |
+
Train Loss: 2.343679666519165
|
698 |
+
Action Accuracy: 0.3839285671710968
|
699 |
+
L1 Loss: 0.15560224089635852
|
700 |
+
|
701 |
+
Metrics at Step 14000:
|
702 |
+
Train Loss: 2.5432333946228027
|
703 |
+
Action Accuracy: 0.3839285671710968
|
704 |
+
L1 Loss: 0.2926470588235294
|
705 |
+
|
706 |
+
Metrics at Step 14100:
|
707 |
+
Train Loss: 2.94400954246521
|
708 |
+
Action Accuracy: 0.2946428656578064
|
709 |
+
L1 Loss: 0.25588235294117645
|
710 |
+
|
711 |
+
Metrics at Step 14200:
|
712 |
+
Train Loss: 2.881465196609497
|
713 |
+
Action Accuracy: 0.3482142984867096
|
714 |
+
L1 Loss: 0.3165966386554621
|
715 |
+
|
716 |
+
Metrics at Step 14300:
|
717 |
+
Train Loss: 2.5592429637908936
|
718 |
+
Action Accuracy: 0.3482142984867096
|
719 |
+
L1 Loss: 0.18123249299719887
|
720 |
+
|
721 |
+
Metrics at Step 14400:
|
722 |
+
Train Loss: 2.641413688659668
|
723 |
+
Action Accuracy: 0.3571428656578064
|
724 |
+
L1 Loss: 0.20392156862745098
|
725 |
+
|
726 |
+
Metrics at Step 14500:
|
727 |
+
Train Loss: 2.3688113689422607
|
728 |
+
Action Accuracy: 0.375
|
729 |
+
L1 Loss: 0.13991596638655462
|
730 |
+
|
731 |
+
Metrics at Step 14600:
|
732 |
+
Train Loss: 2.2667410373687744
|
733 |
+
Action Accuracy: 0.4196428656578064
|
734 |
+
L1 Loss: 0.11526610644257702
|
735 |
+
|
736 |
+
Metrics at Step 14700:
|
737 |
+
Train Loss: 2.197873115539551
|
738 |
+
Action Accuracy: 0.4017857015132904
|
739 |
+
L1 Loss: 0.15532212885154065
|
740 |
+
|
741 |
+
Metrics at Step 14800:
|
742 |
+
Train Loss: 2.6290395259857178
|
743 |
+
Action Accuracy: 0.3660714328289032
|
744 |
+
L1 Loss: 0.136484593837535
|
745 |
+
|
746 |
+
Metrics at Step 14900:
|
747 |
+
Train Loss: 2.2531940937042236
|
748 |
+
Action Accuracy: 0.4821428656578064
|
749 |
+
L1 Loss: 0.18956582633053223
|
750 |
+
|
751 |
+
Metrics at Step 15000:
|
752 |
+
Train Loss: 2.8909120559692383
|
753 |
+
Action Accuracy: 0.3482142984867096
|
754 |
+
L1 Loss: 0.26330532212885155
|
755 |
+
|
756 |
+
Metrics at Step 15100:
|
757 |
+
Train Loss: 2.699003219604492
|
758 |
+
Action Accuracy: 0.3660714328289032
|
759 |
+
L1 Loss: 0.37731092436974795
|
760 |
+
|
761 |
+
Metrics at Step 15200:
|
762 |
+
Train Loss: 2.456005573272705
|
763 |
+
Action Accuracy: 0.4196428656578064
|
764 |
+
L1 Loss: 0.1473389355742297
|
765 |
+
|
766 |
+
Metrics at Step 15300:
|
767 |
+
Train Loss: 2.876605987548828
|
768 |
+
Action Accuracy: 0.2946428656578064
|
769 |
+
L1 Loss: 0.2042016806722689
|
770 |
+
|
771 |
+
Metrics at Step 15400:
|
772 |
+
Train Loss: 2.368387222290039
|
773 |
+
Action Accuracy: 0.4285714328289032
|
774 |
+
L1 Loss: 0.18823529411764706
|
775 |
+
|
776 |
+
Metrics at Step 15500:
|
777 |
+
Train Loss: 2.3174080848693848
|
778 |
+
Action Accuracy: 0.375
|
779 |
+
L1 Loss: 0.18032212885154061
|
780 |
+
|
781 |
+
Metrics at Step 15600:
|
782 |
+
Train Loss: 2.3788299560546875
|
783 |
+
Action Accuracy: 0.3839285671710968
|
784 |
+
L1 Loss: 0.1438375350140056
|
785 |
+
|
786 |
+
Metrics at Step 15700:
|
787 |
+
Train Loss: 3.0021302700042725
|
788 |
+
Action Accuracy: 0.3214285671710968
|
789 |
+
L1 Loss: 0.3163165266106442
|
790 |
+
|
791 |
+
Metrics at Step 15800:
|
792 |
+
Train Loss: 2.8756368160247803
|
793 |
+
Action Accuracy: 0.3125
|
794 |
+
L1 Loss: 0.20490196078431372
|
795 |
+
|
796 |
+
Metrics at Step 15900:
|
797 |
+
Train Loss: 2.6213035583496094
|
798 |
+
Action Accuracy: 0.3660714328289032
|
799 |
+
L1 Loss: 0.18123249299719887
|
800 |
+
|
801 |
+
Metrics at Step 16000:
|
802 |
+
Train Loss: 2.8140082359313965
|
803 |
+
Action Accuracy: 0.3125
|
804 |
+
L1 Loss: 0.16820728291316525
|
805 |
+
|
806 |
+
Metrics at Step 16100:
|
807 |
+
Train Loss: 2.2727062702178955
|
808 |
+
Action Accuracy: 0.3660714328289032
|
809 |
+
L1 Loss: 0.11393557422969187
|
810 |
+
|
811 |
+
Metrics at Step 16200:
|
812 |
+
Train Loss: 2.841827154159546
|
813 |
+
Action Accuracy: 0.3839285671710968
|
814 |
+
L1 Loss: 0.3848039215686274
|
815 |
+
|
816 |
+
Metrics at Step 16300:
|
817 |
+
Train Loss: 2.875748634338379
|
818 |
+
Action Accuracy: 0.3303571343421936
|
819 |
+
L1 Loss: 0.27514005602240893
|
820 |
+
|
821 |
+
Metrics at Step 16400:
|
822 |
+
Train Loss: 2.2877585887908936
|
823 |
+
Action Accuracy: 0.4642857015132904
|
824 |
+
L1 Loss: 0.20511204481792716
|
825 |
+
|
826 |
+
Metrics at Step 16500:
|
827 |
+
Train Loss: 2.083641767501831
|
828 |
+
Action Accuracy: 0.5357142686843872
|
829 |
+
L1 Loss: 0.14313725490196078
|
830 |
+
|
831 |
+
Metrics at Step 16600:
|
832 |
+
Train Loss: 2.192638397216797
|
833 |
+
Action Accuracy: 0.4285714328289032
|
834 |
+
L1 Loss: 0.13508403361344537
|
835 |
+
|
836 |
+
Metrics at Step 16700:
|
837 |
+
Train Loss: 2.517031669616699
|
838 |
+
Action Accuracy: 0.3839285671710968
|
839 |
+
L1 Loss: 0.19110644257703083
|
840 |
+
|
841 |
+
Metrics at Step 16800:
|
842 |
+
Train Loss: 3.001518726348877
|
843 |
+
Action Accuracy: 0.2857142984867096
|
844 |
+
L1 Loss: 0.32212885154061627
|
845 |
+
|
846 |
+
Metrics at Step 16900:
|
847 |
+
Train Loss: 2.211148262023926
|
848 |
+
Action Accuracy: 0.4375
|
849 |
+
L1 Loss: 0.15770308123249302
|
850 |
+
|
851 |
+
Metrics at Step 17000:
|
852 |
+
Train Loss: 2.5069284439086914
|
853 |
+
Action Accuracy: 0.3839285671710968
|
854 |
+
L1 Loss: 0.1615546218487395
|
855 |
+
|
856 |
+
Metrics at Step 17100:
|
857 |
+
Train Loss: 2.272242784500122
|
858 |
+
Action Accuracy: 0.4375
|
859 |
+
L1 Loss: 0.12976190476190477
|
860 |
+
|
861 |
+
Metrics at Step 17200:
|
862 |
+
Train Loss: 2.7423152923583984
|
863 |
+
Action Accuracy: 0.3214285671710968
|
864 |
+
L1 Loss: 0.23207282913165267
|
865 |
+
|
866 |
+
Metrics at Step 17300:
|
867 |
+
Train Loss: 2.3114943504333496
|
868 |
+
Action Accuracy: 0.4642857015132904
|
869 |
+
L1 Loss: 0.1980392156862745
|
870 |
+
|
871 |
+
Metrics at Step 17400:
|
872 |
+
Train Loss: 2.3180558681488037
|
873 |
+
Action Accuracy: 0.3928571343421936
|
874 |
+
L1 Loss: 0.128921568627451
|
875 |
+
|
876 |
+
Metrics at Step 17500:
|
877 |
+
Train Loss: 2.7351207733154297
|
878 |
+
Action Accuracy: 0.3214285671710968
|
879 |
+
L1 Loss: 0.20238095238095236
|
880 |
+
|
881 |
+
Metrics at Step 17600:
|
882 |
+
Train Loss: 2.5291357040405273
|
883 |
+
Action Accuracy: 0.3839285671710968
|
884 |
+
L1 Loss: 0.2724789915966387
|
885 |
+
|
886 |
+
Metrics at Step 17700:
|
887 |
+
Train Loss: 2.357170581817627
|
888 |
+
Action Accuracy: 0.4017857015132904
|
889 |
+
L1 Loss: 0.16183473389355743
|
890 |
+
|
891 |
+
Metrics at Step 17800:
|
892 |
+
Train Loss: 2.6442501544952393
|
893 |
+
Action Accuracy: 0.3660714328289032
|
894 |
+
L1 Loss: 0.13977591036414566
|
895 |
+
|
896 |
+
Metrics at Step 17900:
|
897 |
+
Train Loss: 2.641629934310913
|
898 |
+
Action Accuracy: 0.3482142984867096
|
899 |
+
L1 Loss: 0.10665266106442577
|
900 |
+
|
901 |
+
Metrics at Step 18000:
|
902 |
+
Train Loss: 2.6390011310577393
|
903 |
+
Action Accuracy: 0.3482142984867096
|
904 |
+
L1 Loss: 0.23207282913165267
|
905 |
+
|
906 |
+
Metrics at Step 18100:
|
907 |
+
Train Loss: 2.3044257164001465
|
908 |
+
Action Accuracy: 0.4464285671710968
|
909 |
+
L1 Loss: 0.13949579831932774
|
910 |
+
|
911 |
+
Metrics at Step 18200:
|
912 |
+
Train Loss: 2.5867929458618164
|
913 |
+
Action Accuracy: 0.375
|
914 |
+
L1 Loss: 0.23774509803921567
|
915 |
+
|
916 |
+
Metrics at Step 18300:
|
917 |
+
Train Loss: 2.167102575302124
|
918 |
+
Action Accuracy: 0.4642857015132904
|
919 |
+
L1 Loss: 0.10308123249299721
|
920 |
+
|
921 |
+
Metrics at Step 18400:
|
922 |
+
Train Loss: 2.844383716583252
|
923 |
+
Action Accuracy: 0.2946428656578064
|
924 |
+
L1 Loss: 0.18515406162464987
|
925 |
+
|
926 |
+
Metrics at Step 18500:
|
927 |
+
Train Loss: 2.007664680480957
|
928 |
+
Action Accuracy: 0.5
|
929 |
+
L1 Loss: 0.1785014005602241
|
930 |
+
|
931 |
+
Metrics at Step 18600:
|
932 |
+
Train Loss: 2.9427406787872314
|
933 |
+
Action Accuracy: 0.2767857015132904
|
934 |
+
L1 Loss: 0.3182072829131653
|
935 |
+
|
936 |
+
Metrics at Step 18700:
|
937 |
+
Train Loss: 2.484571933746338
|
938 |
+
Action Accuracy: 0.3660714328289032
|
939 |
+
L1 Loss: 0.21281512605042016
|
940 |
+
|
941 |
+
Metrics at Step 18800:
|
942 |
+
Train Loss: 2.28843355178833
|
943 |
+
Action Accuracy: 0.4196428656578064
|
944 |
+
L1 Loss: 0.21792717086834737
|
945 |
+
|
946 |
+
Metrics at Step 18900:
|
947 |
+
Train Loss: 2.278202772140503
|
948 |
+
Action Accuracy: 0.4107142984867096
|
949 |
+
L1 Loss: 0.13767507002801121
|
950 |
+
|
951 |
+
Metrics at Step 19000:
|
952 |
+
Train Loss: 3.029863119125366
|
953 |
+
Action Accuracy: 0.3035714328289032
|
954 |
+
L1 Loss: 0.3065126050420168
|
955 |
+
|
956 |
+
Metrics at Step 19100:
|
957 |
+
Train Loss: 2.3582475185394287
|
958 |
+
Action Accuracy: 0.4375
|
959 |
+
L1 Loss: 0.17717086834733894
|
960 |
+
|
961 |
+
Metrics at Step 19200:
|
962 |
+
Train Loss: 2.5662364959716797
|
963 |
+
Action Accuracy: 0.3392857015132904
|
964 |
+
L1 Loss: 0.16442577030812328
|
965 |
+
|
966 |
+
Metrics at Step 19300:
|
967 |
+
Train Loss: 2.25809645652771
|
968 |
+
Action Accuracy: 0.4553571343421936
|
969 |
+
L1 Loss: 0.1957282913165266
|
970 |
+
|
971 |
+
Metrics at Step 19400:
|
972 |
+
Train Loss: 2.2398667335510254
|
973 |
+
Action Accuracy: 0.4107142984867096
|
974 |
+
L1 Loss: 0.1719187675070028
|
975 |
+
|
976 |
+
Metrics at Step 19500:
|
977 |
+
Train Loss: 2.138171672821045
|
978 |
+
Action Accuracy: 0.4821428656578064
|
979 |
+
L1 Loss: 0.16134453781512606
|
980 |
+
|
981 |
+
Metrics at Step 19600:
|
982 |
+
Train Loss: 2.246659517288208
|
983 |
+
Action Accuracy: 0.4375
|
984 |
+
L1 Loss: 0.12598039215686274
|
985 |
+
|
986 |
+
Metrics at Step 19700:
|
987 |
+
Train Loss: 2.643136739730835
|
988 |
+
Action Accuracy: 0.3571428656578064
|
989 |
+
L1 Loss: 0.21603641456582637
|
990 |
+
|
991 |
+
Metrics at Step 19800:
|
992 |
+
Train Loss: 2.3394150733947754
|
993 |
+
Action Accuracy: 0.4464285671710968
|
994 |
+
L1 Loss: 0.14579831932773107
|
995 |
+
|
996 |
+
Metrics at Step 19900:
|
997 |
+
Train Loss: 2.2926571369171143
|
998 |
+
Action Accuracy: 0.4017857015132904
|
999 |
+
L1 Loss: 0.1551120448179272
|
1000 |
+
|
1001 |
+
Metrics at Step 20000:
|
1002 |
+
Train Loss: 2.757124900817871
|
1003 |
+
Action Accuracy: 0.3571428656578064
|
1004 |
+
L1 Loss: 0.18879551820728294
|
1005 |
+
|
1006 |
+
Metrics at Step 20100:
|
1007 |
+
Train Loss: 2.4672584533691406
|
1008 |
+
Action Accuracy: 0.4017857015132904
|
1009 |
+
L1 Loss: 0.13970588235294118
|
1010 |
+
|
1011 |
+
Metrics at Step 20200:
|
1012 |
+
Train Loss: 2.408475160598755
|
1013 |
+
Action Accuracy: 0.3839285671710968
|
1014 |
+
L1 Loss: 0.1769607843137255
|
1015 |
+
|
1016 |
+
Metrics at Step 20300:
|
1017 |
+
Train Loss: 2.4391376972198486
|
1018 |
+
Action Accuracy: 0.4196428656578064
|
1019 |
+
L1 Loss: 0.18081232492997198
|
1020 |
+
|
1021 |
+
Metrics at Step 20400:
|
1022 |
+
Train Loss: 2.8557231426239014
|
1023 |
+
Action Accuracy: 0.2946428656578064
|
1024 |
+
L1 Loss: 0.2336134453781513
|
1025 |
+
|
1026 |
+
Metrics at Step 20500:
|
1027 |
+
Train Loss: 2.5312554836273193
|
1028 |
+
Action Accuracy: 0.3571428656578064
|
1029 |
+
L1 Loss: 0.12464985994397759
|
1030 |
+
|
1031 |
+
Metrics at Step 20600:
|
1032 |
+
Train Loss: 2.652484893798828
|
1033 |
+
Action Accuracy: 0.3660714328289032
|
1034 |
+
L1 Loss: 0.2285714285714286
|
1035 |
+
|
1036 |
+
Metrics at Step 20700:
|
1037 |
+
Train Loss: 2.746551513671875
|
1038 |
+
Action Accuracy: 0.3571428656578064
|
1039 |
+
L1 Loss: 0.20231092436974787
|
1040 |
+
|
1041 |
+
Metrics at Step 20800:
|
1042 |
+
Train Loss: 2.310941219329834
|
1043 |
+
Action Accuracy: 0.4464285671710968
|
1044 |
+
L1 Loss: 0.20483193277310924
|
1045 |
+
|
1046 |
+
Metrics at Step 20900:
|
1047 |
+
Train Loss: 2.69929838180542
|
1048 |
+
Action Accuracy: 0.2946428656578064
|
1049 |
+
L1 Loss: 0.2621848739495798
|
1050 |
+
|
1051 |
+
Metrics at Step 21000:
|
1052 |
+
Train Loss: 2.4914510250091553
|
1053 |
+
Action Accuracy: 0.375
|
1054 |
+
L1 Loss: 0.19859943977591035
|
1055 |
+
|
1056 |
+
Metrics at Step 21100:
|
1057 |
+
Train Loss: 2.548098564147949
|
1058 |
+
Action Accuracy: 0.3482142984867096
|
1059 |
+
L1 Loss: 0.19187675070028012
|
1060 |
+
|
1061 |
+
Metrics at Step 21200:
|
1062 |
+
Train Loss: 2.702975034713745
|
1063 |
+
Action Accuracy: 0.2857142984867096
|
1064 |
+
L1 Loss: 0.2042717086834734
|
1065 |
+
|
1066 |
+
Metrics at Step 21300:
|
1067 |
+
Train Loss: 2.6890692710876465
|
1068 |
+
Action Accuracy: 0.3303571343421936
|
1069 |
+
L1 Loss: 0.16778711484593836
|
1070 |
+
|
1071 |
+
Metrics at Step 21400:
|
1072 |
+
Train Loss: 2.5742831230163574
|
1073 |
+
Action Accuracy: 0.3214285671710968
|
1074 |
+
L1 Loss: 0.1938375350140056
|
1075 |
+
|
1076 |
+
Metrics at Step 21500:
|
1077 |
+
Train Loss: 2.5277600288391113
|
1078 |
+
Action Accuracy: 0.3928571343421936
|
1079 |
+
L1 Loss: 0.1908263305322129
|
1080 |
+
|
1081 |
+
Metrics at Step 21600:
|
1082 |
+
Train Loss: 2.345900535583496
|
1083 |
+
Action Accuracy: 0.4285714328289032
|
1084 |
+
L1 Loss: 0.16967787114845936
|
1085 |
+
|
1086 |
+
Metrics at Step 21700:
|
1087 |
+
Train Loss: 2.5520613193511963
|
1088 |
+
Action Accuracy: 0.3392857015132904
|
1089 |
+
L1 Loss: 0.12023809523809523
|
1090 |
+
|
1091 |
+
Metrics at Step 21800:
|
1092 |
+
Train Loss: 2.6387531757354736
|
1093 |
+
Action Accuracy: 0.3482142984867096
|
1094 |
+
L1 Loss: 0.19082633053221287
|
1095 |
+
|
1096 |
+
Metrics at Step 21900:
|
1097 |
+
Train Loss: 2.4327454566955566
|
1098 |
+
Action Accuracy: 0.3660714328289032
|
1099 |
+
L1 Loss: 0.1392156862745098
|
1100 |
+
|
1101 |
+
Metrics at Step 22000:
|
1102 |
+
Train Loss: 2.2205660343170166
|
1103 |
+
Action Accuracy: 0.4017857015132904
|
1104 |
+
L1 Loss: 0.14082633053221288
|
1105 |
+
|
1106 |
+
Metrics at Step 22100:
|
1107 |
+
Train Loss: 2.599471092224121
|
1108 |
+
Action Accuracy: 0.3214285671710968
|
1109 |
+
L1 Loss: 0.19642857142857142
|
1110 |
+
|
1111 |
+
Metrics at Step 22200:
|
1112 |
+
Train Loss: 2.1068458557128906
|
1113 |
+
Action Accuracy: 0.4732142984867096
|
1114 |
+
L1 Loss: 0.09425770308123249
|
1115 |
+
|
1116 |
+
Metrics at Step 22300:
|
1117 |
+
Train Loss: 2.4195382595062256
|
1118 |
+
Action Accuracy: 0.3839285671710968
|
1119 |
+
L1 Loss: 0.1766106442577031
|
1120 |
+
|
1121 |
+
Metrics at Step 22400:
|
1122 |
+
Train Loss: 2.7456164360046387
|
1123 |
+
Action Accuracy: 0.2946428656578064
|
1124 |
+
L1 Loss: 0.19138655462184875
|
1125 |
+
|
1126 |
+
Metrics at Step 22500:
|
1127 |
+
Train Loss: 2.2480876445770264
|
1128 |
+
Action Accuracy: 0.4285714328289032
|
1129 |
+
L1 Loss: 0.14145658263305322
|
1130 |
+
|
1131 |
+
Metrics at Step 22600:
|
1132 |
+
Train Loss: 2.6429600715637207
|
1133 |
+
Action Accuracy: 0.3571428656578064
|
1134 |
+
L1 Loss: 0.15882352941176472
|
1135 |
+
|
1136 |
+
Metrics at Step 22700:
|
1137 |
+
Train Loss: 2.567577600479126
|
1138 |
+
Action Accuracy: 0.3571428656578064
|
1139 |
+
L1 Loss: 0.16379551820728291
|
1140 |
+
|
1141 |
+
Metrics at Step 22800:
|
1142 |
+
Train Loss: 2.4611613750457764
|
1143 |
+
Action Accuracy: 0.3571428656578064
|
1144 |
+
L1 Loss: 0.11302521008403363
|
1145 |
+
|
1146 |
+
Metrics at Step 22900:
|
1147 |
+
Train Loss: 2.395846366882324
|
1148 |
+
Action Accuracy: 0.4464285671710968
|
1149 |
+
L1 Loss: 0.22787114845938375
|
1150 |
+
|
1151 |
+
Metrics at Step 23000:
|
1152 |
+
Train Loss: 2.6362602710723877
|
1153 |
+
Action Accuracy: 0.375
|
1154 |
+
L1 Loss: 0.21428571428571433
|
1155 |
+
|
1156 |
+
Metrics at Step 23100:
|
1157 |
+
Train Loss: 2.816523790359497
|
1158 |
+
Action Accuracy: 0.2946428656578064
|
1159 |
+
L1 Loss: 0.26540616246498605
|
1160 |
+
|
1161 |
+
Metrics at Step 23200:
|
1162 |
+
Train Loss: 2.3881032466888428
|
1163 |
+
Action Accuracy: 0.4107142984867096
|
1164 |
+
L1 Loss: 0.14663865546218488
|
1165 |
+
|
1166 |
+
Metrics at Step 23300:
|
1167 |
+
Train Loss: 1.9613714218139648
|
1168 |
+
Action Accuracy: 0.5
|
1169 |
+
L1 Loss: 0.17710084033613446
|
1170 |
+
|
1171 |
+
Metrics at Step 23400:
|
1172 |
+
Train Loss: 2.232170343399048
|
1173 |
+
Action Accuracy: 0.4107142984867096
|
1174 |
+
L1 Loss: 0.1634453781512605
|
1175 |
+
|
1176 |
+
Metrics at Step 23500:
|
1177 |
+
Train Loss: 2.1763176918029785
|
1178 |
+
Action Accuracy: 0.4375
|
1179 |
+
L1 Loss: 0.1600840336134454
|
1180 |
+
|
1181 |
+
Metrics at Step 23600:
|
1182 |
+
Train Loss: 2.895970344543457
|
1183 |
+
Action Accuracy: 0.3660714328289032
|
1184 |
+
L1 Loss: 0.1895658263305322
|
1185 |
+
|
1186 |
+
Metrics at Step 23700:
|
1187 |
+
Train Loss: 2.6769771575927734
|
1188 |
+
Action Accuracy: 0.375
|
1189 |
+
L1 Loss: 0.23137254901960785
|
1190 |
+
|
1191 |
+
Metrics at Step 23800:
|
1192 |
+
Train Loss: 2.455296039581299
|
1193 |
+
Action Accuracy: 0.4107142984867096
|
1194 |
+
L1 Loss: 0.22401960784313726
|
1195 |
+
|
1196 |
+
Metrics at Step 23900:
|
1197 |
+
Train Loss: 2.2204291820526123
|
1198 |
+
Action Accuracy: 0.4553571343421936
|
1199 |
+
L1 Loss: 0.15875350140056024
|
1200 |
+
|
1201 |
+
Metrics at Step 24000:
|
1202 |
+
Train Loss: 2.3788163661956787
|
1203 |
+
Action Accuracy: 0.4464285671710968
|
1204 |
+
L1 Loss: 0.273249299719888
|
1205 |
+
|
1206 |
+
Metrics at Step 24100:
|
1207 |
+
Train Loss: 2.3045220375061035
|
1208 |
+
Action Accuracy: 0.4017857015132904
|
1209 |
+
L1 Loss: 0.11680672268907563
|
1210 |
+
|
1211 |
+
Metrics at Step 24200:
|
1212 |
+
Train Loss: 3.0360846519470215
|
1213 |
+
Action Accuracy: 0.2857142984867096
|
1214 |
+
L1 Loss: 0.23676470588235293
|
1215 |
+
|
1216 |
+
Metrics at Step 24300:
|
1217 |
+
Train Loss: 2.3477511405944824
|
1218 |
+
Action Accuracy: 0.3928571343421936
|
1219 |
+
L1 Loss: 0.16029411764705884
|
1220 |
+
|
1221 |
+
Metrics at Step 24400:
|
1222 |
+
Train Loss: 2.565641164779663
|
1223 |
+
Action Accuracy: 0.3214285671710968
|
1224 |
+
L1 Loss: 0.13914565826330533
|
1225 |
+
|
1226 |
+
Metrics at Step 24500:
|
1227 |
+
Train Loss: 2.150364398956299
|
1228 |
+
Action Accuracy: 0.4553571343421936
|
1229 |
+
L1 Loss: 0.13298319327731092
|
1230 |
+
|
1231 |
+
Metrics at Step 24600:
|
1232 |
+
Train Loss: 2.8736183643341064
|
1233 |
+
Action Accuracy: 0.3214285671710968
|
1234 |
+
L1 Loss: 0.28081232492997193
|
1235 |
+
|
1236 |
+
Metrics at Step 24700:
|
1237 |
+
Train Loss: 2.6567161083221436
|
1238 |
+
Action Accuracy: 0.3660714328289032
|
1239 |
+
L1 Loss: 0.1938375350140056
|
1240 |
+
|
1241 |
+
Metrics at Step 24800:
|
1242 |
+
Train Loss: 2.6469786167144775
|
1243 |
+
Action Accuracy: 0.3660714328289032
|
1244 |
+
L1 Loss: 0.20665266106442576
|
1245 |
+
|
1246 |
+
Metrics at Step 24900:
|
1247 |
+
Train Loss: 2.6770317554473877
|
1248 |
+
Action Accuracy: 0.3660714328289032
|
1249 |
+
L1 Loss: 0.1218487394957983
|
1250 |
+
|
1251 |
+
Metrics at Step 25000:
|
1252 |
+
Train Loss: 2.5097432136535645
|
1253 |
+
Action Accuracy: 0.4285714328289032
|
1254 |
+
L1 Loss: 0.1784313725490196
|
1255 |
+
|
1256 |
+
Metrics at Step 25100:
|
1257 |
+
Train Loss: 2.483226776123047
|
1258 |
+
Action Accuracy: 0.3214285671710968
|
1259 |
+
L1 Loss: 0.12675070028011204
|
1260 |
+
|
1261 |
+
Metrics at Step 25200:
|
1262 |
+
Train Loss: 2.8860294818878174
|
1263 |
+
Action Accuracy: 0.2946428656578064
|
1264 |
+
L1 Loss: 0.21043417366946776
|
1265 |
+
|
1266 |
+
Metrics at Step 25300:
|
1267 |
+
Train Loss: 2.0882515907287598
|
1268 |
+
Action Accuracy: 0.4732142984867096
|
1269 |
+
L1 Loss: 0.1888655462184874
|
1270 |
+
|
1271 |
+
Metrics at Step 25400:
|
1272 |
+
Train Loss: 2.3967783451080322
|
1273 |
+
Action Accuracy: 0.4107142984867096
|
1274 |
+
L1 Loss: 0.1295518207282913
|
1275 |
+
|
1276 |
+
Metrics at Step 25500:
|
1277 |
+
Train Loss: 2.665044069290161
|
1278 |
+
Action Accuracy: 0.3571428656578064
|
1279 |
+
L1 Loss: 0.22640056022408966
|
1280 |
+
|
1281 |
+
Metrics at Step 25600:
|
1282 |
+
Train Loss: 2.7088754177093506
|
1283 |
+
Action Accuracy: 0.4107142984867096
|
1284 |
+
L1 Loss: 0.22387955182072825
|
1285 |
+
|
1286 |
+
Metrics at Step 25700:
|
1287 |
+
Train Loss: 2.5513648986816406
|
1288 |
+
Action Accuracy: 0.3928571343421936
|
1289 |
+
L1 Loss: 0.24243697478991597
|
1290 |
+
|
1291 |
+
Metrics at Step 25800:
|
1292 |
+
Train Loss: 2.476778745651245
|
1293 |
+
Action Accuracy: 0.3660714328289032
|
1294 |
+
L1 Loss: 0.17794117647058824
|
1295 |
+
|
1296 |
+
Metrics at Step 25900:
|
1297 |
+
Train Loss: 2.4008753299713135
|
1298 |
+
Action Accuracy: 0.3660714328289032
|
1299 |
+
L1 Loss: 0.0741596638655462
|
1300 |
+
|
1301 |
+
Metrics at Step 26000:
|
1302 |
+
Train Loss: 2.697103977203369
|
1303 |
+
Action Accuracy: 0.3660714328289032
|
1304 |
+
L1 Loss: 0.18116246498599442
|
1305 |
+
|
1306 |
+
Metrics at Step 26100:
|
1307 |
+
Train Loss: 3.0089974403381348
|
1308 |
+
Action Accuracy: 0.2321428507566452
|
1309 |
+
L1 Loss: 0.19439775910364146
|
1310 |
+
|
1311 |
+
Metrics at Step 26200:
|
1312 |
+
Train Loss: 2.585254669189453
|
1313 |
+
Action Accuracy: 0.3214285671710968
|
1314 |
+
L1 Loss: 0.20441176470588235
|
1315 |
+
|
1316 |
+
Metrics at Step 26300:
|
1317 |
+
Train Loss: 2.253098249435425
|
1318 |
+
Action Accuracy: 0.4642857015132904
|
1319 |
+
L1 Loss: 0.1692577030812325
|
1320 |
+
|
1321 |
+
Metrics at Step 26400:
|
1322 |
+
Train Loss: 2.4285268783569336
|
1323 |
+
Action Accuracy: 0.4642857015132904
|
1324 |
+
L1 Loss: 0.14159663865546218
|
1325 |
+
|
1326 |
+
Metrics at Step 26500:
|
1327 |
+
Train Loss: 2.503079891204834
|
1328 |
+
Action Accuracy: 0.4017857015132904
|
1329 |
+
L1 Loss: 0.16946778711484597
|
1330 |
+
|
1331 |
+
Metrics at Step 26600:
|
1332 |
+
Train Loss: 2.324185371398926
|
1333 |
+
Action Accuracy: 0.4464285671710968
|
1334 |
+
L1 Loss: 0.1574229691876751
|
1335 |
+
|
1336 |
+
Metrics at Step 26700:
|
1337 |
+
Train Loss: 2.496527910232544
|
1338 |
+
Action Accuracy: 0.3303571343421936
|
1339 |
+
L1 Loss: 0.10490196078431371
|
1340 |
+
|
1341 |
+
Metrics at Step 26800:
|
1342 |
+
Train Loss: 2.7768945693969727
|
1343 |
+
Action Accuracy: 0.3571428656578064
|
1344 |
+
L1 Loss: 0.22177871148459388
|
1345 |
+
|
1346 |
+
Metrics at Step 26900:
|
1347 |
+
Train Loss: 2.3749208450317383
|
1348 |
+
Action Accuracy: 0.4107142984867096
|
1349 |
+
L1 Loss: 0.13704481792717088
|
1350 |
+
|
1351 |
+
Metrics at Step 27000:
|
1352 |
+
Train Loss: 2.1103250980377197
|
1353 |
+
Action Accuracy: 0.4732142984867096
|
1354 |
+
L1 Loss: 0.08067226890756303
|
1355 |
+
|
1356 |
+
Metrics at Step 27100:
|
1357 |
+
Train Loss: 2.433387279510498
|
1358 |
+
Action Accuracy: 0.4017857015132904
|
1359 |
+
L1 Loss: 0.14124649859943977
|
1360 |
+
|
1361 |
+
Metrics at Step 27200:
|
1362 |
+
Train Loss: 2.476686716079712
|
1363 |
+
Action Accuracy: 0.4107142984867096
|
1364 |
+
L1 Loss: 0.257563025210084
|
1365 |
+
|
1366 |
+
Metrics at Step 27300:
|
1367 |
+
Train Loss: 2.499882698059082
|
1368 |
+
Action Accuracy: 0.3660714328289032
|
1369 |
+
L1 Loss: 0.11267507002801122
|
1370 |
+
|
1371 |
+
Metrics at Step 27400:
|
1372 |
+
Train Loss: 2.64467191696167
|
1373 |
+
Action Accuracy: 0.3571428656578064
|
1374 |
+
L1 Loss: 0.19481792717086835
|
1375 |
+
|
1376 |
+
Metrics at Step 27500:
|
1377 |
+
Train Loss: 2.2746450901031494
|
1378 |
+
Action Accuracy: 0.4017857015132904
|
1379 |
+
L1 Loss: 0.14747899159663863
|
1380 |
+
|
1381 |
+
Metrics at Step 27600:
|
1382 |
+
Train Loss: 2.3942384719848633
|
1383 |
+
Action Accuracy: 0.4107142984867096
|
1384 |
+
L1 Loss: 0.22661064425770308
|
1385 |
+
|
1386 |
+
Metrics at Step 27700:
|
1387 |
+
Train Loss: 2.428712844848633
|
1388 |
+
Action Accuracy: 0.3839285671710968
|
1389 |
+
L1 Loss: 0.1499299719887955
|
1390 |
+
|
1391 |
+
Metrics at Step 27800:
|
1392 |
+
Train Loss: 2.3120930194854736
|
1393 |
+
Action Accuracy: 0.4017857015132904
|
1394 |
+
L1 Loss: 0.1931372549019608
|
1395 |
+
|
1396 |
+
Metrics at Step 27900:
|
1397 |
+
Train Loss: 2.6921684741973877
|
1398 |
+
Action Accuracy: 0.4107142984867096
|
1399 |
+
L1 Loss: 0.21106442577030812
|
1400 |
+
|
1401 |
+
Metrics at Step 28000:
|
1402 |
+
Train Loss: 2.191570997238159
|
1403 |
+
Action Accuracy: 0.4107142984867096
|
1404 |
+
L1 Loss: 0.05392156862745096
|
1405 |
+
|
1406 |
+
Metrics at Step 28100:
|
1407 |
+
Train Loss: 2.6279544830322266
|
1408 |
+
Action Accuracy: 0.375
|
1409 |
+
L1 Loss: 0.19922969187675071
|
1410 |
+
|
1411 |
+
Metrics at Step 28200:
|
1412 |
+
Train Loss: 2.6910200119018555
|
1413 |
+
Action Accuracy: 0.3035714328289032
|
1414 |
+
L1 Loss: 0.23508403361344538
|
1415 |
+
|
1416 |
+
Metrics at Step 28300:
|
1417 |
+
Train Loss: 2.3672876358032227
|
1418 |
+
Action Accuracy: 0.375
|
1419 |
+
L1 Loss: 0.17002801120448177
|
1420 |
+
|
1421 |
+
Metrics at Step 28400:
|
1422 |
+
Train Loss: 2.3348255157470703
|
1423 |
+
Action Accuracy: 0.4196428656578064
|
1424 |
+
L1 Loss: 0.20343137254901958
|
1425 |
+
|
1426 |
+
Metrics at Step 28500:
|
1427 |
+
Train Loss: 2.0747382640838623
|
1428 |
+
Action Accuracy: 0.4732142984867096
|
1429 |
+
L1 Loss: 0.1647058823529412
|
1430 |
+
|
1431 |
+
Metrics at Step 28600:
|
1432 |
+
Train Loss: 2.5315566062927246
|
1433 |
+
Action Accuracy: 0.4196428656578064
|
1434 |
+
L1 Loss: 0.20273109243697476
|
1435 |
+
|
1436 |
+
Metrics at Step 28700:
|
1437 |
+
Train Loss: 2.472719430923462
|
1438 |
+
Action Accuracy: 0.3839285671710968
|
1439 |
+
L1 Loss: 0.092296918767507
|
1440 |
+
|
1441 |
+
Metrics at Step 28800:
|
1442 |
+
Train Loss: 2.48940372467041
|
1443 |
+
Action Accuracy: 0.4196428656578064
|
1444 |
+
L1 Loss: 0.18228291316526612
|
1445 |
+
|
1446 |
+
Metrics at Step 28900:
|
1447 |
+
Train Loss: 2.5994350910186768
|
1448 |
+
Action Accuracy: 0.3214285671710968
|
1449 |
+
L1 Loss: 0.2011204481792717
|
1450 |
+
|
1451 |
+
Metrics at Step 29000:
|
1452 |
+
Train Loss: 2.3969616889953613
|
1453 |
+
Action Accuracy: 0.4017857015132904
|
1454 |
+
L1 Loss: 0.2225490196078431
|
1455 |
+
|
1456 |
+
Metrics at Step 29100:
|
1457 |
+
Train Loss: 2.3400933742523193
|
1458 |
+
Action Accuracy: 0.3660714328289032
|
1459 |
+
L1 Loss: 0.19061624649859943
|
1460 |
+
|
1461 |
+
Metrics at Step 29200:
|
1462 |
+
Train Loss: 1.8352972269058228
|
1463 |
+
Action Accuracy: 0.5446428656578064
|
1464 |
+
L1 Loss: 0.10742296918767506
|
1465 |
+
|
1466 |
+
Metrics at Step 29300:
|
1467 |
+
Train Loss: 2.5214030742645264
|
1468 |
+
Action Accuracy: 0.3660714328289032
|
1469 |
+
L1 Loss: 0.19481792717086835
|
1470 |
+
|
1471 |
+
Metrics at Step 29400:
|
1472 |
+
Train Loss: 2.852506160736084
|
1473 |
+
Action Accuracy: 0.2946428656578064
|
1474 |
+
L1 Loss: 0.24187675070028009
|
1475 |
+
|
1476 |
+
Metrics at Step 29500:
|
1477 |
+
Train Loss: 2.7796151638031006
|
1478 |
+
Action Accuracy: 0.2946428656578064
|
1479 |
+
L1 Loss: 0.22906162464985996
|
1480 |
+
|
1481 |
+
Metrics at Step 29600:
|
1482 |
+
Train Loss: 2.486267566680908
|
1483 |
+
Action Accuracy: 0.4107142984867096
|
1484 |
+
L1 Loss: 0.23144257703081234
|
1485 |
+
|
1486 |
+
Metrics at Step 29700:
|
1487 |
+
Train Loss: 2.767063617706299
|
1488 |
+
Action Accuracy: 0.2857142984867096
|
1489 |
+
L1 Loss: 0.14019607843137255
|
1490 |
+
|
1491 |
+
Metrics at Step 29800:
|
1492 |
+
Train Loss: 2.5440962314605713
|
1493 |
+
Action Accuracy: 0.3303571343421936
|
1494 |
+
L1 Loss: 0.16596638655462184
|
1495 |
+
|
1496 |
+
Metrics at Step 29900:
|
1497 |
+
Train Loss: 2.6243319511413574
|
1498 |
+
Action Accuracy: 0.3928571343421936
|
1499 |
+
L1 Loss: 0.1453081232492997
|
1500 |
+
|
1501 |
+
Metrics at Step 30000:
|
1502 |
+
Train Loss: 2.4468345642089844
|
1503 |
+
Action Accuracy: 0.375
|
1504 |
+
L1 Loss: 0.18396358543417368
|
1505 |
+
|
1506 |
+
Metrics at Step 30100:
|
1507 |
+
Train Loss: 2.9225780963897705
|
1508 |
+
Action Accuracy: 0.3214285671710968
|
1509 |
+
L1 Loss: 0.24474789915966386
|
1510 |
+
|
1511 |
+
Metrics at Step 30200:
|
1512 |
+
Train Loss: 2.714298963546753
|
1513 |
+
Action Accuracy: 0.3660714328289032
|
1514 |
+
L1 Loss: 0.2061624649859944
|
1515 |
+
|
1516 |
+
Metrics at Step 30300:
|
1517 |
+
Train Loss: 2.28800892829895
|
1518 |
+
Action Accuracy: 0.4375
|
1519 |
+
L1 Loss: 0.21512605042016805
|
1520 |
+
|
1521 |
+
Metrics at Step 30400:
|
1522 |
+
Train Loss: 2.537346839904785
|
1523 |
+
Action Accuracy: 0.3839285671710968
|
1524 |
+
L1 Loss: 0.19509803921568628
|
1525 |
+
|
1526 |
+
Metrics at Step 30500:
|
1527 |
+
Train Loss: 2.230858325958252
|
1528 |
+
Action Accuracy: 0.3928571343421936
|
1529 |
+
L1 Loss: 0.09943977591036414
|
1530 |
+
|
1531 |
+
Metrics at Step 30600:
|
1532 |
+
Train Loss: 2.451775550842285
|
1533 |
+
Action Accuracy: 0.3571428656578064
|
1534 |
+
L1 Loss: 0.16806722689075632
|
1535 |
+
|
1536 |
+
Metrics at Step 30700:
|
1537 |
+
Train Loss: 2.176706075668335
|
1538 |
+
Action Accuracy: 0.4285714328289032
|
1539 |
+
L1 Loss: 0.17780112044817928
|
1540 |
+
|
1541 |
+
Metrics at Step 30800:
|
1542 |
+
Train Loss: 2.6619019508361816
|
1543 |
+
Action Accuracy: 0.3482142984867096
|
1544 |
+
L1 Loss: 0.1496498599439776
|
1545 |
+
|
1546 |
+
Metrics at Step 30900:
|
1547 |
+
Train Loss: 2.6377339363098145
|
1548 |
+
Action Accuracy: 0.4196428656578064
|
1549 |
+
L1 Loss: 0.2507002801120448
|
1550 |
+
|
1551 |
+
Metrics at Step 31000:
|
1552 |
+
Train Loss: 2.6825571060180664
|
1553 |
+
Action Accuracy: 0.2946428656578064
|
1554 |
+
L1 Loss: 0.16365546218487395
|
1555 |
+
|
1556 |
+
Metrics at Step 31100:
|
1557 |
+
Train Loss: 2.7002737522125244
|
1558 |
+
Action Accuracy: 0.3035714328289032
|
1559 |
+
L1 Loss: 0.265406162464986
|
1560 |
+
|
1561 |
+
Metrics at Step 31200:
|
1562 |
+
Train Loss: 2.4773738384246826
|
1563 |
+
Action Accuracy: 0.3571428656578064
|
1564 |
+
L1 Loss: 0.14593837535014004
|
1565 |
+
|
1566 |
+
Metrics at Step 31300:
|
1567 |
+
Train Loss: 2.260373830795288
|
1568 |
+
Action Accuracy: 0.3839285671710968
|
1569 |
+
L1 Loss: 0.1334033613445378
|
1570 |
+
|
1571 |
+
Metrics at Step 31400:
|
1572 |
+
Train Loss: 2.6005821228027344
|
1573 |
+
Action Accuracy: 0.2678571343421936
|
1574 |
+
L1 Loss: 0.10889355742296918
|
1575 |
+
|
1576 |
+
Metrics at Step 31500:
|
1577 |
+
Train Loss: 2.4543890953063965
|
1578 |
+
Action Accuracy: 0.3928571343421936
|
1579 |
+
L1 Loss: 0.18375350140056024
|
1580 |
+
|
1581 |
+
Metrics at Step 31600:
|
1582 |
+
Train Loss: 2.699457883834839
|
1583 |
+
Action Accuracy: 0.375
|
1584 |
+
L1 Loss: 0.3311624649859944
|
1585 |
+
|
1586 |
+
Metrics at Step 31700:
|
1587 |
+
Train Loss: 1.9142192602157593
|
1588 |
+
Action Accuracy: 0.5089285969734192
|
1589 |
+
L1 Loss: 0.1285014005602241
|
1590 |
+
|
1591 |
+
Metrics at Step 31800:
|
1592 |
+
Train Loss: 2.314319372177124
|
1593 |
+
Action Accuracy: 0.4107142984867096
|
1594 |
+
L1 Loss: 0.1399159663865546
|
1595 |
+
|
1596 |
+
Metrics at Step 31900:
|
1597 |
+
Train Loss: 2.8122427463531494
|
1598 |
+
Action Accuracy: 0.2767857015132904
|
1599 |
+
L1 Loss: 0.20826330532212883
|
1600 |
+
|
1601 |
+
Metrics at Step 32000:
|
1602 |
+
Train Loss: 2.8480165004730225
|
1603 |
+
Action Accuracy: 0.3303571343421936
|
1604 |
+
L1 Loss: 0.17542016806722688
|
1605 |
+
|
1606 |
+
Metrics at Step 32100:
|
1607 |
+
Train Loss: 2.8726181983947754
|
1608 |
+
Action Accuracy: 0.3303571343421936
|
1609 |
+
L1 Loss: 0.2312324929971989
|
1610 |
+
|
1611 |
+
Metrics at Step 32200:
|
1612 |
+
Train Loss: 2.7423593997955322
|
1613 |
+
Action Accuracy: 0.3392857015132904
|
1614 |
+
L1 Loss: 0.21883753501400563
|
1615 |
+
|
1616 |
+
Metrics at Step 32300:
|
1617 |
+
Train Loss: 2.3215255737304688
|
1618 |
+
Action Accuracy: 0.3482142984867096
|
1619 |
+
L1 Loss: 0.12212885154061624
|
1620 |
+
|
1621 |
+
Metrics at Step 32400:
|
1622 |
+
Train Loss: 2.4533345699310303
|
1623 |
+
Action Accuracy: 0.4375
|
1624 |
+
L1 Loss: 0.30805322128851537
|
1625 |
+
|
1626 |
+
Metrics at Step 32500:
|
1627 |
+
Train Loss: 2.782496452331543
|
1628 |
+
Action Accuracy: 0.375
|
1629 |
+
L1 Loss: 0.2541316526610644
|
1630 |
+
|
1631 |
+
Metrics at Step 32600:
|
1632 |
+
Train Loss: 2.362183094024658
|
1633 |
+
Action Accuracy: 0.4285714328289032
|
1634 |
+
L1 Loss: 0.1856442577030812
|
1635 |
+
|
1636 |
+
Metrics at Step 32700:
|
1637 |
+
Train Loss: 2.546544075012207
|
1638 |
+
Action Accuracy: 0.3839285671710968
|
1639 |
+
L1 Loss: 0.15126050420168066
|
1640 |
+
|
1641 |
+
Metrics at Step 32800:
|
1642 |
+
Train Loss: 2.351996660232544
|
1643 |
+
Action Accuracy: 0.4107142984867096
|
1644 |
+
L1 Loss: 0.11218487394957984
|
1645 |
+
|
1646 |
+
Metrics at Step 32900:
|
1647 |
+
Train Loss: 2.173738956451416
|
1648 |
+
Action Accuracy: 0.4553571343421936
|
1649 |
+
L1 Loss: 0.13438375350140055
|
1650 |
+
|
1651 |
+
Metrics at Step 33000:
|
1652 |
+
Train Loss: 2.426116466522217
|
1653 |
+
Action Accuracy: 0.3660714328289032
|
1654 |
+
L1 Loss: 0.18284313725490195
|
1655 |
+
|
1656 |
+
Metrics at Step 33100:
|
1657 |
+
Train Loss: 1.943084478378296
|
1658 |
+
Action Accuracy: 0.5267857313156128
|
1659 |
+
L1 Loss: 0.1526610644257703
|
1660 |
+
|
1661 |
+
Metrics at Step 33200:
|
1662 |
+
Train Loss: 2.5049021244049072
|
1663 |
+
Action Accuracy: 0.3571428656578064
|
1664 |
+
L1 Loss: 0.15595238095238098
|
1665 |
+
|
1666 |
+
Metrics at Step 33300:
|
1667 |
+
Train Loss: 2.4632320404052734
|
1668 |
+
Action Accuracy: 0.3482142984867096
|
1669 |
+
L1 Loss: 0.09670868347338935
|
1670 |
+
|
1671 |
+
Metrics at Step 33400:
|
1672 |
+
Train Loss: 2.1705029010772705
|
1673 |
+
Action Accuracy: 0.4107142984867096
|
1674 |
+
L1 Loss: 0.10735294117647058
|
1675 |
+
|
1676 |
+
Metrics at Step 33500:
|
1677 |
+
Train Loss: 2.6659083366394043
|
1678 |
+
Action Accuracy: 0.375
|
1679 |
+
L1 Loss: 0.255812324929972
|
1680 |
+
|
1681 |
+
Metrics at Step 33600:
|
1682 |
+
Train Loss: 2.609971761703491
|
1683 |
+
Action Accuracy: 0.3660714328289032
|
1684 |
+
L1 Loss: 0.2195378151260504
|
1685 |
+
|
1686 |
+
Metrics at Step 33700:
|
1687 |
+
Train Loss: 2.2336180210113525
|
1688 |
+
Action Accuracy: 0.4642857015132904
|
1689 |
+
L1 Loss: 0.12037815126050422
|
1690 |
+
|
1691 |
+
Metrics at Step 33800:
|
1692 |
+
Train Loss: 2.4834938049316406
|
1693 |
+
Action Accuracy: 0.3839285671710968
|
1694 |
+
L1 Loss: 0.2776610644257703
|
1695 |
+
|
1696 |
+
Metrics at Step 33900:
|
1697 |
+
Train Loss: 2.8309502601623535
|
1698 |
+
Action Accuracy: 0.2857142984867096
|
1699 |
+
L1 Loss: 0.1961484593837535
|
1700 |
+
|
1701 |
+
Metrics at Step 34000:
|
1702 |
+
Train Loss: 2.2545108795166016
|
1703 |
+
Action Accuracy: 0.3839285671710968
|
1704 |
+
L1 Loss: 0.15273109243697477
|
1705 |
+
|
1706 |
+
Metrics at Step 34100:
|
1707 |
+
Train Loss: 2.654754400253296
|
1708 |
+
Action Accuracy: 0.3482142984867096
|
1709 |
+
L1 Loss: 0.18760504201680672
|
1710 |
+
|
1711 |
+
Metrics at Step 34200:
|
1712 |
+
Train Loss: 2.6335091590881348
|
1713 |
+
Action Accuracy: 0.3482142984867096
|
1714 |
+
L1 Loss: 0.2104341736694678
|
1715 |
+
|
1716 |
+
Metrics at Step 34300:
|
1717 |
+
Train Loss: 2.621370553970337
|
1718 |
+
Action Accuracy: 0.3571428656578064
|
1719 |
+
L1 Loss: 0.19733893557422968
|
1720 |
+
|
1721 |
+
Metrics at Step 34400:
|
1722 |
+
Train Loss: 2.3436295986175537
|
1723 |
+
Action Accuracy: 0.4285714328289032
|
1724 |
+
L1 Loss: 0.113515406162465
|
1725 |
+
|
1726 |
+
Metrics at Step 34500:
|
1727 |
+
Train Loss: 2.3265297412872314
|
1728 |
+
Action Accuracy: 0.4017857015132904
|
1729 |
+
L1 Loss: 0.12850140056022408
|
1730 |
+
|
1731 |
+
Metrics at Step 34600:
|
1732 |
+
Train Loss: 2.552643299102783
|
1733 |
+
Action Accuracy: 0.3660714328289032
|
1734 |
+
L1 Loss: 0.19719887955182072
|
1735 |
+
|
1736 |
+
Metrics at Step 34700:
|
1737 |
+
Train Loss: 2.6257760524749756
|
1738 |
+
Action Accuracy: 0.375
|
1739 |
+
L1 Loss: 0.1334733893557423
|
1740 |
+
|
1741 |
+
Metrics at Step 34800:
|
1742 |
+
Train Loss: 2.633481979370117
|
1743 |
+
Action Accuracy: 0.3303571343421936
|
1744 |
+
L1 Loss: 0.12661064425770308
|
1745 |
+
|
1746 |
+
Metrics at Step 34900:
|
1747 |
+
Train Loss: 2.294109582901001
|
1748 |
+
Action Accuracy: 0.3482142984867096
|
1749 |
+
L1 Loss: 0.11435574229691878
|
1750 |
+
|
1751 |
+
Metrics at Step 35000:
|
1752 |
+
Train Loss: 2.806119918823242
|
1753 |
+
Action Accuracy: 0.3214285671710968
|
1754 |
+
L1 Loss: 0.20651260504201682
|
1755 |
+
|
1756 |
+
Metrics at Step 35100:
|
1757 |
+
Train Loss: 2.5079562664031982
|
1758 |
+
Action Accuracy: 0.4196428656578064
|
1759 |
+
L1 Loss: 0.1679971988795518
|
1760 |
+
|
1761 |
+
Metrics at Step 35200:
|
1762 |
+
Train Loss: 2.275381326675415
|
1763 |
+
Action Accuracy: 0.3571428656578064
|
1764 |
+
L1 Loss: 0.07920168067226892
|
1765 |
+
|
1766 |
+
Metrics at Step 35300:
|
1767 |
+
Train Loss: 2.9633872509002686
|
1768 |
+
Action Accuracy: 0.2767857015132904
|
1769 |
+
L1 Loss: 0.23284313725490197
|
1770 |
+
|
1771 |
+
Metrics at Step 35400:
|
1772 |
+
Train Loss: 2.424741744995117
|
1773 |
+
Action Accuracy: 0.3571428656578064
|
1774 |
+
L1 Loss: 0.18417366946778713
|
1775 |
+
|
1776 |
+
Metrics at Step 35500:
|
1777 |
+
Train Loss: 2.2473816871643066
|
1778 |
+
Action Accuracy: 0.4107142984867096
|
1779 |
+
L1 Loss: 0.14103641456582633
|
1780 |
+
|
1781 |
+
Metrics at Step 35600:
|
1782 |
+
Train Loss: 2.361846923828125
|
1783 |
+
Action Accuracy: 0.3928571343421936
|
1784 |
+
L1 Loss: 0.16876750700280113
|
1785 |
+
|
1786 |
+
Metrics at Step 35700:
|
1787 |
+
Train Loss: 2.389406681060791
|
1788 |
+
Action Accuracy: 0.4107142984867096
|
1789 |
+
L1 Loss: 0.13592436974789915
|
1790 |
+
|
1791 |
+
Metrics at Step 35800:
|
1792 |
+
Train Loss: 1.9899805784225464
|
1793 |
+
Action Accuracy: 0.5446428656578064
|
1794 |
+
L1 Loss: 0.0964985994397759
|
1795 |
+
|
1796 |
+
Metrics at Step 35900:
|
1797 |
+
Train Loss: 2.4725775718688965
|
1798 |
+
Action Accuracy: 0.3660714328289032
|
1799 |
+
L1 Loss: 0.19215686274509802
|
1800 |
+
|
1801 |
+
Metrics at Step 36000:
|
1802 |
+
Train Loss: 2.4204158782958984
|
1803 |
+
Action Accuracy: 0.4107142984867096
|
1804 |
+
L1 Loss: 0.19082633053221287
|
1805 |
+
|
1806 |
+
Metrics at Step 36100:
|
1807 |
+
Train Loss: 2.368380069732666
|
1808 |
+
Action Accuracy: 0.3928571343421936
|
1809 |
+
L1 Loss: 0.19684873949579834
|
1810 |
+
|
1811 |
+
Metrics at Step 36200:
|
1812 |
+
Train Loss: 2.7979342937469482
|
1813 |
+
Action Accuracy: 0.3214285671710968
|
1814 |
+
L1 Loss: 0.2322128851540616
|
1815 |
+
|
1816 |
+
Metrics at Step 36300:
|
1817 |
+
Train Loss: 2.760383129119873
|
1818 |
+
Action Accuracy: 0.3660714328289032
|
1819 |
+
L1 Loss: 0.2247198879551821
|
1820 |
+
|
1821 |
+
Metrics at Step 36400:
|
1822 |
+
Train Loss: 2.4865267276763916
|
1823 |
+
Action Accuracy: 0.3482142984867096
|
1824 |
+
L1 Loss: 0.1739495798319328
|
1825 |
+
|
1826 |
+
Metrics at Step 36500:
|
1827 |
+
Train Loss: 2.4262313842773438
|
1828 |
+
Action Accuracy: 0.375
|
1829 |
+
L1 Loss: 0.2350140056022409
|
1830 |
+
|
1831 |
+
Metrics at Step 36600:
|
1832 |
+
Train Loss: 2.9244091510772705
|
1833 |
+
Action Accuracy: 0.3214285671710968
|
1834 |
+
L1 Loss: 0.2593137254901961
|
1835 |
+
|
1836 |
+
Metrics at Step 36700:
|
1837 |
+
Train Loss: 2.9525880813598633
|
1838 |
+
Action Accuracy: 0.2589285671710968
|
1839 |
+
L1 Loss: 0.1838935574229692
|
1840 |
+
|
1841 |
+
Metrics at Step 36800:
|
1842 |
+
Train Loss: 2.6818349361419678
|
1843 |
+
Action Accuracy: 0.3660714328289032
|
1844 |
+
L1 Loss: 0.23410364145658263
|
1845 |
+
|
1846 |
+
Metrics at Step 36900:
|
1847 |
+
Train Loss: 2.3595056533813477
|
1848 |
+
Action Accuracy: 0.4017857015132904
|
1849 |
+
L1 Loss: 0.1361344537815126
|
1850 |
+
|
1851 |
+
Metrics at Step 37000:
|
1852 |
+
Train Loss: 2.458455801010132
|
1853 |
+
Action Accuracy: 0.4285714328289032
|
1854 |
+
L1 Loss: 0.19789915966386554
|
1855 |
+
|
1856 |
+
Metrics at Step 37100:
|
1857 |
+
Train Loss: 2.5655465126037598
|
1858 |
+
Action Accuracy: 0.3303571343421936
|
1859 |
+
L1 Loss: 0.20154061624649858
|
1860 |
+
|
1861 |
+
Metrics at Step 37200:
|
1862 |
+
Train Loss: 2.553483247756958
|
1863 |
+
Action Accuracy: 0.3839285671710968
|
1864 |
+
L1 Loss: 0.15567226890756306
|
1865 |
+
|
1866 |
+
Metrics at Step 37300:
|
1867 |
+
Train Loss: 2.8341431617736816
|
1868 |
+
Action Accuracy: 0.2678571343421936
|
1869 |
+
L1 Loss: 0.22401960784313726
|
1870 |
+
|
1871 |
+
Metrics at Step 37400:
|
1872 |
+
Train Loss: 2.1173758506774902
|
1873 |
+
Action Accuracy: 0.4464285671710968
|
1874 |
+
L1 Loss: 0.1184873949579832
|
1875 |
+
|
1876 |
+
Metrics at Step 37500:
|
1877 |
+
Train Loss: 2.748405933380127
|
1878 |
+
Action Accuracy: 0.2857142984867096
|
1879 |
+
L1 Loss: 0.1596638655462185
|
1880 |
+
|
1881 |
+
Metrics at Step 37600:
|
1882 |
+
Train Loss: 2.262052059173584
|
1883 |
+
Action Accuracy: 0.4553571343421936
|
1884 |
+
L1 Loss: 0.16309523809523813
|
1885 |
+
|
1886 |
+
Metrics at Step 37700:
|
1887 |
+
Train Loss: 2.472287654876709
|
1888 |
+
Action Accuracy: 0.3125
|
1889 |
+
L1 Loss: 0.12072829131652661
|
1890 |
+
|
1891 |
+
Metrics at Step 37800:
|
1892 |
+
Train Loss: 2.3393163681030273
|
1893 |
+
Action Accuracy: 0.3660714328289032
|
1894 |
+
L1 Loss: 0.10161064425770308
|
1895 |
+
|
1896 |
+
Metrics at Step 37900:
|
1897 |
+
Train Loss: 2.0258522033691406
|
1898 |
+
Action Accuracy: 0.4910714328289032
|
1899 |
+
L1 Loss: 0.1254201680672269
|
1900 |
+
|
1901 |
+
Metrics at Step 38000:
|
1902 |
+
Train Loss: 2.3539509773254395
|
1903 |
+
Action Accuracy: 0.3660714328289032
|
1904 |
+
L1 Loss: 0.23676470588235296
|
1905 |
+
|
1906 |
+
Metrics at Step 38100:
|
1907 |
+
Train Loss: 1.877508282661438
|
1908 |
+
Action Accuracy: 0.5357142686843872
|
1909 |
+
L1 Loss: 0.1323529411764706
|
1910 |
+
|
1911 |
+
Metrics at Step 38200:
|
1912 |
+
Train Loss: 2.1988377571105957
|
1913 |
+
Action Accuracy: 0.4553571343421936
|
1914 |
+
L1 Loss: 0.1542016806722689
|
1915 |
+
|
1916 |
+
Metrics at Step 38300:
|
1917 |
+
Train Loss: 2.3760719299316406
|
1918 |
+
Action Accuracy: 0.4464285671710968
|
1919 |
+
L1 Loss: 0.20532212885154058
|
1920 |
+
|
1921 |
+
Metrics at Step 38400:
|
1922 |
+
Train Loss: 2.7941296100616455
|
1923 |
+
Action Accuracy: 0.2946428656578064
|
1924 |
+
L1 Loss: 0.2273109243697479
|
1925 |
+
|
1926 |
+
Metrics at Step 38500:
|
1927 |
+
Train Loss: 2.057755708694458
|
1928 |
+
Action Accuracy: 0.4732142984867096
|
1929 |
+
L1 Loss: 0.16617647058823531
|
1930 |
+
|
1931 |
+
Metrics at Step 38600:
|
1932 |
+
Train Loss: 2.1800696849823
|
1933 |
+
Action Accuracy: 0.4375
|
1934 |
+
L1 Loss: 0.1566526610644258
|
1935 |
+
|
1936 |
+
Metrics at Step 38700:
|
1937 |
+
Train Loss: 2.6522841453552246
|
1938 |
+
Action Accuracy: 0.3125
|
1939 |
+
L1 Loss: 0.16302521008403362
|
1940 |
+
|
1941 |
+
Metrics at Step 38800:
|
1942 |
+
Train Loss: 2.730538845062256
|
1943 |
+
Action Accuracy: 0.3392857015132904
|
1944 |
+
L1 Loss: 0.14782913165266107
|
1945 |
+
|
1946 |
+
Metrics at Step 38900:
|
1947 |
+
Train Loss: 2.3829264640808105
|
1948 |
+
Action Accuracy: 0.4107142984867096
|
1949 |
+
L1 Loss: 0.17675070028011206
|
1950 |
+
|
1951 |
+
Metrics at Step 39000:
|
1952 |
+
Train Loss: 2.581739664077759
|
1953 |
+
Action Accuracy: 0.3660714328289032
|
1954 |
+
L1 Loss: 0.19292717086834732
|
1955 |
+
|
1956 |
+
Metrics at Step 39100:
|
1957 |
+
Train Loss: 2.498366594314575
|
1958 |
+
Action Accuracy: 0.3660714328289032
|
1959 |
+
L1 Loss: 0.15560224089635852
|
1960 |
+
|
1961 |
+
Metrics at Step 39200:
|
1962 |
+
Train Loss: 2.431891441345215
|
1963 |
+
Action Accuracy: 0.375
|
1964 |
+
L1 Loss: 0.1968487394957983
|
1965 |
+
|
1966 |
+
Metrics at Step 39300:
|
1967 |
+
Train Loss: 2.228703737258911
|
1968 |
+
Action Accuracy: 0.4375
|
1969 |
+
L1 Loss: 0.20875350140056023
|
1970 |
+
|
1971 |
+
Metrics at Step 39400:
|
1972 |
+
Train Loss: 2.6022043228149414
|
1973 |
+
Action Accuracy: 0.3839285671710968
|
1974 |
+
L1 Loss: 0.3074929971988795
|
1975 |
+
|
1976 |
+
Metrics at Step 39500:
|
1977 |
+
Train Loss: 2.318842887878418
|
1978 |
+
Action Accuracy: 0.3839285671710968
|
1979 |
+
L1 Loss: 0.15371148459383752
|
1980 |
+
|
1981 |
+
Metrics at Step 39600:
|
1982 |
+
Train Loss: 2.8260815143585205
|
1983 |
+
Action Accuracy: 0.3214285671710968
|
1984 |
+
L1 Loss: 0.23053221288515408
|
1985 |
+
|
1986 |
+
Metrics at Step 39700:
|
1987 |
+
Train Loss: 2.6222963333129883
|
1988 |
+
Action Accuracy: 0.3125
|
1989 |
+
L1 Loss: 0.207703081232493
|
1990 |
+
|
1991 |
+
Metrics at Step 39800:
|
1992 |
+
Train Loss: 2.675447702407837
|
1993 |
+
Action Accuracy: 0.3125
|
1994 |
+
L1 Loss: 0.21260504201680672
|
1995 |
+
|
1996 |
+
Metrics at Step 39900:
|
1997 |
+
Train Loss: 2.674267053604126
|
1998 |
+
Action Accuracy: 0.3125
|
1999 |
+
L1 Loss: 0.21617647058823528
|
2000 |
+
|
2001 |
+
Metrics at Step 40000:
|
2002 |
+
Train Loss: 2.7509145736694336
|
2003 |
+
Action Accuracy: 0.3482142984867096
|
2004 |
+
L1 Loss: 0.1931372549019608
|
2005 |
+
|
2006 |
+
Metrics at Step 40100:
|
2007 |
+
Train Loss: 2.2835841178894043
|
2008 |
+
Action Accuracy: 0.4196428656578064
|
2009 |
+
L1 Loss: 0.17170868347338936
|
2010 |
+
|
2011 |
+
Metrics at Step 40200:
|
2012 |
+
Train Loss: 2.1172170639038086
|
2013 |
+
Action Accuracy: 0.4553571343421936
|
2014 |
+
L1 Loss: 0.19831932773109243
|
2015 |
+
|
2016 |
+
Metrics at Step 40300:
|
2017 |
+
Train Loss: 2.2738022804260254
|
2018 |
+
Action Accuracy: 0.3928571343421936
|
2019 |
+
L1 Loss: 0.17464985994397758
|
2020 |
+
|
2021 |
+
Metrics at Step 40400:
|
2022 |
+
Train Loss: 2.2434847354888916
|
2023 |
+
Action Accuracy: 0.4821428656578064
|
2024 |
+
L1 Loss: 0.14537815126050418
|
2025 |
+
|
2026 |
+
Metrics at Step 40500:
|
2027 |
+
Train Loss: 2.7729668617248535
|
2028 |
+
Action Accuracy: 0.3035714328289032
|
2029 |
+
L1 Loss: 0.18767507002801123
|
2030 |
+
|
2031 |
+
Metrics at Step 40600:
|
2032 |
+
Train Loss: 2.7575526237487793
|
2033 |
+
Action Accuracy: 0.3392857015132904
|
2034 |
+
L1 Loss: 0.14992997198879549
|
2035 |
+
|
2036 |
+
Metrics at Step 40700:
|
2037 |
+
Train Loss: 2.4399783611297607
|
2038 |
+
Action Accuracy: 0.4107142984867096
|
2039 |
+
L1 Loss: 0.12079831932773111
|
2040 |
+
|
2041 |
+
Metrics at Step 40800:
|
2042 |
+
Train Loss: 2.2587897777557373
|
2043 |
+
Action Accuracy: 0.3839285671710968
|
2044 |
+
L1 Loss: 0.14978991596638652
|
2045 |
+
|
2046 |
+
Metrics at Step 40900:
|
2047 |
+
Train Loss: 2.459272623062134
|
2048 |
+
Action Accuracy: 0.4017857015132904
|
2049 |
+
L1 Loss: 0.17563025210084035
|
2050 |
+
|
2051 |
+
Metrics at Step 41000:
|
2052 |
+
Train Loss: 2.9701664447784424
|
2053 |
+
Action Accuracy: 0.3035714328289032
|
2054 |
+
L1 Loss: 0.24831932773109244
|
2055 |
+
|
2056 |
+
Metrics at Step 41100:
|
2057 |
+
Train Loss: 2.475799322128296
|
2058 |
+
Action Accuracy: 0.3660714328289032
|
2059 |
+
L1 Loss: 0.19586834733893557
|
2060 |
+
|
2061 |
+
Metrics at Step 41200:
|
2062 |
+
Train Loss: 2.468787670135498
|
2063 |
+
Action Accuracy: 0.3214285671710968
|
2064 |
+
L1 Loss: 0.14201680672268907
|
2065 |
+
|
2066 |
+
Metrics at Step 41300:
|
2067 |
+
Train Loss: 2.331364631652832
|
2068 |
+
Action Accuracy: 0.375
|
2069 |
+
L1 Loss: 0.19635854341736694
|
2070 |
+
|
2071 |
+
Metrics at Step 41400:
|
2072 |
+
Train Loss: 2.122570037841797
|
2073 |
+
Action Accuracy: 0.4285714328289032
|
2074 |
+
L1 Loss: 0.12436974789915967
|
2075 |
+
|
2076 |
+
Metrics at Step 41500:
|
2077 |
+
Train Loss: 2.2856009006500244
|
2078 |
+
Action Accuracy: 0.4375
|
2079 |
+
L1 Loss: 0.1299019607843137
|
2080 |
+
|
2081 |
+
Metrics at Step 41600:
|
2082 |
+
Train Loss: 2.6296727657318115
|
2083 |
+
Action Accuracy: 0.3571428656578064
|
2084 |
+
L1 Loss: 0.17275910364145658
|
2085 |
+
|
2086 |
+
Metrics at Step 41700:
|
2087 |
+
Train Loss: 2.295574188232422
|
2088 |
+
Action Accuracy: 0.3839285671710968
|
2089 |
+
L1 Loss: 0.08025210084033614
|
2090 |
+
|
2091 |
+
Metrics at Step 41800:
|
2092 |
+
Train Loss: 2.660079002380371
|
2093 |
+
Action Accuracy: 0.3303571343421936
|
2094 |
+
L1 Loss: 0.16050420168067228
|
2095 |
+
|
2096 |
+
Metrics at Step 41900:
|
2097 |
+
Train Loss: 2.6224076747894287
|
2098 |
+
Action Accuracy: 0.375
|
2099 |
+
L1 Loss: 0.19446778711484594
|
2100 |
+
|
2101 |
+
Metrics at Step 42000:
|
2102 |
+
Train Loss: 2.7851827144622803
|
2103 |
+
Action Accuracy: 0.3214285671710968
|
2104 |
+
L1 Loss: 0.20567226890756302
|
2105 |
+
|
2106 |
+
Metrics at Step 42100:
|
2107 |
+
Train Loss: 2.1320412158966064
|
2108 |
+
Action Accuracy: 0.4107142984867096
|
2109 |
+
L1 Loss: 0.0930672268907563
|
2110 |
+
|
2111 |
+
Metrics at Step 42200:
|
2112 |
+
Train Loss: 2.2695605754852295
|
2113 |
+
Action Accuracy: 0.4196428656578064
|
2114 |
+
L1 Loss: 0.13599439775910363
|
2115 |
+
|
2116 |
+
Metrics at Step 42300:
|
2117 |
+
Train Loss: 2.245612859725952
|
2118 |
+
Action Accuracy: 0.4375
|
2119 |
+
L1 Loss: 0.11876750700280111
|
2120 |
+
|
2121 |
+
Metrics at Step 42400:
|
2122 |
+
Train Loss: 2.204586982727051
|
2123 |
+
Action Accuracy: 0.4285714328289032
|
2124 |
+
L1 Loss: 0.13984593837535014
|
2125 |
+
|
2126 |
+
Metrics at Step 42500:
|
2127 |
+
Train Loss: 2.3280088901519775
|
2128 |
+
Action Accuracy: 0.3928571343421936
|
2129 |
+
L1 Loss: 0.15539215686274513
|
2130 |
+
|
2131 |
+
Metrics at Step 42600:
|
2132 |
+
Train Loss: 2.2034990787506104
|
2133 |
+
Action Accuracy: 0.4553571343421936
|
2134 |
+
L1 Loss: 0.14943977591036414
|
2135 |
+
|
2136 |
+
Metrics at Step 42700:
|
2137 |
+
Train Loss: 2.5912086963653564
|
2138 |
+
Action Accuracy: 0.3660714328289032
|
2139 |
+
L1 Loss: 0.19180672268907564
|
2140 |
+
|
2141 |
+
Metrics at Step 42800:
|
2142 |
+
Train Loss: 2.0345263481140137
|
2143 |
+
Action Accuracy: 0.4553571343421936
|
2144 |
+
L1 Loss: 0.13186274509803922
|
2145 |
+
|
2146 |
+
Metrics at Step 42900:
|
2147 |
+
Train Loss: 2.5923688411712646
|
2148 |
+
Action Accuracy: 0.3392857015132904
|
2149 |
+
L1 Loss: 0.17296918767507002
|
2150 |
+
|
2151 |
+
Metrics at Step 0:
|
2152 |
+
Train Loss: 2.5031685829162598
|
2153 |
+
Action Accuracy: 0.3482142984867096
|
2154 |
+
L1 Loss: 0.21708683473389354
|
2155 |
+
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a10567fbd7b8aa16979045d331736b0ba27ffbb3ffa64c3dfd26c5d1462227b
|
3 |
+
size 4925122448
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35cde23ef437b145f648f17f493fab74fec9751e01aa5c5af9ee7dda34f7db11
|
3 |
+
size 4947392496
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6332d38c51c0dd50f48236a27bfbb6686a2700c371af43513f5c49cfcfca1c7
|
3 |
+
size 4947417456
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c04d3714def0e912d211bad07937233cb16a1d1b162ffe5c758a732b8bc64ccf
|
3 |
+
size 262668432
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,989 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15082474368
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"language_model.lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
112 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
117 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
244 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
252 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
270 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
271 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
273 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
274 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
279 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
280 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
281 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
282 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
283 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
284 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
285 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
286 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
287 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
290 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
291 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
292 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
293 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
294 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
296 |
+
"language_model.model.norm.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"projector.fc1.bias": "model-00001-of-00004.safetensors",
|
298 |
+
"projector.fc1.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"projector.fc2.bias": "model-00001-of-00004.safetensors",
|
300 |
+
"projector.fc2.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"projector.fc3.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"projector.fc3.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"vision_backbone.featurizer.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
304 |
+
"vision_backbone.featurizer.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"vision_backbone.featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
306 |
+
"vision_backbone.featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
307 |
+
"vision_backbone.featurizer.blocks.0.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
308 |
+
"vision_backbone.featurizer.blocks.0.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
309 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
310 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
312 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"vision_backbone.featurizer.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"vision_backbone.featurizer.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"vision_backbone.featurizer.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
|
316 |
+
"vision_backbone.featurizer.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
317 |
+
"vision_backbone.featurizer.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
318 |
+
"vision_backbone.featurizer.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
319 |
+
"vision_backbone.featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
320 |
+
"vision_backbone.featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
321 |
+
"vision_backbone.featurizer.blocks.1.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
322 |
+
"vision_backbone.featurizer.blocks.1.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
323 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
324 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
325 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"vision_backbone.featurizer.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
|
328 |
+
"vision_backbone.featurizer.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
329 |
+
"vision_backbone.featurizer.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
|
330 |
+
"vision_backbone.featurizer.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
331 |
+
"vision_backbone.featurizer.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
332 |
+
"vision_backbone.featurizer.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
333 |
+
"vision_backbone.featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
334 |
+
"vision_backbone.featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
335 |
+
"vision_backbone.featurizer.blocks.10.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
336 |
+
"vision_backbone.featurizer.blocks.10.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
337 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
338 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
339 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
340 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
341 |
+
"vision_backbone.featurizer.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
|
342 |
+
"vision_backbone.featurizer.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
343 |
+
"vision_backbone.featurizer.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
|
344 |
+
"vision_backbone.featurizer.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
345 |
+
"vision_backbone.featurizer.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
346 |
+
"vision_backbone.featurizer.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"vision_backbone.featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
348 |
+
"vision_backbone.featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"vision_backbone.featurizer.blocks.11.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
350 |
+
"vision_backbone.featurizer.blocks.11.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
351 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
352 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
354 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"vision_backbone.featurizer.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
|
356 |
+
"vision_backbone.featurizer.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"vision_backbone.featurizer.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
|
358 |
+
"vision_backbone.featurizer.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"vision_backbone.featurizer.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
360 |
+
"vision_backbone.featurizer.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"vision_backbone.featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
362 |
+
"vision_backbone.featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"vision_backbone.featurizer.blocks.12.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
364 |
+
"vision_backbone.featurizer.blocks.12.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
365 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
366 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
368 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"vision_backbone.featurizer.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
|
370 |
+
"vision_backbone.featurizer.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"vision_backbone.featurizer.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
|
372 |
+
"vision_backbone.featurizer.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"vision_backbone.featurizer.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"vision_backbone.featurizer.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"vision_backbone.featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
376 |
+
"vision_backbone.featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
377 |
+
"vision_backbone.featurizer.blocks.13.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
378 |
+
"vision_backbone.featurizer.blocks.13.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
379 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
380 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
382 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"vision_backbone.featurizer.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
|
384 |
+
"vision_backbone.featurizer.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"vision_backbone.featurizer.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"vision_backbone.featurizer.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"vision_backbone.featurizer.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
388 |
+
"vision_backbone.featurizer.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"vision_backbone.featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
390 |
+
"vision_backbone.featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"vision_backbone.featurizer.blocks.14.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
392 |
+
"vision_backbone.featurizer.blocks.14.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
393 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
394 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
396 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"vision_backbone.featurizer.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
|
398 |
+
"vision_backbone.featurizer.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"vision_backbone.featurizer.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
|
400 |
+
"vision_backbone.featurizer.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"vision_backbone.featurizer.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
402 |
+
"vision_backbone.featurizer.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"vision_backbone.featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
404 |
+
"vision_backbone.featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"vision_backbone.featurizer.blocks.15.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
406 |
+
"vision_backbone.featurizer.blocks.15.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
407 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
408 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
410 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"vision_backbone.featurizer.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
|
412 |
+
"vision_backbone.featurizer.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
413 |
+
"vision_backbone.featurizer.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
|
414 |
+
"vision_backbone.featurizer.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"vision_backbone.featurizer.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
416 |
+
"vision_backbone.featurizer.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"vision_backbone.featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
418 |
+
"vision_backbone.featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"vision_backbone.featurizer.blocks.16.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
420 |
+
"vision_backbone.featurizer.blocks.16.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
421 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
424 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"vision_backbone.featurizer.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
|
426 |
+
"vision_backbone.featurizer.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"vision_backbone.featurizer.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
|
428 |
+
"vision_backbone.featurizer.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"vision_backbone.featurizer.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
430 |
+
"vision_backbone.featurizer.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"vision_backbone.featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
432 |
+
"vision_backbone.featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"vision_backbone.featurizer.blocks.17.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
434 |
+
"vision_backbone.featurizer.blocks.17.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
435 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
436 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
438 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"vision_backbone.featurizer.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
|
440 |
+
"vision_backbone.featurizer.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"vision_backbone.featurizer.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
|
442 |
+
"vision_backbone.featurizer.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"vision_backbone.featurizer.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
444 |
+
"vision_backbone.featurizer.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"vision_backbone.featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
446 |
+
"vision_backbone.featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"vision_backbone.featurizer.blocks.18.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
448 |
+
"vision_backbone.featurizer.blocks.18.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
449 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
450 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
451 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
452 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
453 |
+
"vision_backbone.featurizer.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
|
454 |
+
"vision_backbone.featurizer.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"vision_backbone.featurizer.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
|
456 |
+
"vision_backbone.featurizer.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"vision_backbone.featurizer.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"vision_backbone.featurizer.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"vision_backbone.featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
460 |
+
"vision_backbone.featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
461 |
+
"vision_backbone.featurizer.blocks.19.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
462 |
+
"vision_backbone.featurizer.blocks.19.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
463 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
464 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
466 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"vision_backbone.featurizer.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
|
468 |
+
"vision_backbone.featurizer.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"vision_backbone.featurizer.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
|
470 |
+
"vision_backbone.featurizer.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"vision_backbone.featurizer.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
472 |
+
"vision_backbone.featurizer.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"vision_backbone.featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
474 |
+
"vision_backbone.featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"vision_backbone.featurizer.blocks.2.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
476 |
+
"vision_backbone.featurizer.blocks.2.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
477 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
478 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
480 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"vision_backbone.featurizer.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
|
482 |
+
"vision_backbone.featurizer.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
483 |
+
"vision_backbone.featurizer.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
|
484 |
+
"vision_backbone.featurizer.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
485 |
+
"vision_backbone.featurizer.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
486 |
+
"vision_backbone.featurizer.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
487 |
+
"vision_backbone.featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
488 |
+
"vision_backbone.featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
489 |
+
"vision_backbone.featurizer.blocks.20.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
490 |
+
"vision_backbone.featurizer.blocks.20.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
491 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
492 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
493 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
494 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
495 |
+
"vision_backbone.featurizer.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
|
496 |
+
"vision_backbone.featurizer.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
497 |
+
"vision_backbone.featurizer.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
|
498 |
+
"vision_backbone.featurizer.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
499 |
+
"vision_backbone.featurizer.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
500 |
+
"vision_backbone.featurizer.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
501 |
+
"vision_backbone.featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
502 |
+
"vision_backbone.featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
503 |
+
"vision_backbone.featurizer.blocks.21.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
504 |
+
"vision_backbone.featurizer.blocks.21.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
505 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
506 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
507 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
508 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
509 |
+
"vision_backbone.featurizer.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
|
510 |
+
"vision_backbone.featurizer.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
511 |
+
"vision_backbone.featurizer.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
|
512 |
+
"vision_backbone.featurizer.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
513 |
+
"vision_backbone.featurizer.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
514 |
+
"vision_backbone.featurizer.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
515 |
+
"vision_backbone.featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
516 |
+
"vision_backbone.featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
517 |
+
"vision_backbone.featurizer.blocks.22.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
518 |
+
"vision_backbone.featurizer.blocks.22.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
519 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
520 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
521 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
522 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
523 |
+
"vision_backbone.featurizer.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
|
524 |
+
"vision_backbone.featurizer.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
525 |
+
"vision_backbone.featurizer.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
|
526 |
+
"vision_backbone.featurizer.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
527 |
+
"vision_backbone.featurizer.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
528 |
+
"vision_backbone.featurizer.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
529 |
+
"vision_backbone.featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
530 |
+
"vision_backbone.featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
531 |
+
"vision_backbone.featurizer.blocks.23.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
532 |
+
"vision_backbone.featurizer.blocks.23.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
533 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
534 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
535 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
536 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
537 |
+
"vision_backbone.featurizer.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
|
538 |
+
"vision_backbone.featurizer.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
539 |
+
"vision_backbone.featurizer.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
|
540 |
+
"vision_backbone.featurizer.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
541 |
+
"vision_backbone.featurizer.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
542 |
+
"vision_backbone.featurizer.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
543 |
+
"vision_backbone.featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
544 |
+
"vision_backbone.featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"vision_backbone.featurizer.blocks.3.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
546 |
+
"vision_backbone.featurizer.blocks.3.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
547 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
548 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
549 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
550 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"vision_backbone.featurizer.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
|
552 |
+
"vision_backbone.featurizer.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
553 |
+
"vision_backbone.featurizer.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
|
554 |
+
"vision_backbone.featurizer.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"vision_backbone.featurizer.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
556 |
+
"vision_backbone.featurizer.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
557 |
+
"vision_backbone.featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
558 |
+
"vision_backbone.featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
559 |
+
"vision_backbone.featurizer.blocks.4.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
560 |
+
"vision_backbone.featurizer.blocks.4.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
561 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
562 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
563 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
564 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
565 |
+
"vision_backbone.featurizer.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
|
566 |
+
"vision_backbone.featurizer.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
567 |
+
"vision_backbone.featurizer.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
|
568 |
+
"vision_backbone.featurizer.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
569 |
+
"vision_backbone.featurizer.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
570 |
+
"vision_backbone.featurizer.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
571 |
+
"vision_backbone.featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
572 |
+
"vision_backbone.featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
573 |
+
"vision_backbone.featurizer.blocks.5.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
574 |
+
"vision_backbone.featurizer.blocks.5.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
575 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
576 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
577 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
578 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
579 |
+
"vision_backbone.featurizer.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
|
580 |
+
"vision_backbone.featurizer.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
581 |
+
"vision_backbone.featurizer.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
|
582 |
+
"vision_backbone.featurizer.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
583 |
+
"vision_backbone.featurizer.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
584 |
+
"vision_backbone.featurizer.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
585 |
+
"vision_backbone.featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
586 |
+
"vision_backbone.featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
587 |
+
"vision_backbone.featurizer.blocks.6.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
588 |
+
"vision_backbone.featurizer.blocks.6.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
589 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
590 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
591 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
592 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
593 |
+
"vision_backbone.featurizer.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
|
594 |
+
"vision_backbone.featurizer.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
595 |
+
"vision_backbone.featurizer.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
|
596 |
+
"vision_backbone.featurizer.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
597 |
+
"vision_backbone.featurizer.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
598 |
+
"vision_backbone.featurizer.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
599 |
+
"vision_backbone.featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
600 |
+
"vision_backbone.featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
601 |
+
"vision_backbone.featurizer.blocks.7.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
602 |
+
"vision_backbone.featurizer.blocks.7.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
603 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
604 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
605 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
606 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
607 |
+
"vision_backbone.featurizer.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
|
608 |
+
"vision_backbone.featurizer.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
609 |
+
"vision_backbone.featurizer.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
|
610 |
+
"vision_backbone.featurizer.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
611 |
+
"vision_backbone.featurizer.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
612 |
+
"vision_backbone.featurizer.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
613 |
+
"vision_backbone.featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
614 |
+
"vision_backbone.featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
615 |
+
"vision_backbone.featurizer.blocks.8.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
616 |
+
"vision_backbone.featurizer.blocks.8.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
617 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
618 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
619 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
620 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"vision_backbone.featurizer.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
|
622 |
+
"vision_backbone.featurizer.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
623 |
+
"vision_backbone.featurizer.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
|
624 |
+
"vision_backbone.featurizer.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
625 |
+
"vision_backbone.featurizer.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
626 |
+
"vision_backbone.featurizer.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
627 |
+
"vision_backbone.featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
628 |
+
"vision_backbone.featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"vision_backbone.featurizer.blocks.9.ls1.scale_factor": "model-00001-of-00004.safetensors",
|
630 |
+
"vision_backbone.featurizer.blocks.9.ls2.scale_factor": "model-00001-of-00004.safetensors",
|
631 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
632 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
633 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
634 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"vision_backbone.featurizer.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
|
636 |
+
"vision_backbone.featurizer.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
637 |
+
"vision_backbone.featurizer.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
|
638 |
+
"vision_backbone.featurizer.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"vision_backbone.featurizer.cls_token": "model-00001-of-00004.safetensors",
|
640 |
+
"vision_backbone.featurizer.norm.bias": "model-00001-of-00004.safetensors",
|
641 |
+
"vision_backbone.featurizer.norm.weight": "model-00001-of-00004.safetensors",
|
642 |
+
"vision_backbone.featurizer.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
|
643 |
+
"vision_backbone.featurizer.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
|
644 |
+
"vision_backbone.featurizer.pos_embed": "model-00001-of-00004.safetensors",
|
645 |
+
"vision_backbone.featurizer.reg_token": "model-00001-of-00004.safetensors",
|
646 |
+
"vision_backbone.fused_featurizer.attn_pool.kv.bias": "model-00001-of-00004.safetensors",
|
647 |
+
"vision_backbone.fused_featurizer.attn_pool.kv.weight": "model-00001-of-00004.safetensors",
|
648 |
+
"vision_backbone.fused_featurizer.attn_pool.latent": "model-00001-of-00004.safetensors",
|
649 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
650 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
651 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
652 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"vision_backbone.fused_featurizer.attn_pool.norm.bias": "model-00001-of-00004.safetensors",
|
654 |
+
"vision_backbone.fused_featurizer.attn_pool.norm.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"vision_backbone.fused_featurizer.attn_pool.proj.bias": "model-00001-of-00004.safetensors",
|
656 |
+
"vision_backbone.fused_featurizer.attn_pool.proj.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"vision_backbone.fused_featurizer.attn_pool.q.bias": "model-00001-of-00004.safetensors",
|
658 |
+
"vision_backbone.fused_featurizer.attn_pool.q.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
660 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
661 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
662 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
663 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
664 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
666 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
667 |
+
"vision_backbone.fused_featurizer.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
|
668 |
+
"vision_backbone.fused_featurizer.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
669 |
+
"vision_backbone.fused_featurizer.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
|
670 |
+
"vision_backbone.fused_featurizer.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
672 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
673 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
674 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
676 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
677 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
678 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
679 |
+
"vision_backbone.fused_featurizer.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
|
680 |
+
"vision_backbone.fused_featurizer.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
681 |
+
"vision_backbone.fused_featurizer.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
|
682 |
+
"vision_backbone.fused_featurizer.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
684 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
685 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
686 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
687 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
688 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
690 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"vision_backbone.fused_featurizer.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
|
692 |
+
"vision_backbone.fused_featurizer.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
693 |
+
"vision_backbone.fused_featurizer.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
|
694 |
+
"vision_backbone.fused_featurizer.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
695 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
696 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
697 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
698 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
699 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
700 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
701 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
702 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
703 |
+
"vision_backbone.fused_featurizer.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
|
704 |
+
"vision_backbone.fused_featurizer.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
705 |
+
"vision_backbone.fused_featurizer.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
|
706 |
+
"vision_backbone.fused_featurizer.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
707 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
708 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
709 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
710 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
711 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
712 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
713 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
714 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
715 |
+
"vision_backbone.fused_featurizer.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
|
716 |
+
"vision_backbone.fused_featurizer.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
717 |
+
"vision_backbone.fused_featurizer.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
|
718 |
+
"vision_backbone.fused_featurizer.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
719 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
720 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
721 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
722 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
723 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
724 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
725 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
726 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
727 |
+
"vision_backbone.fused_featurizer.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
|
728 |
+
"vision_backbone.fused_featurizer.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
729 |
+
"vision_backbone.fused_featurizer.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
|
730 |
+
"vision_backbone.fused_featurizer.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
731 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
732 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
733 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
734 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
735 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
736 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
737 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
738 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
739 |
+
"vision_backbone.fused_featurizer.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
|
740 |
+
"vision_backbone.fused_featurizer.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
741 |
+
"vision_backbone.fused_featurizer.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
|
742 |
+
"vision_backbone.fused_featurizer.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
743 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
744 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
745 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
746 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
747 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
748 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
749 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
750 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
751 |
+
"vision_backbone.fused_featurizer.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
|
752 |
+
"vision_backbone.fused_featurizer.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
753 |
+
"vision_backbone.fused_featurizer.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
|
754 |
+
"vision_backbone.fused_featurizer.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
755 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
756 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
757 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
758 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
759 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
760 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
761 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
762 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
763 |
+
"vision_backbone.fused_featurizer.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
|
764 |
+
"vision_backbone.fused_featurizer.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
765 |
+
"vision_backbone.fused_featurizer.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
|
766 |
+
"vision_backbone.fused_featurizer.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
767 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
768 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
769 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
770 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
771 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
772 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
773 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
774 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
775 |
+
"vision_backbone.fused_featurizer.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
|
776 |
+
"vision_backbone.fused_featurizer.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
777 |
+
"vision_backbone.fused_featurizer.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
|
778 |
+
"vision_backbone.fused_featurizer.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
779 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
780 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
781 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
782 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
783 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
784 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
785 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
786 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
787 |
+
"vision_backbone.fused_featurizer.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
|
788 |
+
"vision_backbone.fused_featurizer.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
789 |
+
"vision_backbone.fused_featurizer.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
|
790 |
+
"vision_backbone.fused_featurizer.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
791 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
792 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
793 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
794 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
795 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
796 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
797 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
798 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
799 |
+
"vision_backbone.fused_featurizer.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
|
800 |
+
"vision_backbone.fused_featurizer.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
801 |
+
"vision_backbone.fused_featurizer.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
|
802 |
+
"vision_backbone.fused_featurizer.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
803 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
804 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
805 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
806 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
807 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
808 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
809 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
810 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
811 |
+
"vision_backbone.fused_featurizer.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
|
812 |
+
"vision_backbone.fused_featurizer.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
813 |
+
"vision_backbone.fused_featurizer.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
|
814 |
+
"vision_backbone.fused_featurizer.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
815 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
816 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
817 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
818 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
819 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
820 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
821 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
822 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
823 |
+
"vision_backbone.fused_featurizer.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
|
824 |
+
"vision_backbone.fused_featurizer.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
825 |
+
"vision_backbone.fused_featurizer.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
|
826 |
+
"vision_backbone.fused_featurizer.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
827 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
828 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
829 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
830 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
831 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
832 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
833 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
834 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
835 |
+
"vision_backbone.fused_featurizer.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
|
836 |
+
"vision_backbone.fused_featurizer.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
837 |
+
"vision_backbone.fused_featurizer.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
|
838 |
+
"vision_backbone.fused_featurizer.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
839 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
840 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
841 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
842 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
843 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
844 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
845 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
846 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
847 |
+
"vision_backbone.fused_featurizer.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
|
848 |
+
"vision_backbone.fused_featurizer.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
849 |
+
"vision_backbone.fused_featurizer.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
|
850 |
+
"vision_backbone.fused_featurizer.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
851 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
852 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
853 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
854 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
855 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
856 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
857 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
858 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
859 |
+
"vision_backbone.fused_featurizer.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
|
860 |
+
"vision_backbone.fused_featurizer.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
861 |
+
"vision_backbone.fused_featurizer.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
|
862 |
+
"vision_backbone.fused_featurizer.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
863 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
|
864 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
|
865 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
866 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
867 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
868 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
869 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
870 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
871 |
+
"vision_backbone.fused_featurizer.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
|
872 |
+
"vision_backbone.fused_featurizer.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
|
873 |
+
"vision_backbone.fused_featurizer.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
|
874 |
+
"vision_backbone.fused_featurizer.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
|
875 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
|
876 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
|
877 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
878 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
879 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
880 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
881 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
882 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
883 |
+
"vision_backbone.fused_featurizer.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
|
884 |
+
"vision_backbone.fused_featurizer.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
|
885 |
+
"vision_backbone.fused_featurizer.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
|
886 |
+
"vision_backbone.fused_featurizer.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
|
887 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
|
888 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
|
889 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
890 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
891 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
892 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
893 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
894 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
895 |
+
"vision_backbone.fused_featurizer.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
|
896 |
+
"vision_backbone.fused_featurizer.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
|
897 |
+
"vision_backbone.fused_featurizer.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
|
898 |
+
"vision_backbone.fused_featurizer.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
|
899 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
900 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
901 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
902 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
903 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
904 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
905 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
906 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
907 |
+
"vision_backbone.fused_featurizer.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
|
908 |
+
"vision_backbone.fused_featurizer.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
909 |
+
"vision_backbone.fused_featurizer.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
|
910 |
+
"vision_backbone.fused_featurizer.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
911 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
912 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
913 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
914 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
915 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
916 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
917 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
918 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
919 |
+
"vision_backbone.fused_featurizer.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
|
920 |
+
"vision_backbone.fused_featurizer.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
921 |
+
"vision_backbone.fused_featurizer.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
|
922 |
+
"vision_backbone.fused_featurizer.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
923 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
924 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
925 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
926 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
927 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
928 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
929 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
930 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
931 |
+
"vision_backbone.fused_featurizer.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
|
932 |
+
"vision_backbone.fused_featurizer.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
933 |
+
"vision_backbone.fused_featurizer.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
|
934 |
+
"vision_backbone.fused_featurizer.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
935 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
936 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
937 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
938 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
939 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
940 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
941 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
942 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
943 |
+
"vision_backbone.fused_featurizer.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
|
944 |
+
"vision_backbone.fused_featurizer.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
945 |
+
"vision_backbone.fused_featurizer.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
|
946 |
+
"vision_backbone.fused_featurizer.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
947 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
948 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
949 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
950 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
951 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
952 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
953 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
954 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
955 |
+
"vision_backbone.fused_featurizer.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
|
956 |
+
"vision_backbone.fused_featurizer.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
957 |
+
"vision_backbone.fused_featurizer.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
|
958 |
+
"vision_backbone.fused_featurizer.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
959 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
960 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
961 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
962 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
963 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
964 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
965 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
966 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
967 |
+
"vision_backbone.fused_featurizer.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
|
968 |
+
"vision_backbone.fused_featurizer.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
969 |
+
"vision_backbone.fused_featurizer.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
|
970 |
+
"vision_backbone.fused_featurizer.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
971 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
972 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
973 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
974 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
975 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
976 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
977 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
978 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
979 |
+
"vision_backbone.fused_featurizer.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
|
980 |
+
"vision_backbone.fused_featurizer.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
981 |
+
"vision_backbone.fused_featurizer.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
|
982 |
+
"vision_backbone.fused_featurizer.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
983 |
+
"vision_backbone.fused_featurizer.norm.bias": "model-00001-of-00004.safetensors",
|
984 |
+
"vision_backbone.fused_featurizer.norm.weight": "model-00001-of-00004.safetensors",
|
985 |
+
"vision_backbone.fused_featurizer.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
|
986 |
+
"vision_backbone.fused_featurizer.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
|
987 |
+
"vision_backbone.fused_featurizer.pos_embed": "model-00001-of-00004.safetensors"
|
988 |
+
}
|
989 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "openvla/openvla-7b--processing_prismatic.PrismaticImageProcessor",
|
4 |
+
"AutoProcessor": "openvla/openvla-7b--processing_prismatic.PrismaticProcessor"
|
5 |
+
},
|
6 |
+
"image_processor_type": "PrismaticImageProcessor",
|
7 |
+
"image_resize_strategy": "resize-naive",
|
8 |
+
"input_sizes": [
|
9 |
+
[
|
10 |
+
3,
|
11 |
+
224,
|
12 |
+
224
|
13 |
+
],
|
14 |
+
[
|
15 |
+
3,
|
16 |
+
224,
|
17 |
+
224
|
18 |
+
]
|
19 |
+
],
|
20 |
+
"interpolations": [
|
21 |
+
"bicubic",
|
22 |
+
"bicubic"
|
23 |
+
],
|
24 |
+
"means": [
|
25 |
+
[
|
26 |
+
0.485,
|
27 |
+
0.456,
|
28 |
+
0.406
|
29 |
+
],
|
30 |
+
[
|
31 |
+
0.5,
|
32 |
+
0.5,
|
33 |
+
0.5
|
34 |
+
]
|
35 |
+
],
|
36 |
+
"processor_class": "PrismaticProcessor",
|
37 |
+
"stds": [
|
38 |
+
[
|
39 |
+
0.229,
|
40 |
+
0.224,
|
41 |
+
0.225
|
42 |
+
],
|
43 |
+
[
|
44 |
+
0.5,
|
45 |
+
0.5,
|
46 |
+
0.5
|
47 |
+
]
|
48 |
+
],
|
49 |
+
"tvf_crop_params": [
|
50 |
+
{
|
51 |
+
"output_size": [
|
52 |
+
224,
|
53 |
+
224
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"output_size": [
|
58 |
+
224,
|
59 |
+
224
|
60 |
+
]
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"tvf_do_letterbox": false,
|
64 |
+
"tvf_letterbox_fill": null,
|
65 |
+
"tvf_normalize_params": [
|
66 |
+
{
|
67 |
+
"inplace": false,
|
68 |
+
"mean": [
|
69 |
+
0.484375,
|
70 |
+
0.455078125,
|
71 |
+
0.40625
|
72 |
+
],
|
73 |
+
"std": [
|
74 |
+
0.228515625,
|
75 |
+
0.2236328125,
|
76 |
+
0.224609375
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"inplace": false,
|
81 |
+
"mean": [
|
82 |
+
0.5,
|
83 |
+
0.5,
|
84 |
+
0.5
|
85 |
+
],
|
86 |
+
"std": [
|
87 |
+
0.5,
|
88 |
+
0.5,
|
89 |
+
0.5
|
90 |
+
]
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"tvf_resize_params": [
|
94 |
+
{
|
95 |
+
"antialias": true,
|
96 |
+
"interpolation": 3,
|
97 |
+
"max_size": null,
|
98 |
+
"size": [
|
99 |
+
224,
|
100 |
+
224
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"antialias": true,
|
105 |
+
"interpolation": 3,
|
106 |
+
"max_size": null,
|
107 |
+
"size": [
|
108 |
+
224,
|
109 |
+
224
|
110 |
+
]
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"use_fused_vision_backbone": true
|
114 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<PAD>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<PAD>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"auto_map": {
|
39 |
+
"AutoProcessor": "openvla/openvla-7b--processing_prismatic.PrismaticProcessor"
|
40 |
+
},
|
41 |
+
"bos_token": "<s>",
|
42 |
+
"clean_up_tokenization_spaces": false,
|
43 |
+
"eos_token": "</s>",
|
44 |
+
"legacy": false,
|
45 |
+
"model_max_length": 2048,
|
46 |
+
"pad_token": "<PAD>",
|
47 |
+
"padding_side": "right",
|
48 |
+
"processor_class": "PrismaticProcessor",
|
49 |
+
"sp_model_kwargs": {},
|
50 |
+
"tokenizer_class": "LlamaTokenizer",
|
51 |
+
"unk_token": "<unk>",
|
52 |
+
"use_default_system_prompt": false
|
53 |
+
}
|