abhyudit309 commited on
Commit
6579914
1 Parent(s): b7e0561

Upload model

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<PAD>": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,3169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openvla/openvla-7b",
3
+ "arch_specifier": "no-align+fused-gelu-mlp",
4
+ "architectures": [
5
+ "OpenVLAForActionPrediction"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "openvla/openvla-7b--configuration_prismatic.OpenVLAConfig",
9
+ "AutoModelForVision2Seq": "openvla/openvla-7b--modeling_prismatic.OpenVLAForActionPrediction"
10
+ },
11
+ "hf_llm_id": "meta-llama/Llama-2-7b-hf",
12
+ "image_resize_strategy": "resize-naive",
13
+ "image_sizes": [
14
+ 224,
15
+ 224
16
+ ],
17
+ "llm_backbone_id": "llama2-7b-pure",
18
+ "llm_max_length": 2048,
19
+ "model_type": "openvla",
20
+ "n_action_bins": 256,
21
+ "norm_stats": {
22
+ "austin_buds_dataset_converted_externally_to_rlds": {
23
+ "action": {
24
+ "mask": [
25
+ true,
26
+ true,
27
+ true,
28
+ true,
29
+ true,
30
+ true,
31
+ false
32
+ ],
33
+ "max": [
34
+ 1.0,
35
+ 1.0,
36
+ 1.0,
37
+ 0.0,
38
+ 0.0,
39
+ 0.0,
40
+ 1.0
41
+ ],
42
+ "mean": [
43
+ -0.07678354531526566,
44
+ 0.0036849044263362885,
45
+ 0.05644911900162697,
46
+ 0.0,
47
+ 0.0,
48
+ 0.0,
49
+ 0.3510494828224182
50
+ ],
51
+ "min": [
52
+ -1.0,
53
+ -1.0,
54
+ -1.0,
55
+ 0.0,
56
+ 0.0,
57
+ 0.0,
58
+ 0.0
59
+ ],
60
+ "q01": [
61
+ -1.0,
62
+ -0.9599999785423279,
63
+ -0.8714285492897034,
64
+ 0.0,
65
+ 0.0,
66
+ 0.0,
67
+ 0.0
68
+ ],
69
+ "q99": [
70
+ 1.0,
71
+ 0.8600000143051147,
72
+ 1.0,
73
+ 0.0,
74
+ 0.0,
75
+ 0.0,
76
+ 1.0
77
+ ],
78
+ "std": [
79
+ 0.6367740631103516,
80
+ 0.37889179587364197,
81
+ 0.47796326875686646,
82
+ 0.0,
83
+ 0.0,
84
+ 0.0,
85
+ 0.47721168398857117
86
+ ]
87
+ },
88
+ "num_trajectories": 50,
89
+ "num_transitions": 34112,
90
+ "proprio": {
91
+ "max": [
92
+ 0.0,
93
+ 0.0,
94
+ 0.0,
95
+ 0.0,
96
+ 0.0,
97
+ 0.0,
98
+ 0.0
99
+ ],
100
+ "mean": [
101
+ 0.0,
102
+ 0.0,
103
+ 0.0,
104
+ 0.0,
105
+ 0.0,
106
+ 0.0,
107
+ 0.0
108
+ ],
109
+ "min": [
110
+ 0.0,
111
+ 0.0,
112
+ 0.0,
113
+ 0.0,
114
+ 0.0,
115
+ 0.0,
116
+ 0.0
117
+ ],
118
+ "q01": [
119
+ 0.0,
120
+ 0.0,
121
+ 0.0,
122
+ 0.0,
123
+ 0.0,
124
+ 0.0,
125
+ 0.0
126
+ ],
127
+ "q99": [
128
+ 0.0,
129
+ 0.0,
130
+ 0.0,
131
+ 0.0,
132
+ 0.0,
133
+ 0.0,
134
+ 0.0
135
+ ],
136
+ "std": [
137
+ 0.0,
138
+ 0.0,
139
+ 0.0,
140
+ 0.0,
141
+ 0.0,
142
+ 0.0,
143
+ 0.0
144
+ ]
145
+ }
146
+ },
147
+ "austin_sailor_dataset_converted_externally_to_rlds": {
148
+ "action": {
149
+ "mask": [
150
+ true,
151
+ true,
152
+ true,
153
+ true,
154
+ true,
155
+ true,
156
+ false
157
+ ],
158
+ "max": [
159
+ 1.0,
160
+ 1.0,
161
+ 1.0,
162
+ 0.0,
163
+ 0.0,
164
+ 0.375,
165
+ 1.0
166
+ ],
167
+ "mean": [
168
+ 0.011825348250567913,
169
+ 0.006461074110120535,
170
+ 0.06023626774549484,
171
+ 0.0,
172
+ 0.0,
173
+ 0.0016465914668515325,
174
+ 0.5260950326919556
175
+ ],
176
+ "min": [
177
+ -1.0,
178
+ -1.0,
179
+ -1.0,
180
+ 0.0,
181
+ 0.0,
182
+ -0.375,
183
+ 0.0
184
+ ],
185
+ "q01": [
186
+ -1.0,
187
+ -0.9828571677207947,
188
+ -0.6000000238418579,
189
+ 0.0,
190
+ 0.0,
191
+ -0.17249999940395355,
192
+ 0.0
193
+ ],
194
+ "q99": [
195
+ 1.0,
196
+ 0.9457142949104309,
197
+ 1.0,
198
+ 0.0,
199
+ 0.0,
200
+ 0.17892856895923615,
201
+ 1.0
202
+ ],
203
+ "std": [
204
+ 0.46348899602890015,
205
+ 0.41240179538726807,
206
+ 0.411862850189209,
207
+ 0.0,
208
+ 0.0,
209
+ 0.0578610822558403,
210
+ 0.49894046783447266
211
+ ]
212
+ },
213
+ "num_trajectories": 240,
214
+ "num_transitions": 353094,
215
+ "proprio": {
216
+ "max": [
217
+ 0.0,
218
+ 0.0,
219
+ 0.0,
220
+ 0.0,
221
+ 0.0,
222
+ 0.0,
223
+ 0.0
224
+ ],
225
+ "mean": [
226
+ 0.0,
227
+ 0.0,
228
+ 0.0,
229
+ 0.0,
230
+ 0.0,
231
+ 0.0,
232
+ 0.0
233
+ ],
234
+ "min": [
235
+ 0.0,
236
+ 0.0,
237
+ 0.0,
238
+ 0.0,
239
+ 0.0,
240
+ 0.0,
241
+ 0.0
242
+ ],
243
+ "q01": [
244
+ 0.0,
245
+ 0.0,
246
+ 0.0,
247
+ 0.0,
248
+ 0.0,
249
+ 0.0,
250
+ 0.0
251
+ ],
252
+ "q99": [
253
+ 0.0,
254
+ 0.0,
255
+ 0.0,
256
+ 0.0,
257
+ 0.0,
258
+ 0.0,
259
+ 0.0
260
+ ],
261
+ "std": [
262
+ 0.0,
263
+ 0.0,
264
+ 0.0,
265
+ 0.0,
266
+ 0.0,
267
+ 0.0,
268
+ 0.0
269
+ ]
270
+ }
271
+ },
272
+ "austin_sirius_dataset_converted_externally_to_rlds": {
273
+ "action": {
274
+ "mask": [
275
+ true,
276
+ true,
277
+ true,
278
+ true,
279
+ true,
280
+ true,
281
+ false
282
+ ],
283
+ "max": [
284
+ 1.0002285242080688,
285
+ 0.960608720779419,
286
+ 1.105179786682129,
287
+ 0.0,
288
+ 0.0,
289
+ 0.341785728931427,
290
+ 1.0
291
+ ],
292
+ "mean": [
293
+ 0.07747682929039001,
294
+ 0.03195561468601227,
295
+ 0.04244732856750488,
296
+ 0.0,
297
+ 0.0,
298
+ -0.01603456400334835,
299
+ 0.43260177969932556
300
+ ],
301
+ "min": [
302
+ -1.0183025598526,
303
+ -0.9800000190734863,
304
+ -0.9774575233459473,
305
+ 0.0,
306
+ 0.0,
307
+ -0.34607142210006714,
308
+ 0.0
309
+ ],
310
+ "q01": [
311
+ -0.780905865430832,
312
+ -0.5667179036140442,
313
+ -0.5254343223571777,
314
+ 0.0,
315
+ 0.0,
316
+ -0.28495091378688814,
317
+ 0.0
318
+ ],
319
+ "q99": [
320
+ 0.9569637751579284,
321
+ 0.6971374487876891,
322
+ 0.8124888157844541,
323
+ 0.0,
324
+ 0.0,
325
+ 0.1971428543329239,
326
+ 1.0
327
+ ],
328
+ "std": [
329
+ 0.3906329572200775,
330
+ 0.2998155355453491,
331
+ 0.2782271206378937,
332
+ 0.0,
333
+ 0.0,
334
+ 0.08120622485876083,
335
+ 0.49528297781944275
336
+ ]
337
+ },
338
+ "num_trajectories": 559,
339
+ "num_transitions": 279939,
340
+ "proprio": {
341
+ "max": [
342
+ 0.0,
343
+ 0.0,
344
+ 0.0,
345
+ 0.0,
346
+ 0.0,
347
+ 0.0,
348
+ 0.0
349
+ ],
350
+ "mean": [
351
+ 0.0,
352
+ 0.0,
353
+ 0.0,
354
+ 0.0,
355
+ 0.0,
356
+ 0.0,
357
+ 0.0
358
+ ],
359
+ "min": [
360
+ 0.0,
361
+ 0.0,
362
+ 0.0,
363
+ 0.0,
364
+ 0.0,
365
+ 0.0,
366
+ 0.0
367
+ ],
368
+ "q01": [
369
+ 0.0,
370
+ 0.0,
371
+ 0.0,
372
+ 0.0,
373
+ 0.0,
374
+ 0.0,
375
+ 0.0
376
+ ],
377
+ "q99": [
378
+ 0.0,
379
+ 0.0,
380
+ 0.0,
381
+ 0.0,
382
+ 0.0,
383
+ 0.0,
384
+ 0.0
385
+ ],
386
+ "std": [
387
+ 0.0,
388
+ 0.0,
389
+ 0.0,
390
+ 0.0,
391
+ 0.0,
392
+ 0.0,
393
+ 0.0
394
+ ]
395
+ }
396
+ },
397
+ "bc_z": {
398
+ "action": {
399
+ "mask": [
400
+ true,
401
+ true,
402
+ true,
403
+ true,
404
+ true,
405
+ true,
406
+ false
407
+ ],
408
+ "max": [
409
+ 0.2165454924106598,
410
+ 0.1251407265663147,
411
+ 0.10772687941789627,
412
+ 0.33544227480888367,
413
+ 0.28117990493774414,
414
+ 0.40614867210388184,
415
+ 1.0
416
+ ],
417
+ "mean": [
418
+ -0.009958467446267605,
419
+ 0.0008958321413956583,
420
+ 0.004995597992092371,
421
+ 0.00029755113064311445,
422
+ -0.008735382929444313,
423
+ -0.030693737789988518,
424
+ 0.8344562649726868
425
+ ],
426
+ "min": [
427
+ -0.1677047461271286,
428
+ -0.14630407094955444,
429
+ -0.10066790133714676,
430
+ -0.29421567916870117,
431
+ -0.32101404666900635,
432
+ -0.4635624885559082,
433
+ 0.0
434
+ ],
435
+ "q01": [
436
+ -0.09220654994249344,
437
+ -0.06456145539879798,
438
+ -0.049121275544166565,
439
+ -0.11594625547528267,
440
+ -0.14152548640966414,
441
+ -0.2251061636209488,
442
+ 0.0
443
+ ],
444
+ "q99": [
445
+ 0.07628866866230968,
446
+ 0.058019736707210584,
447
+ 0.052540797740221024,
448
+ 0.11740604028105736,
449
+ 0.11703975558280955,
450
+ 0.16729306846857078,
451
+ 1.0
452
+ ],
453
+ "std": [
454
+ 0.03053455986082554,
455
+ 0.0231423731893301,
456
+ 0.020641816779971123,
457
+ 0.04155943542718887,
458
+ 0.046427831053733826,
459
+ 0.0769818127155304,
460
+ 0.3610210120677948
461
+ ]
462
+ },
463
+ "num_trajectories": 43264,
464
+ "num_transitions": 6015535,
465
+ "proprio": {
466
+ "max": [
467
+ 0.0,
468
+ 0.0,
469
+ 0.0,
470
+ 0.0,
471
+ 0.0,
472
+ 0.0,
473
+ 0.0
474
+ ],
475
+ "mean": [
476
+ 0.0,
477
+ 0.0,
478
+ 0.0,
479
+ 0.0,
480
+ 0.0,
481
+ 0.0,
482
+ 0.0
483
+ ],
484
+ "min": [
485
+ 0.0,
486
+ 0.0,
487
+ 0.0,
488
+ 0.0,
489
+ 0.0,
490
+ 0.0,
491
+ 0.0
492
+ ],
493
+ "q01": [
494
+ 0.0,
495
+ 0.0,
496
+ 0.0,
497
+ 0.0,
498
+ 0.0,
499
+ 0.0,
500
+ 0.0
501
+ ],
502
+ "q99": [
503
+ 0.0,
504
+ 0.0,
505
+ 0.0,
506
+ 0.0,
507
+ 0.0,
508
+ 0.0,
509
+ 0.0
510
+ ],
511
+ "std": [
512
+ 0.0,
513
+ 0.0,
514
+ 0.0,
515
+ 0.0,
516
+ 0.0,
517
+ 0.0,
518
+ 0.0
519
+ ]
520
+ }
521
+ },
522
+ "berkeley_autolab_ur5": {
523
+ "action": {
524
+ "mask": [
525
+ true,
526
+ true,
527
+ true,
528
+ true,
529
+ true,
530
+ true,
531
+ false
532
+ ],
533
+ "max": [
534
+ 0.019999999552965164,
535
+ 0.019999999552965164,
536
+ 0.019999999552965164,
537
+ 0.06666667014360428,
538
+ 0.06666667014360428,
539
+ 0.06666667014360428,
540
+ 1.0
541
+ ],
542
+ "mean": [
543
+ 0.0005683620693162084,
544
+ 0.001217700308188796,
545
+ -0.0005296372692100704,
546
+ 0.00021029810886830091,
547
+ 6.0695128922816366e-05,
548
+ 0.001204986940138042,
549
+ 0.6298308372497559
550
+ ],
551
+ "min": [
552
+ -0.019999999552965164,
553
+ -0.019999999552965164,
554
+ -0.019999999552965164,
555
+ -0.06666667014360428,
556
+ -0.06666667014360428,
557
+ -0.06666667014360428,
558
+ 0.0
559
+ ],
560
+ "q01": [
561
+ -0.019999999552965164,
562
+ -0.019999999552965164,
563
+ -0.019999999552965164,
564
+ -0.02628571353852749,
565
+ -0.06666667014360428,
566
+ -0.03847619146108627,
567
+ 0.0
568
+ ],
569
+ "q99": [
570
+ 0.019999999552965164,
571
+ 0.019999999552965164,
572
+ 0.019999999552965164,
573
+ 0.031809523701667786,
574
+ 0.06666667014360428,
575
+ 0.036571428179740906,
576
+ 1.0
577
+ ],
578
+ "std": [
579
+ 0.0115329809486866,
580
+ 0.007990492507815361,
581
+ 0.009577835910022259,
582
+ 0.009432995691895485,
583
+ 0.016427582129836082,
584
+ 0.011053967289626598,
585
+ 0.48267969489097595
586
+ ]
587
+ },
588
+ "num_trajectories": 1000,
589
+ "num_transitions": 97939,
590
+ "proprio": {
591
+ "max": [
592
+ 0.0,
593
+ 0.0,
594
+ 0.0,
595
+ 0.0,
596
+ 0.0,
597
+ 0.0,
598
+ 0.0
599
+ ],
600
+ "mean": [
601
+ 0.0,
602
+ 0.0,
603
+ 0.0,
604
+ 0.0,
605
+ 0.0,
606
+ 0.0,
607
+ 0.0
608
+ ],
609
+ "min": [
610
+ 0.0,
611
+ 0.0,
612
+ 0.0,
613
+ 0.0,
614
+ 0.0,
615
+ 0.0,
616
+ 0.0
617
+ ],
618
+ "q01": [
619
+ 0.0,
620
+ 0.0,
621
+ 0.0,
622
+ 0.0,
623
+ 0.0,
624
+ 0.0,
625
+ 0.0
626
+ ],
627
+ "q99": [
628
+ 0.0,
629
+ 0.0,
630
+ 0.0,
631
+ 0.0,
632
+ 0.0,
633
+ 0.0,
634
+ 0.0
635
+ ],
636
+ "std": [
637
+ 0.0,
638
+ 0.0,
639
+ 0.0,
640
+ 0.0,
641
+ 0.0,
642
+ 0.0,
643
+ 0.0
644
+ ]
645
+ }
646
+ },
647
+ "berkeley_cable_routing": {
648
+ "action": {
649
+ "mask": [
650
+ true,
651
+ true,
652
+ true,
653
+ true,
654
+ true,
655
+ true,
656
+ false
657
+ ],
658
+ "max": [
659
+ 0.9633283019065857,
660
+ 1.0,
661
+ 1.0,
662
+ 0.0,
663
+ 0.0,
664
+ 1.0,
665
+ 0.0
666
+ ],
667
+ "mean": [
668
+ -0.07139874249696732,
669
+ 0.023609008640050888,
670
+ 0.10241943597793579,
671
+ 0.0,
672
+ 0.0,
673
+ 0.049671024084091187,
674
+ 0.0
675
+ ],
676
+ "min": [
677
+ -0.9809081554412842,
678
+ -0.9554349184036255,
679
+ -0.9994775056838989,
680
+ 0.0,
681
+ 0.0,
682
+ -1.0,
683
+ 0.0
684
+ ],
685
+ "q01": [
686
+ -0.5534318816661835,
687
+ -0.4797285574674606,
688
+ -0.5314934802055359,
689
+ 0.0,
690
+ 0.0,
691
+ -0.8855219376087189,
692
+ 0.0
693
+ ],
694
+ "q99": [
695
+ 0.42652835428714786,
696
+ 0.5000944086909298,
697
+ 0.639823433756829,
698
+ 0.0,
699
+ 0.0,
700
+ 0.984243879914284,
701
+ 0.0
702
+ ],
703
+ "std": [
704
+ 0.1815500408411026,
705
+ 0.1810990273952484,
706
+ 0.21220779418945312,
707
+ 0.0,
708
+ 0.0,
709
+ 0.3475511968135834,
710
+ 0.0
711
+ ]
712
+ },
713
+ "num_trajectories": 1647,
714
+ "num_transitions": 42328,
715
+ "proprio": {
716
+ "max": [
717
+ 0.0,
718
+ 0.0,
719
+ 0.0,
720
+ 0.0,
721
+ 0.0,
722
+ 0.0,
723
+ 0.0
724
+ ],
725
+ "mean": [
726
+ 0.0,
727
+ 0.0,
728
+ 0.0,
729
+ 0.0,
730
+ 0.0,
731
+ 0.0,
732
+ 0.0
733
+ ],
734
+ "min": [
735
+ 0.0,
736
+ 0.0,
737
+ 0.0,
738
+ 0.0,
739
+ 0.0,
740
+ 0.0,
741
+ 0.0
742
+ ],
743
+ "q01": [
744
+ 0.0,
745
+ 0.0,
746
+ 0.0,
747
+ 0.0,
748
+ 0.0,
749
+ 0.0,
750
+ 0.0
751
+ ],
752
+ "q99": [
753
+ 0.0,
754
+ 0.0,
755
+ 0.0,
756
+ 0.0,
757
+ 0.0,
758
+ 0.0,
759
+ 0.0
760
+ ],
761
+ "std": [
762
+ 0.0,
763
+ 0.0,
764
+ 0.0,
765
+ 0.0,
766
+ 0.0,
767
+ 0.0,
768
+ 0.0
769
+ ]
770
+ }
771
+ },
772
+ "berkeley_fanuc_manipulation": {
773
+ "action": {
774
+ "mask": [
775
+ true,
776
+ true,
777
+ true,
778
+ true,
779
+ true,
780
+ true,
781
+ false
782
+ ],
783
+ "max": [
784
+ 0.009999999776482582,
785
+ 0.009999999776482582,
786
+ 0.009999999776482582,
787
+ 0.03490658476948738,
788
+ 0.03490658476948738,
789
+ 0.03490658476948738,
790
+ 1.0
791
+ ],
792
+ "mean": [
793
+ 0.0007744057802483439,
794
+ -0.00031240080716088414,
795
+ -0.0015001941937953234,
796
+ -0.0007515158504247665,
797
+ -0.00015832878125365824,
798
+ 0.00014327642566058785,
799
+ 0.699295699596405
800
+ ],
801
+ "min": [
802
+ -0.009999999776482582,
803
+ -0.009999999776482582,
804
+ -0.009999999776482582,
805
+ -0.03490658476948738,
806
+ -0.03490658476948738,
807
+ -0.03490658476948738,
808
+ 0.0
809
+ ],
810
+ "q01": [
811
+ -0.009999999776482582,
812
+ -0.009999999776482582,
813
+ -0.009999999776482582,
814
+ -0.03490658476948738,
815
+ 0.0,
816
+ -0.03490658476948738,
817
+ 0.0
818
+ ],
819
+ "q99": [
820
+ 0.009999999776482582,
821
+ 0.009999999776482582,
822
+ 0.009999999776482582,
823
+ 0.03490658476948738,
824
+ 0.0,
825
+ 0.03490658476948738,
826
+ 1.0
827
+ ],
828
+ "std": [
829
+ 0.0034070091787725687,
830
+ 0.0049921851605176926,
831
+ 0.005344334989786148,
832
+ 0.00759894959628582,
833
+ 0.004081866703927517,
834
+ 0.008568956516683102,
835
+ 0.4586937427520752
836
+ ]
837
+ },
838
+ "num_trajectories": 415,
839
+ "num_transitions": 62613,
840
+ "proprio": {
841
+ "max": [
842
+ 0.0,
843
+ 0.0,
844
+ 0.0,
845
+ 0.0,
846
+ 0.0,
847
+ 0.0,
848
+ 0.0
849
+ ],
850
+ "mean": [
851
+ 0.0,
852
+ 0.0,
853
+ 0.0,
854
+ 0.0,
855
+ 0.0,
856
+ 0.0,
857
+ 0.0
858
+ ],
859
+ "min": [
860
+ 0.0,
861
+ 0.0,
862
+ 0.0,
863
+ 0.0,
864
+ 0.0,
865
+ 0.0,
866
+ 0.0
867
+ ],
868
+ "q01": [
869
+ 0.0,
870
+ 0.0,
871
+ 0.0,
872
+ 0.0,
873
+ 0.0,
874
+ 0.0,
875
+ 0.0
876
+ ],
877
+ "q99": [
878
+ 0.0,
879
+ 0.0,
880
+ 0.0,
881
+ 0.0,
882
+ 0.0,
883
+ 0.0,
884
+ 0.0
885
+ ],
886
+ "std": [
887
+ 0.0,
888
+ 0.0,
889
+ 0.0,
890
+ 0.0,
891
+ 0.0,
892
+ 0.0,
893
+ 0.0
894
+ ]
895
+ }
896
+ },
897
+ "bridge_orig": {
898
+ "action": {
899
+ "mask": [
900
+ true,
901
+ true,
902
+ true,
903
+ true,
904
+ true,
905
+ true,
906
+ false
907
+ ],
908
+ "max": [
909
+ 0.41691166162490845,
910
+ 0.25864794850349426,
911
+ 0.21218234300613403,
912
+ 3.122201919555664,
913
+ 1.8618112802505493,
914
+ 6.280478477478027,
915
+ 1.0
916
+ ],
917
+ "mean": [
918
+ 0.0002334194869035855,
919
+ 0.00013004911306779832,
920
+ -0.00012762474943883717,
921
+ -0.0001556558854645118,
922
+ -0.0004039328487124294,
923
+ 0.00023557482927571982,
924
+ 0.5764579176902771
925
+ ],
926
+ "min": [
927
+ -0.4007510244846344,
928
+ -0.13874775171279907,
929
+ -0.22553899884223938,
930
+ -3.2010786533355713,
931
+ -1.8618112802505493,
932
+ -6.279075622558594,
933
+ 0.0
934
+ ],
935
+ "q01": [
936
+ -0.02872725307941437,
937
+ -0.04170349963009357,
938
+ -0.026093858778476715,
939
+ -0.08092105075716972,
940
+ -0.09288699507713317,
941
+ -0.20718276381492615,
942
+ 0.0
943
+ ],
944
+ "q99": [
945
+ 0.028309678435325586,
946
+ 0.040855254605412394,
947
+ 0.040161586627364146,
948
+ 0.08192047759890528,
949
+ 0.07792850524187081,
950
+ 0.20382574498653397,
951
+ 1.0
952
+ ],
953
+ "std": [
954
+ 0.009765930473804474,
955
+ 0.013689135201275349,
956
+ 0.012667362578213215,
957
+ 0.028534092009067535,
958
+ 0.030637972056865692,
959
+ 0.07691419124603271,
960
+ 0.4973701536655426
961
+ ]
962
+ },
963
+ "num_trajectories": 60064,
964
+ "num_transitions": 2135463,
965
+ "proprio": {
966
+ "max": [
967
+ 0.0,
968
+ 0.0,
969
+ 0.0,
970
+ 0.0,
971
+ 0.0,
972
+ 0.0,
973
+ 0.0
974
+ ],
975
+ "mean": [
976
+ 0.0,
977
+ 0.0,
978
+ 0.0,
979
+ 0.0,
980
+ 0.0,
981
+ 0.0,
982
+ 0.0
983
+ ],
984
+ "min": [
985
+ 0.0,
986
+ 0.0,
987
+ 0.0,
988
+ 0.0,
989
+ 0.0,
990
+ 0.0,
991
+ 0.0
992
+ ],
993
+ "q01": [
994
+ 0.0,
995
+ 0.0,
996
+ 0.0,
997
+ 0.0,
998
+ 0.0,
999
+ 0.0,
1000
+ 0.0
1001
+ ],
1002
+ "q99": [
1003
+ 0.0,
1004
+ 0.0,
1005
+ 0.0,
1006
+ 0.0,
1007
+ 0.0,
1008
+ 0.0,
1009
+ 0.0
1010
+ ],
1011
+ "std": [
1012
+ 0.0,
1013
+ 0.0,
1014
+ 0.0,
1015
+ 0.0,
1016
+ 0.0,
1017
+ 0.0,
1018
+ 0.0
1019
+ ]
1020
+ }
1021
+ },
1022
+ "cmu_stretch": {
1023
+ "action": {
1024
+ "mask": [
1025
+ true,
1026
+ true,
1027
+ true,
1028
+ true,
1029
+ true,
1030
+ true,
1031
+ false
1032
+ ],
1033
+ "max": [
1034
+ 0.02338407188653946,
1035
+ 0.0,
1036
+ 0.023404927924275398,
1037
+ 0.0,
1038
+ 0.0,
1039
+ 0.0,
1040
+ 1.0
1041
+ ],
1042
+ "mean": [
1043
+ 0.00036304505192674696,
1044
+ 0.0,
1045
+ 0.0016466958913952112,
1046
+ 0.0,
1047
+ 0.0,
1048
+ 0.0,
1049
+ 0.3987048268318176
1050
+ ],
1051
+ "min": [
1052
+ -0.019353797659277916,
1053
+ 0.0,
1054
+ -0.02019215188920498,
1055
+ 0.0,
1056
+ 0.0,
1057
+ 0.0,
1058
+ 0.0
1059
+ ],
1060
+ "q01": [
1061
+ -0.011175686959177256,
1062
+ 0.0,
1063
+ -0.0032206363626755773,
1064
+ 0.0,
1065
+ 0.0,
1066
+ 0.0,
1067
+ 0.0
1068
+ ],
1069
+ "q99": [
1070
+ 0.014501785952597848,
1071
+ 0.0,
1072
+ 0.015056106168776728,
1073
+ 0.0,
1074
+ 0.0,
1075
+ 0.0,
1076
+ 1.0
1077
+ ],
1078
+ "std": [
1079
+ 0.004081828519701958,
1080
+ 0.0,
1081
+ 0.0037743328139185905,
1082
+ 0.0,
1083
+ 0.0,
1084
+ 0.0,
1085
+ 0.48963725566864014
1086
+ ]
1087
+ },
1088
+ "num_trajectories": 135,
1089
+ "num_transitions": 25016,
1090
+ "proprio": {
1091
+ "max": [
1092
+ 0.0,
1093
+ 0.0,
1094
+ 0.0,
1095
+ 0.0,
1096
+ 0.0,
1097
+ 0.0,
1098
+ 0.0
1099
+ ],
1100
+ "mean": [
1101
+ 0.0,
1102
+ 0.0,
1103
+ 0.0,
1104
+ 0.0,
1105
+ 0.0,
1106
+ 0.0,
1107
+ 0.0
1108
+ ],
1109
+ "min": [
1110
+ 0.0,
1111
+ 0.0,
1112
+ 0.0,
1113
+ 0.0,
1114
+ 0.0,
1115
+ 0.0,
1116
+ 0.0
1117
+ ],
1118
+ "q01": [
1119
+ 0.0,
1120
+ 0.0,
1121
+ 0.0,
1122
+ 0.0,
1123
+ 0.0,
1124
+ 0.0,
1125
+ 0.0
1126
+ ],
1127
+ "q99": [
1128
+ 0.0,
1129
+ 0.0,
1130
+ 0.0,
1131
+ 0.0,
1132
+ 0.0,
1133
+ 0.0,
1134
+ 0.0
1135
+ ],
1136
+ "std": [
1137
+ 0.0,
1138
+ 0.0,
1139
+ 0.0,
1140
+ 0.0,
1141
+ 0.0,
1142
+ 0.0,
1143
+ 0.0
1144
+ ]
1145
+ }
1146
+ },
1147
+ "dlr_edan_shared_control_converted_externally_to_rlds": {
1148
+ "action": {
1149
+ "mask": [
1150
+ true,
1151
+ true,
1152
+ true,
1153
+ true,
1154
+ true,
1155
+ true,
1156
+ false
1157
+ ],
1158
+ "max": [
1159
+ 0.18991442024707794,
1160
+ 0.0739002525806427,
1161
+ 0.18064819276332855,
1162
+ 0.0866486132144928,
1163
+ 0.13464981317520142,
1164
+ 0.16910280287265778,
1165
+ 1.0
1166
+ ],
1167
+ "mean": [
1168
+ 0.006647810339927673,
1169
+ -0.0007657372043468058,
1170
+ 0.006522852927446365,
1171
+ 0.0011679717572405934,
1172
+ -0.006395625416189432,
1173
+ -0.011902998201549053,
1174
+ 0.6985887289047241
1175
+ ],
1176
+ "min": [
1177
+ -0.10054297000169754,
1178
+ -0.08427435159683228,
1179
+ -0.13533438742160797,
1180
+ -0.17556548118591309,
1181
+ -0.18485672771930695,
1182
+ -0.2680685818195343,
1183
+ 0.0
1184
+ ],
1185
+ "q01": [
1186
+ -0.02987122368067503,
1187
+ -0.06013262912631035,
1188
+ -0.08286409199237824,
1189
+ -0.05924444157630205,
1190
+ -0.15986866518855095,
1191
+ -0.15636983573436739,
1192
+ 0.0
1193
+ ],
1194
+ "q99": [
1195
+ 0.08832092039287087,
1196
+ 0.042126184627413736,
1197
+ 0.11311905644834042,
1198
+ 0.0643695573508739,
1199
+ 0.03941855944693088,
1200
+ 0.156646853685379,
1201
+ 1.0
1202
+ ],
1203
+ "std": [
1204
+ 0.021393608301877975,
1205
+ 0.01814231649041176,
1206
+ 0.03374375030398369,
1207
+ 0.01743541844189167,
1208
+ 0.03394376486539841,
1209
+ 0.04641875624656677,
1210
+ 0.4588589072227478
1211
+ ]
1212
+ },
1213
+ "num_trajectories": 104,
1214
+ "num_transitions": 8928,
1215
+ "proprio": {
1216
+ "max": [
1217
+ 0.0,
1218
+ 0.0,
1219
+ 0.0,
1220
+ 0.0,
1221
+ 0.0,
1222
+ 0.0,
1223
+ 0.0
1224
+ ],
1225
+ "mean": [
1226
+ 0.0,
1227
+ 0.0,
1228
+ 0.0,
1229
+ 0.0,
1230
+ 0.0,
1231
+ 0.0,
1232
+ 0.0
1233
+ ],
1234
+ "min": [
1235
+ 0.0,
1236
+ 0.0,
1237
+ 0.0,
1238
+ 0.0,
1239
+ 0.0,
1240
+ 0.0,
1241
+ 0.0
1242
+ ],
1243
+ "q01": [
1244
+ 0.0,
1245
+ 0.0,
1246
+ 0.0,
1247
+ 0.0,
1248
+ 0.0,
1249
+ 0.0,
1250
+ 0.0
1251
+ ],
1252
+ "q99": [
1253
+ 0.0,
1254
+ 0.0,
1255
+ 0.0,
1256
+ 0.0,
1257
+ 0.0,
1258
+ 0.0,
1259
+ 0.0
1260
+ ],
1261
+ "std": [
1262
+ 0.0,
1263
+ 0.0,
1264
+ 0.0,
1265
+ 0.0,
1266
+ 0.0,
1267
+ 0.0,
1268
+ 0.0
1269
+ ]
1270
+ }
1271
+ },
1272
+ "dobbe": {
1273
+ "action": {
1274
+ "mask": [
1275
+ true,
1276
+ true,
1277
+ true,
1278
+ true,
1279
+ true,
1280
+ true,
1281
+ false
1282
+ ],
1283
+ "max": [
1284
+ 38.590423583984375,
1285
+ 17.932697296142578,
1286
+ 4.843764305114746,
1287
+ 1.4372116327285767,
1288
+ 0.4340403974056244,
1289
+ 1.2057193517684937,
1290
+ 0.9998947381973267
1291
+ ],
1292
+ "mean": [
1293
+ -0.0001120665911003016,
1294
+ 0.0011229600058868527,
1295
+ -0.00010194431524723768,
1296
+ -7.371398532995954e-05,
1297
+ -0.00067531579406932,
1298
+ -5.6643435527803376e-05,
1299
+ 0.6318281888961792
1300
+ ],
1301
+ "min": [
1302
+ -5.700923442840576,
1303
+ -21.605947494506836,
1304
+ -123.72489929199219,
1305
+ -1.7229845523834229,
1306
+ -0.4998578727245331,
1307
+ -0.8867913484573364,
1308
+ 1.4196479014572105e-06
1309
+ ],
1310
+ "q01": [
1311
+ -0.01119564864784479,
1312
+ -0.014266146533191203,
1313
+ -0.0071747214533388615,
1314
+ -0.009444301575422287,
1315
+ -0.03990109823644161,
1316
+ -0.017422311007976532,
1317
+ 4.003279136668425e-05
1318
+ ],
1319
+ "q99": [
1320
+ 0.01015154086053368,
1321
+ 0.017181577533483497,
1322
+ 0.007216989761218411,
1323
+ 0.010380979906767595,
1324
+ 0.03556173853576176,
1325
+ 0.018032474815845446,
1326
+ 0.9982578039169312
1327
+ ],
1328
+ "std": [
1329
+ 0.04264938458800316,
1330
+ 0.04428559169173241,
1331
+ 0.12224084138870239,
1332
+ 0.005388413090258837,
1333
+ 0.011246449314057827,
1334
+ 0.006287882570177317,
1335
+ 0.39732322096824646
1336
+ ]
1337
+ },
1338
+ "num_trajectories": 5208,
1339
+ "num_transitions": 1139911,
1340
+ "proprio": {
1341
+ "max": [
1342
+ 0.0,
1343
+ 0.0,
1344
+ 0.0,
1345
+ 0.0,
1346
+ 0.0,
1347
+ 0.0,
1348
+ 0.0
1349
+ ],
1350
+ "mean": [
1351
+ 0.0,
1352
+ 0.0,
1353
+ 0.0,
1354
+ 0.0,
1355
+ 0.0,
1356
+ 0.0,
1357
+ 0.0
1358
+ ],
1359
+ "min": [
1360
+ 0.0,
1361
+ 0.0,
1362
+ 0.0,
1363
+ 0.0,
1364
+ 0.0,
1365
+ 0.0,
1366
+ 0.0
1367
+ ],
1368
+ "q01": [
1369
+ 0.0,
1370
+ 0.0,
1371
+ 0.0,
1372
+ 0.0,
1373
+ 0.0,
1374
+ 0.0,
1375
+ 0.0
1376
+ ],
1377
+ "q99": [
1378
+ 0.0,
1379
+ 0.0,
1380
+ 0.0,
1381
+ 0.0,
1382
+ 0.0,
1383
+ 0.0,
1384
+ 0.0
1385
+ ],
1386
+ "std": [
1387
+ 0.0,
1388
+ 0.0,
1389
+ 0.0,
1390
+ 0.0,
1391
+ 0.0,
1392
+ 0.0,
1393
+ 0.0
1394
+ ]
1395
+ }
1396
+ },
1397
+ "fmb_dataset": {
1398
+ "action": {
1399
+ "mask": [
1400
+ true,
1401
+ true,
1402
+ true,
1403
+ true,
1404
+ true,
1405
+ true,
1406
+ false
1407
+ ],
1408
+ "max": [
1409
+ 1.399999976158142,
1410
+ 1.0,
1411
+ 1.399999976158142,
1412
+ 1.0,
1413
+ 1.0,
1414
+ 1.0,
1415
+ 1.0
1416
+ ],
1417
+ "mean": [
1418
+ 0.059029702097177505,
1419
+ -0.06476633995771408,
1420
+ -0.09787475317716599,
1421
+ 0.004325388930737972,
1422
+ 0.00028963794466108084,
1423
+ -0.04457257315516472,
1424
+ 0.7336440086364746
1425
+ ],
1426
+ "min": [
1427
+ -1.399999976158142,
1428
+ -1.399999976158142,
1429
+ -1.0,
1430
+ -1.0,
1431
+ -1.0,
1432
+ -1.0,
1433
+ 0.0
1434
+ ],
1435
+ "q01": [
1436
+ -0.8257142901420593,
1437
+ -1.399999976158142,
1438
+ -1.0,
1439
+ -1.0,
1440
+ -0.3028571307659149,
1441
+ -1.0,
1442
+ 0.0
1443
+ ],
1444
+ "q99": [
1445
+ 1.0,
1446
+ 0.5257142782211304,
1447
+ 1.0,
1448
+ 1.0,
1449
+ 0.3400000035762787,
1450
+ 1.0,
1451
+ 1.0
1452
+ ],
1453
+ "std": [
1454
+ 0.28809213638305664,
1455
+ 0.2820415794849396,
1456
+ 0.4626740515232086,
1457
+ 0.3266514539718628,
1458
+ 0.10842999070882797,
1459
+ 0.3440099358558655,
1460
+ 0.4435282051563263
1461
+ ]
1462
+ },
1463
+ "num_trajectories": 8612,
1464
+ "num_transitions": 1137459,
1465
+ "proprio": {
1466
+ "max": [
1467
+ 0.0,
1468
+ 0.0,
1469
+ 0.0,
1470
+ 0.0,
1471
+ 0.0,
1472
+ 0.0,
1473
+ 0.0
1474
+ ],
1475
+ "mean": [
1476
+ 0.0,
1477
+ 0.0,
1478
+ 0.0,
1479
+ 0.0,
1480
+ 0.0,
1481
+ 0.0,
1482
+ 0.0
1483
+ ],
1484
+ "min": [
1485
+ 0.0,
1486
+ 0.0,
1487
+ 0.0,
1488
+ 0.0,
1489
+ 0.0,
1490
+ 0.0,
1491
+ 0.0
1492
+ ],
1493
+ "q01": [
1494
+ 0.0,
1495
+ 0.0,
1496
+ 0.0,
1497
+ 0.0,
1498
+ 0.0,
1499
+ 0.0,
1500
+ 0.0
1501
+ ],
1502
+ "q99": [
1503
+ 0.0,
1504
+ 0.0,
1505
+ 0.0,
1506
+ 0.0,
1507
+ 0.0,
1508
+ 0.0,
1509
+ 0.0
1510
+ ],
1511
+ "std": [
1512
+ 0.0,
1513
+ 0.0,
1514
+ 0.0,
1515
+ 0.0,
1516
+ 0.0,
1517
+ 0.0,
1518
+ 0.0
1519
+ ]
1520
+ }
1521
+ },
1522
+ "fractal20220817_data": {
1523
+ "action": {
1524
+ "mask": [
1525
+ true,
1526
+ true,
1527
+ true,
1528
+ true,
1529
+ true,
1530
+ true,
1531
+ false
1532
+ ],
1533
+ "max": [
1534
+ 2.9984593391418457,
1535
+ 22.09052848815918,
1536
+ 2.7507524490356445,
1537
+ 1.570636510848999,
1538
+ 1.5321086645126343,
1539
+ 1.5691522359848022,
1540
+ 1.0
1541
+ ],
1542
+ "mean": [
1543
+ 0.006987582892179489,
1544
+ 0.006265917327255011,
1545
+ -0.01262515690177679,
1546
+ 0.04333311319351196,
1547
+ -0.005756212864071131,
1548
+ 0.0009130256366916001,
1549
+ 0.5354204773902893
1550
+ ],
1551
+ "min": [
1552
+ -2.0204520225524902,
1553
+ -5.497899532318115,
1554
+ -2.031663417816162,
1555
+ -1.569917917251587,
1556
+ -1.569892168045044,
1557
+ -1.570419430732727,
1558
+ 0.0
1559
+ ],
1560
+ "q01": [
1561
+ -0.22453527510166169,
1562
+ -0.14820013284683228,
1563
+ -0.231589707583189,
1564
+ -0.3517994859814644,
1565
+ -0.4193011274933815,
1566
+ -0.43643461108207704,
1567
+ 0.0
1568
+ ],
1569
+ "q99": [
1570
+ 0.17824687153100965,
1571
+ 0.14938379630446405,
1572
+ 0.21842354819178575,
1573
+ 0.5892666035890578,
1574
+ 0.35272657424211445,
1575
+ 0.44796681255102094,
1576
+ 1.0
1577
+ ],
1578
+ "std": [
1579
+ 0.0692116990685463,
1580
+ 0.05970962345600128,
1581
+ 0.07353084534406662,
1582
+ 0.15610496699810028,
1583
+ 0.13164450228214264,
1584
+ 0.14593800902366638,
1585
+ 0.497110515832901
1586
+ ]
1587
+ },
1588
+ "num_trajectories": 87212,
1589
+ "num_transitions": 3786400,
1590
+ "proprio": {
1591
+ "max": [
1592
+ 0.0,
1593
+ 0.0,
1594
+ 0.0,
1595
+ 0.0,
1596
+ 0.0,
1597
+ 0.0,
1598
+ 0.0
1599
+ ],
1600
+ "mean": [
1601
+ 0.0,
1602
+ 0.0,
1603
+ 0.0,
1604
+ 0.0,
1605
+ 0.0,
1606
+ 0.0,
1607
+ 0.0
1608
+ ],
1609
+ "min": [
1610
+ 0.0,
1611
+ 0.0,
1612
+ 0.0,
1613
+ 0.0,
1614
+ 0.0,
1615
+ 0.0,
1616
+ 0.0
1617
+ ],
1618
+ "q01": [
1619
+ 0.0,
1620
+ 0.0,
1621
+ 0.0,
1622
+ 0.0,
1623
+ 0.0,
1624
+ 0.0,
1625
+ 0.0
1626
+ ],
1627
+ "q99": [
1628
+ 0.0,
1629
+ 0.0,
1630
+ 0.0,
1631
+ 0.0,
1632
+ 0.0,
1633
+ 0.0,
1634
+ 0.0
1635
+ ],
1636
+ "std": [
1637
+ 0.0,
1638
+ 0.0,
1639
+ 0.0,
1640
+ 0.0,
1641
+ 0.0,
1642
+ 0.0,
1643
+ 0.0
1644
+ ]
1645
+ }
1646
+ },
1647
+ "furniture_bench_dataset_converted_externally_to_rlds": {
1648
+ "action": {
1649
+ "mask": [
1650
+ true,
1651
+ true,
1652
+ true,
1653
+ true,
1654
+ true,
1655
+ true,
1656
+ false
1657
+ ],
1658
+ "max": [
1659
+ 0.10000000149011612,
1660
+ 0.10000000149011612,
1661
+ 0.10000000149011612,
1662
+ 0.8651833534240723,
1663
+ 1.0909736156463623,
1664
+ 2.863185405731201,
1665
+ 1.0
1666
+ ],
1667
+ "mean": [
1668
+ 0.00014610752987209707,
1669
+ 0.0010830952087417245,
1670
+ 0.0006224989192560315,
1671
+ -0.003303206292912364,
1672
+ -0.0026880695950239897,
1673
+ 0.018242603167891502,
1674
+ 0.48854944109916687
1675
+ ],
1676
+ "min": [
1677
+ -0.10495579987764359,
1678
+ -0.10939455777406693,
1679
+ -0.10000000149011612,
1680
+ -0.971906840801239,
1681
+ -1.0475432872772217,
1682
+ -3.06000018119812,
1683
+ 0.0
1684
+ ],
1685
+ "q01": [
1686
+ -0.053988199681043625,
1687
+ -0.05049169331789017,
1688
+ -0.032499241530895236,
1689
+ -0.1953887003660202,
1690
+ -0.41674559473991396,
1691
+ -0.8886768388748169,
1692
+ 0.0
1693
+ ],
1694
+ "q99": [
1695
+ 0.05414841488003723,
1696
+ 0.04965164884924884,
1697
+ 0.060055799782276154,
1698
+ 0.18231668293476103,
1699
+ 0.39867786407470646,
1700
+ 0.8772023963928218,
1701
+ 1.0
1702
+ ],
1703
+ "std": [
1704
+ 0.01610708422958851,
1705
+ 0.014891477301716805,
1706
+ 0.014014219865202904,
1707
+ 0.058274295181035995,
1708
+ 0.11417088657617569,
1709
+ 0.33479776978492737,
1710
+ 0.49991825222969055
1711
+ ]
1712
+ },
1713
+ "num_trajectories": 5100,
1714
+ "num_transitions": 3948057,
1715
+ "proprio": {
1716
+ "max": [
1717
+ 0.0,
1718
+ 0.0,
1719
+ 0.0,
1720
+ 0.0,
1721
+ 0.0,
1722
+ 0.0,
1723
+ 0.0
1724
+ ],
1725
+ "mean": [
1726
+ 0.0,
1727
+ 0.0,
1728
+ 0.0,
1729
+ 0.0,
1730
+ 0.0,
1731
+ 0.0,
1732
+ 0.0
1733
+ ],
1734
+ "min": [
1735
+ 0.0,
1736
+ 0.0,
1737
+ 0.0,
1738
+ 0.0,
1739
+ 0.0,
1740
+ 0.0,
1741
+ 0.0
1742
+ ],
1743
+ "q01": [
1744
+ 0.0,
1745
+ 0.0,
1746
+ 0.0,
1747
+ 0.0,
1748
+ 0.0,
1749
+ 0.0,
1750
+ 0.0
1751
+ ],
1752
+ "q99": [
1753
+ 0.0,
1754
+ 0.0,
1755
+ 0.0,
1756
+ 0.0,
1757
+ 0.0,
1758
+ 0.0,
1759
+ 0.0
1760
+ ],
1761
+ "std": [
1762
+ 0.0,
1763
+ 0.0,
1764
+ 0.0,
1765
+ 0.0,
1766
+ 0.0,
1767
+ 0.0,
1768
+ 0.0
1769
+ ]
1770
+ }
1771
+ },
1772
+ "iamlab_cmu_pickup_insert_converted_externally_to_rlds": {
1773
+ "action": {
1774
+ "mask": [
1775
+ true,
1776
+ true,
1777
+ true,
1778
+ true,
1779
+ true,
1780
+ true,
1781
+ false
1782
+ ],
1783
+ "max": [
1784
+ 0.6634981632232666,
1785
+ 0.23428471386432648,
1786
+ 0.4308285415172577,
1787
+ 3.1415927410125732,
1788
+ 0.13647015392780304,
1789
+ 3.141592502593994,
1790
+ 1.0
1791
+ ],
1792
+ "mean": [
1793
+ 0.5274372696876526,
1794
+ 0.02858201041817665,
1795
+ 0.18712575733661652,
1796
+ 1.2339589595794678,
1797
+ 0.03226623684167862,
1798
+ -1.4199490547180176,
1799
+ 0.5550631880760193
1800
+ ],
1801
+ "min": [
1802
+ 0.3071657121181488,
1803
+ -0.29754969477653503,
1804
+ 0.06578229367733002,
1805
+ -3.1415927410125732,
1806
+ -0.04584203287959099,
1807
+ -3.141592502593994,
1808
+ 0.0
1809
+ ],
1810
+ "q01": [
1811
+ 0.3148897051811218,
1812
+ -0.20317550599575043,
1813
+ 0.06785467118024827,
1814
+ -3.140952730178833,
1815
+ -0.029743434861302376,
1816
+ -3.141091251373291,
1817
+ 0.0
1818
+ ],
1819
+ "q99": [
1820
+ 0.6472805738449097,
1821
+ 0.20846802592277527,
1822
+ 0.36855655312538155,
1823
+ 3.1409926891326903,
1824
+ 0.11424950212240226,
1825
+ 3.1410969257354737,
1826
+ 1.0
1827
+ ],
1828
+ "std": [
1829
+ 0.08108345419168472,
1830
+ 0.1116757020354271,
1831
+ 0.07747554779052734,
1832
+ 2.8737246990203857,
1833
+ 0.02774704433977604,
1834
+ 2.7678682804107666,
1835
+ 0.49695101380348206
1836
+ ]
1837
+ },
1838
+ "num_trajectories": 631,
1839
+ "num_transitions": 146241,
1840
+ "proprio": {
1841
+ "max": [
1842
+ 0.0,
1843
+ 0.0,
1844
+ 0.0,
1845
+ 0.0,
1846
+ 0.0,
1847
+ 0.0,
1848
+ 0.0
1849
+ ],
1850
+ "mean": [
1851
+ 0.0,
1852
+ 0.0,
1853
+ 0.0,
1854
+ 0.0,
1855
+ 0.0,
1856
+ 0.0,
1857
+ 0.0
1858
+ ],
1859
+ "min": [
1860
+ 0.0,
1861
+ 0.0,
1862
+ 0.0,
1863
+ 0.0,
1864
+ 0.0,
1865
+ 0.0,
1866
+ 0.0
1867
+ ],
1868
+ "q01": [
1869
+ 0.0,
1870
+ 0.0,
1871
+ 0.0,
1872
+ 0.0,
1873
+ 0.0,
1874
+ 0.0,
1875
+ 0.0
1876
+ ],
1877
+ "q99": [
1878
+ 0.0,
1879
+ 0.0,
1880
+ 0.0,
1881
+ 0.0,
1882
+ 0.0,
1883
+ 0.0,
1884
+ 0.0
1885
+ ],
1886
+ "std": [
1887
+ 0.0,
1888
+ 0.0,
1889
+ 0.0,
1890
+ 0.0,
1891
+ 0.0,
1892
+ 0.0,
1893
+ 0.0
1894
+ ]
1895
+ }
1896
+ },
1897
+ "jaco_play": {
1898
+ "action": {
1899
+ "mask": [
1900
+ true,
1901
+ true,
1902
+ true,
1903
+ true,
1904
+ true,
1905
+ true,
1906
+ false
1907
+ ],
1908
+ "max": [
1909
+ 0.20000000298023224,
1910
+ 0.20000000298023224,
1911
+ 0.20000000298023224,
1912
+ 0.0,
1913
+ 0.0,
1914
+ 0.0,
1915
+ 1.0
1916
+ ],
1917
+ "mean": [
1918
+ 0.0009658430935814977,
1919
+ -0.00580078037455678,
1920
+ -0.00395062193274498,
1921
+ 0.0,
1922
+ 0.0,
1923
+ 0.0,
1924
+ 0.34934908151626587
1925
+ ],
1926
+ "min": [
1927
+ -0.20000000298023224,
1928
+ -0.20000000298023224,
1929
+ -0.20000000298023224,
1930
+ 0.0,
1931
+ 0.0,
1932
+ 0.0,
1933
+ 0.0
1934
+ ],
1935
+ "q01": [
1936
+ -0.20000000298023224,
1937
+ -0.20000000298023224,
1938
+ -0.20000000298023224,
1939
+ 0.0,
1940
+ 0.0,
1941
+ 0.0,
1942
+ 0.0
1943
+ ],
1944
+ "q99": [
1945
+ 0.20000000298023224,
1946
+ 0.20000000298023224,
1947
+ 0.20000000298023224,
1948
+ 0.0,
1949
+ 0.0,
1950
+ 0.0,
1951
+ 1.0
1952
+ ],
1953
+ "std": [
1954
+ 0.12235074490308762,
1955
+ 0.09678777307271957,
1956
+ 0.11155334860086441,
1957
+ 0.0,
1958
+ 0.0,
1959
+ 0.0,
1960
+ 0.4768252968788147
1961
+ ]
1962
+ },
1963
+ "num_trajectories": 1085,
1964
+ "num_transitions": 77965,
1965
+ "proprio": {
1966
+ "max": [
1967
+ 0.0,
1968
+ 0.0,
1969
+ 0.0,
1970
+ 0.0,
1971
+ 0.0,
1972
+ 0.0,
1973
+ 0.0
1974
+ ],
1975
+ "mean": [
1976
+ 0.0,
1977
+ 0.0,
1978
+ 0.0,
1979
+ 0.0,
1980
+ 0.0,
1981
+ 0.0,
1982
+ 0.0
1983
+ ],
1984
+ "min": [
1985
+ 0.0,
1986
+ 0.0,
1987
+ 0.0,
1988
+ 0.0,
1989
+ 0.0,
1990
+ 0.0,
1991
+ 0.0
1992
+ ],
1993
+ "q01": [
1994
+ 0.0,
1995
+ 0.0,
1996
+ 0.0,
1997
+ 0.0,
1998
+ 0.0,
1999
+ 0.0,
2000
+ 0.0
2001
+ ],
2002
+ "q99": [
2003
+ 0.0,
2004
+ 0.0,
2005
+ 0.0,
2006
+ 0.0,
2007
+ 0.0,
2008
+ 0.0,
2009
+ 0.0
2010
+ ],
2011
+ "std": [
2012
+ 0.0,
2013
+ 0.0,
2014
+ 0.0,
2015
+ 0.0,
2016
+ 0.0,
2017
+ 0.0,
2018
+ 0.0
2019
+ ]
2020
+ }
2021
+ },
2022
+ "kuka": {
2023
+ "action": {
2024
+ "mask": [
2025
+ true,
2026
+ true,
2027
+ true,
2028
+ true,
2029
+ true,
2030
+ true,
2031
+ false
2032
+ ],
2033
+ "max": [
2034
+ 0.1697135865688324,
2035
+ 0.2777623236179352,
2036
+ 0.43710532784461975,
2037
+ 0.0,
2038
+ 0.0,
2039
+ 1.9684287309646606,
2040
+ 1.0
2041
+ ],
2042
+ "mean": [
2043
+ -0.0004668905457947403,
2044
+ 0.00040138536132872105,
2045
+ -0.001280792523175478,
2046
+ 0.0,
2047
+ 0.0,
2048
+ -0.03722453489899635,
2049
+ 0.4131543040275574
2050
+ ],
2051
+ "min": [
2052
+ -0.159867063164711,
2053
+ -0.2892282009124756,
2054
+ -0.2795473635196686,
2055
+ 0.0,
2056
+ 0.0,
2057
+ -1.9875637292861938,
2058
+ 0.0
2059
+ ],
2060
+ "q01": [
2061
+ -0.06619441494345665,
2062
+ -0.08713878810405731,
2063
+ -0.15083016991615295,
2064
+ 0.0,
2065
+ 0.0,
2066
+ -0.5415697038173676,
2067
+ 0.0
2068
+ ],
2069
+ "q99": [
2070
+ 0.06601839080452929,
2071
+ 0.08732476785779003,
2072
+ 0.18168179214000715,
2073
+ 0.0,
2074
+ 0.0,
2075
+ 0.2923380345106127,
2076
+ 1.0
2077
+ ],
2078
+ "std": [
2079
+ 0.02083250693976879,
2080
+ 0.02915887162089348,
2081
+ 0.06422865390777588,
2082
+ 0.0,
2083
+ 0.0,
2084
+ 0.14224295318126678,
2085
+ 0.49086448550224304
2086
+ ]
2087
+ },
2088
+ "num_trajectories": 209880,
2089
+ "num_transitions": 2455879,
2090
+ "proprio": {
2091
+ "max": [
2092
+ 0.0,
2093
+ 0.0,
2094
+ 0.0,
2095
+ 0.0,
2096
+ 0.0,
2097
+ 0.0,
2098
+ 0.0
2099
+ ],
2100
+ "mean": [
2101
+ 0.0,
2102
+ 0.0,
2103
+ 0.0,
2104
+ 0.0,
2105
+ 0.0,
2106
+ 0.0,
2107
+ 0.0
2108
+ ],
2109
+ "min": [
2110
+ 0.0,
2111
+ 0.0,
2112
+ 0.0,
2113
+ 0.0,
2114
+ 0.0,
2115
+ 0.0,
2116
+ 0.0
2117
+ ],
2118
+ "q01": [
2119
+ 0.0,
2120
+ 0.0,
2121
+ 0.0,
2122
+ 0.0,
2123
+ 0.0,
2124
+ 0.0,
2125
+ 0.0
2126
+ ],
2127
+ "q99": [
2128
+ 0.0,
2129
+ 0.0,
2130
+ 0.0,
2131
+ 0.0,
2132
+ 0.0,
2133
+ 0.0,
2134
+ 0.0
2135
+ ],
2136
+ "std": [
2137
+ 0.0,
2138
+ 0.0,
2139
+ 0.0,
2140
+ 0.0,
2141
+ 0.0,
2142
+ 0.0,
2143
+ 0.0
2144
+ ]
2145
+ }
2146
+ },
2147
+ "nyu_franka_play_dataset_converted_externally_to_rlds": {
2148
+ "action": {
2149
+ "mask": [
2150
+ true,
2151
+ true,
2152
+ true,
2153
+ true,
2154
+ true,
2155
+ true,
2156
+ false
2157
+ ],
2158
+ "max": [
2159
+ 0.06424188613891602,
2160
+ 0.07027634978294373,
2161
+ 0.06129661202430725,
2162
+ 6.281067848205566,
2163
+ 0.1967729926109314,
2164
+ 0.26377415657043457,
2165
+ 1.0
2166
+ ],
2167
+ "mean": [
2168
+ 0.001021989737637341,
2169
+ -0.00012002651783404872,
2170
+ 0.00032894269679673016,
2171
+ 0.0015034361276775599,
2172
+ -0.002198522910475731,
2173
+ -0.001663230243138969,
2174
+ 0.7230083346366882
2175
+ ],
2176
+ "min": [
2177
+ -0.05952230095863342,
2178
+ -0.07232445478439331,
2179
+ -0.06730806827545166,
2180
+ -6.278434753417969,
2181
+ -0.21479034423828125,
2182
+ -0.3627619743347168,
2183
+ 0.0
2184
+ ],
2185
+ "q01": [
2186
+ -0.03199600875377655,
2187
+ -0.032861671447753905,
2188
+ -0.03368805110454559,
2189
+ -0.12080862045288086,
2190
+ -0.12175218224525451,
2191
+ -0.11370223641395569,
2192
+ 0.0
2193
+ ],
2194
+ "q99": [
2195
+ 0.03101520001888276,
2196
+ 0.0373908892273903,
2197
+ 0.03646374464035038,
2198
+ 0.11764093399047852,
2199
+ 0.1258920183777809,
2200
+ 0.09366151213645942,
2201
+ 1.0
2202
+ ],
2203
+ "std": [
2204
+ 0.01327415369451046,
2205
+ 0.013215910643339157,
2206
+ 0.012822109274566174,
2207
+ 0.2732451558113098,
2208
+ 0.057022541761398315,
2209
+ 0.039172880351543427,
2210
+ 0.44752755761146545
2211
+ ]
2212
+ },
2213
+ "num_trajectories": 456,
2214
+ "num_transitions": 44875,
2215
+ "proprio": {
2216
+ "max": [
2217
+ 0.0,
2218
+ 0.0,
2219
+ 0.0,
2220
+ 0.0,
2221
+ 0.0,
2222
+ 0.0,
2223
+ 0.0
2224
+ ],
2225
+ "mean": [
2226
+ 0.0,
2227
+ 0.0,
2228
+ 0.0,
2229
+ 0.0,
2230
+ 0.0,
2231
+ 0.0,
2232
+ 0.0
2233
+ ],
2234
+ "min": [
2235
+ 0.0,
2236
+ 0.0,
2237
+ 0.0,
2238
+ 0.0,
2239
+ 0.0,
2240
+ 0.0,
2241
+ 0.0
2242
+ ],
2243
+ "q01": [
2244
+ 0.0,
2245
+ 0.0,
2246
+ 0.0,
2247
+ 0.0,
2248
+ 0.0,
2249
+ 0.0,
2250
+ 0.0
2251
+ ],
2252
+ "q99": [
2253
+ 0.0,
2254
+ 0.0,
2255
+ 0.0,
2256
+ 0.0,
2257
+ 0.0,
2258
+ 0.0,
2259
+ 0.0
2260
+ ],
2261
+ "std": [
2262
+ 0.0,
2263
+ 0.0,
2264
+ 0.0,
2265
+ 0.0,
2266
+ 0.0,
2267
+ 0.0,
2268
+ 0.0
2269
+ ]
2270
+ }
2271
+ },
2272
+ "roboturk": {
2273
+ "action": {
2274
+ "mask": [
2275
+ true,
2276
+ true,
2277
+ true,
2278
+ true,
2279
+ true,
2280
+ true,
2281
+ false
2282
+ ],
2283
+ "max": [
2284
+ 0.39124172925949097,
2285
+ 0.4601028263568878,
2286
+ 0.4870833456516266,
2287
+ 1.816888689994812,
2288
+ 1.8240282535552979,
2289
+ 1.4824820756912231,
2290
+ 1.0
2291
+ ],
2292
+ "mean": [
2293
+ 0.0014448732836171985,
2294
+ -0.0015945249469950795,
2295
+ -0.0011753785656765103,
2296
+ 0.0023012510500848293,
2297
+ -0.0009382463176734746,
2298
+ -0.00011485807772260159,
2299
+ 0.5746025443077087
2300
+ ],
2301
+ "min": [
2302
+ -0.6546999216079712,
2303
+ -0.6365841031074524,
2304
+ -0.4217723608016968,
2305
+ -1.6695482730865479,
2306
+ -1.8023357391357422,
2307
+ -1.4630827903747559,
2308
+ 0.0
2309
+ ],
2310
+ "q01": [
2311
+ -0.1342635464668274,
2312
+ -0.19996687173843383,
2313
+ -0.1482972100377083,
2314
+ -0.20720748245716095,
2315
+ -0.09676413893699647,
2316
+ -0.18075634717941286,
2317
+ 0.0
2318
+ ],
2319
+ "q99": [
2320
+ 0.14956976801157001,
2321
+ 0.1805950567126275,
2322
+ 0.18841815620660796,
2323
+ 0.21615413755178453,
2324
+ 0.09457383215427405,
2325
+ 0.18543301910162005,
2326
+ 1.0
2327
+ ],
2328
+ "std": [
2329
+ 0.04935386776924133,
2330
+ 0.0635455846786499,
2331
+ 0.061164740473032,
2332
+ 0.09553450345993042,
2333
+ 0.08420111238956451,
2334
+ 0.06517903506755829,
2335
+ 0.49452081322669983
2336
+ ]
2337
+ },
2338
+ "num_trajectories": 1995,
2339
+ "num_transitions": 187507,
2340
+ "proprio": {
2341
+ "max": [
2342
+ 0.0,
2343
+ 0.0,
2344
+ 0.0,
2345
+ 0.0,
2346
+ 0.0,
2347
+ 0.0,
2348
+ 0.0
2349
+ ],
2350
+ "mean": [
2351
+ 0.0,
2352
+ 0.0,
2353
+ 0.0,
2354
+ 0.0,
2355
+ 0.0,
2356
+ 0.0,
2357
+ 0.0
2358
+ ],
2359
+ "min": [
2360
+ 0.0,
2361
+ 0.0,
2362
+ 0.0,
2363
+ 0.0,
2364
+ 0.0,
2365
+ 0.0,
2366
+ 0.0
2367
+ ],
2368
+ "q01": [
2369
+ 0.0,
2370
+ 0.0,
2371
+ 0.0,
2372
+ 0.0,
2373
+ 0.0,
2374
+ 0.0,
2375
+ 0.0
2376
+ ],
2377
+ "q99": [
2378
+ 0.0,
2379
+ 0.0,
2380
+ 0.0,
2381
+ 0.0,
2382
+ 0.0,
2383
+ 0.0,
2384
+ 0.0
2385
+ ],
2386
+ "std": [
2387
+ 0.0,
2388
+ 0.0,
2389
+ 0.0,
2390
+ 0.0,
2391
+ 0.0,
2392
+ 0.0,
2393
+ 0.0
2394
+ ]
2395
+ }
2396
+ },
2397
+ "stanford_hydra_dataset_converted_externally_to_rlds": {
2398
+ "action": {
2399
+ "mask": [
2400
+ true,
2401
+ true,
2402
+ true,
2403
+ true,
2404
+ true,
2405
+ true,
2406
+ false
2407
+ ],
2408
+ "max": [
2409
+ 0.02499854564666748,
2410
+ 0.02499903365969658,
2411
+ 0.024999922141432762,
2412
+ 0.24974457919597626,
2413
+ 0.24997030198574066,
2414
+ 0.24999946355819702,
2415
+ 1.0
2416
+ ],
2417
+ "mean": [
2418
+ 0.0007790001109242439,
2419
+ 0.00013707754260394722,
2420
+ -0.0002548607881180942,
2421
+ 0.0012903271708637476,
2422
+ -0.004751681815832853,
2423
+ 0.002692886395379901,
2424
+ 0.48855218291282654
2425
+ ],
2426
+ "min": [
2427
+ -0.024999044835567474,
2428
+ -0.024999700486660004,
2429
+ -0.02499929815530777,
2430
+ -0.24993225932121277,
2431
+ -0.2499666064977646,
2432
+ -0.2499932497739792,
2433
+ 0.0
2434
+ ],
2435
+ "q01": [
2436
+ -0.019992006458342076,
2437
+ -0.02415412735193968,
2438
+ -0.022941758055239916,
2439
+ -0.11085530579090118,
2440
+ -0.12024572037160397,
2441
+ -0.13314770206809043,
2442
+ 0.0
2443
+ ],
2444
+ "q99": [
2445
+ 0.022886231057345868,
2446
+ 0.022358838934451335,
2447
+ 0.02410089675337076,
2448
+ 0.12370114490389822,
2449
+ 0.11323311634361738,
2450
+ 0.18474749639630164,
2451
+ 1.0
2452
+ ],
2453
+ "std": [
2454
+ 0.008022161200642586,
2455
+ 0.009131459519267082,
2456
+ 0.009574338793754578,
2457
+ 0.04122216999530792,
2458
+ 0.0384303517639637,
2459
+ 0.04606688767671585,
2460
+ 0.49976691603660583
2461
+ ]
2462
+ },
2463
+ "num_trajectories": 570,
2464
+ "num_transitions": 358234,
2465
+ "proprio": {
2466
+ "max": [
2467
+ 0.0,
2468
+ 0.0,
2469
+ 0.0,
2470
+ 0.0,
2471
+ 0.0,
2472
+ 0.0,
2473
+ 0.0
2474
+ ],
2475
+ "mean": [
2476
+ 0.0,
2477
+ 0.0,
2478
+ 0.0,
2479
+ 0.0,
2480
+ 0.0,
2481
+ 0.0,
2482
+ 0.0
2483
+ ],
2484
+ "min": [
2485
+ 0.0,
2486
+ 0.0,
2487
+ 0.0,
2488
+ 0.0,
2489
+ 0.0,
2490
+ 0.0,
2491
+ 0.0
2492
+ ],
2493
+ "q01": [
2494
+ 0.0,
2495
+ 0.0,
2496
+ 0.0,
2497
+ 0.0,
2498
+ 0.0,
2499
+ 0.0,
2500
+ 0.0
2501
+ ],
2502
+ "q99": [
2503
+ 0.0,
2504
+ 0.0,
2505
+ 0.0,
2506
+ 0.0,
2507
+ 0.0,
2508
+ 0.0,
2509
+ 0.0
2510
+ ],
2511
+ "std": [
2512
+ 0.0,
2513
+ 0.0,
2514
+ 0.0,
2515
+ 0.0,
2516
+ 0.0,
2517
+ 0.0,
2518
+ 0.0
2519
+ ]
2520
+ }
2521
+ },
2522
+ "taco_play": {
2523
+ "action": {
2524
+ "mask": [
2525
+ true,
2526
+ true,
2527
+ true,
2528
+ true,
2529
+ true,
2530
+ true,
2531
+ false
2532
+ ],
2533
+ "max": [
2534
+ 1.4915844202041626,
2535
+ 2.1842432022094727,
2536
+ 2.6836395263671875,
2537
+ 5.035226821899414,
2538
+ 2.665864944458008,
2539
+ 4.250768661499023,
2540
+ 1.0
2541
+ ],
2542
+ "mean": [
2543
+ -0.003845922416076064,
2544
+ 0.009671456180512905,
2545
+ 0.012780580669641495,
2546
+ -0.005403771996498108,
2547
+ -0.009606587700545788,
2548
+ -0.002480733208358288,
2549
+ 0.4263913035392761
2550
+ ],
2551
+ "min": [
2552
+ -4.242457866668701,
2553
+ -3.192805051803589,
2554
+ -1.3371467590332031,
2555
+ -4.202683448791504,
2556
+ -2.6722638607025146,
2557
+ -3.3467135429382324,
2558
+ 0.0
2559
+ ],
2560
+ "q01": [
2561
+ -0.7106140398979186,
2562
+ -1.056944659948349,
2563
+ -0.5878450274467468,
2564
+ -0.7682853937149048,
2565
+ -0.7180147767066956,
2566
+ -1.5527938604354858,
2567
+ 0.0
2568
+ ],
2569
+ "q99": [
2570
+ 0.6482916426658629,
2571
+ 1.0051310062408447,
2572
+ 0.9480248689651489,
2573
+ 0.6926478147506714,
2574
+ 0.6351067513227462,
2575
+ 1.628010264635086,
2576
+ 1.0
2577
+ ],
2578
+ "std": [
2579
+ 0.23254038393497467,
2580
+ 0.36298269033432007,
2581
+ 0.28692901134490967,
2582
+ 0.2617705166339874,
2583
+ 0.2438892275094986,
2584
+ 0.5216503143310547,
2585
+ 0.4946896731853485
2586
+ ]
2587
+ },
2588
+ "num_trajectories": 3603,
2589
+ "num_transitions": 237798,
2590
+ "proprio": {
2591
+ "max": [
2592
+ 0.0,
2593
+ 0.0,
2594
+ 0.0,
2595
+ 0.0,
2596
+ 0.0,
2597
+ 0.0,
2598
+ 0.0
2599
+ ],
2600
+ "mean": [
2601
+ 0.0,
2602
+ 0.0,
2603
+ 0.0,
2604
+ 0.0,
2605
+ 0.0,
2606
+ 0.0,
2607
+ 0.0
2608
+ ],
2609
+ "min": [
2610
+ 0.0,
2611
+ 0.0,
2612
+ 0.0,
2613
+ 0.0,
2614
+ 0.0,
2615
+ 0.0,
2616
+ 0.0
2617
+ ],
2618
+ "q01": [
2619
+ 0.0,
2620
+ 0.0,
2621
+ 0.0,
2622
+ 0.0,
2623
+ 0.0,
2624
+ 0.0,
2625
+ 0.0
2626
+ ],
2627
+ "q99": [
2628
+ 0.0,
2629
+ 0.0,
2630
+ 0.0,
2631
+ 0.0,
2632
+ 0.0,
2633
+ 0.0,
2634
+ 0.0
2635
+ ],
2636
+ "std": [
2637
+ 0.0,
2638
+ 0.0,
2639
+ 0.0,
2640
+ 0.0,
2641
+ 0.0,
2642
+ 0.0,
2643
+ 0.0
2644
+ ]
2645
+ }
2646
+ },
2647
+ "toto": {
2648
+ "action": {
2649
+ "mask": [
2650
+ true,
2651
+ true,
2652
+ true,
2653
+ true,
2654
+ true,
2655
+ true,
2656
+ false
2657
+ ],
2658
+ "max": [
2659
+ 0.6839867234230042,
2660
+ 0.4454185664653778,
2661
+ 0.7984078526496887,
2662
+ 2.120781660079956,
2663
+ 1.371164321899414,
2664
+ 1.4118704795837402,
2665
+ 0.0
2666
+ ],
2667
+ "mean": [
2668
+ 0.38542115688323975,
2669
+ 0.007769413758069277,
2670
+ 0.3632740378379822,
2671
+ -0.6652036905288696,
2672
+ 0.1890396922826767,
2673
+ 0.03298724442720413,
2674
+ 0.0
2675
+ ],
2676
+ "min": [
2677
+ 0.09922284632921219,
2678
+ -0.5180193781852722,
2679
+ 0.13791072368621826,
2680
+ -2.635117530822754,
2681
+ -1.0734480619430542,
2682
+ -1.9282547235488892,
2683
+ 0.0
2684
+ ],
2685
+ "q01": [
2686
+ 0.1756722891330719,
2687
+ -0.3077590811252594,
2688
+ 0.235383919775486,
2689
+ -2.0908505964279174,
2690
+ -0.6191593289375306,
2691
+ -0.7488683319091797,
2692
+ 0.0
2693
+ ],
2694
+ "q99": [
2695
+ 0.6136963081359863,
2696
+ 0.33704194784164443,
2697
+ 0.6681221985816956,
2698
+ 0.7422861719131538,
2699
+ 0.7955395007133507,
2700
+ 0.740464625358582,
2701
+ 0.0
2702
+ ],
2703
+ "std": [
2704
+ 0.12211652100086212,
2705
+ 0.19378550350666046,
2706
+ 0.10178236663341522,
2707
+ 0.5725259184837341,
2708
+ 0.29884573817253113,
2709
+ 0.3259911835193634,
2710
+ 0.0
2711
+ ]
2712
+ },
2713
+ "num_trajectories": 1003,
2714
+ "num_transitions": 325699,
2715
+ "proprio": {
2716
+ "max": [
2717
+ 0.0,
2718
+ 0.0,
2719
+ 0.0,
2720
+ 0.0,
2721
+ 0.0,
2722
+ 0.0,
2723
+ 0.0
2724
+ ],
2725
+ "mean": [
2726
+ 0.0,
2727
+ 0.0,
2728
+ 0.0,
2729
+ 0.0,
2730
+ 0.0,
2731
+ 0.0,
2732
+ 0.0
2733
+ ],
2734
+ "min": [
2735
+ 0.0,
2736
+ 0.0,
2737
+ 0.0,
2738
+ 0.0,
2739
+ 0.0,
2740
+ 0.0,
2741
+ 0.0
2742
+ ],
2743
+ "q01": [
2744
+ 0.0,
2745
+ 0.0,
2746
+ 0.0,
2747
+ 0.0,
2748
+ 0.0,
2749
+ 0.0,
2750
+ 0.0
2751
+ ],
2752
+ "q99": [
2753
+ 0.0,
2754
+ 0.0,
2755
+ 0.0,
2756
+ 0.0,
2757
+ 0.0,
2758
+ 0.0,
2759
+ 0.0
2760
+ ],
2761
+ "std": [
2762
+ 0.0,
2763
+ 0.0,
2764
+ 0.0,
2765
+ 0.0,
2766
+ 0.0,
2767
+ 0.0,
2768
+ 0.0
2769
+ ]
2770
+ }
2771
+ },
2772
+ "ucsd_kitchen_dataset_converted_externally_to_rlds": {
2773
+ "action": {
2774
+ "mask": [
2775
+ true,
2776
+ true,
2777
+ true,
2778
+ true,
2779
+ true,
2780
+ true,
2781
+ false
2782
+ ],
2783
+ "max": [
2784
+ 678.0,
2785
+ 400.0,
2786
+ 507.0,
2787
+ 180.00001525878906,
2788
+ 6.000013828277588,
2789
+ 116.99998474121094,
2790
+ 1.0
2791
+ ],
2792
+ "mean": [
2793
+ 410.37567138671875,
2794
+ 116.9518814086914,
2795
+ 192.35032653808594,
2796
+ -121.22441864013672,
2797
+ -33.84893035888672,
2798
+ 50.016136169433594,
2799
+ 0.741813600063324
2800
+ ],
2801
+ "min": [
2802
+ 172.0,
2803
+ -166.0,
2804
+ -99.99999237060547,
2805
+ -180.00001525878906,
2806
+ -89.0,
2807
+ -96.00010681152344,
2808
+ 0.0
2809
+ ],
2810
+ "q01": [
2811
+ 200.00001052856445,
2812
+ -102.31004211425781,
2813
+ -94.99993370056153,
2814
+ -180.00001525878906,
2815
+ -88.00001525878906,
2816
+ -38.999977111816406,
2817
+ 0.0
2818
+ ],
2819
+ "q99": [
2820
+ 637.0,
2821
+ 368.30999999999995,
2822
+ 493.0,
2823
+ 180.00001525878906,
2824
+ 0.999983012676239,
2825
+ 105.00001525878906,
2826
+ 1.0
2827
+ ],
2828
+ "std": [
2829
+ 122.81494903564453,
2830
+ 108.8009033203125,
2831
+ 130.303466796875,
2832
+ 116.28205108642578,
2833
+ 27.621843338012695,
2834
+ 41.02094650268555,
2835
+ 0.43763357400894165
2836
+ ]
2837
+ },
2838
+ "num_trajectories": 150,
2839
+ "num_transitions": 3970,
2840
+ "proprio": {
2841
+ "max": [
2842
+ 0.0,
2843
+ 0.0,
2844
+ 0.0,
2845
+ 0.0,
2846
+ 0.0,
2847
+ 0.0,
2848
+ 0.0
2849
+ ],
2850
+ "mean": [
2851
+ 0.0,
2852
+ 0.0,
2853
+ 0.0,
2854
+ 0.0,
2855
+ 0.0,
2856
+ 0.0,
2857
+ 0.0
2858
+ ],
2859
+ "min": [
2860
+ 0.0,
2861
+ 0.0,
2862
+ 0.0,
2863
+ 0.0,
2864
+ 0.0,
2865
+ 0.0,
2866
+ 0.0
2867
+ ],
2868
+ "q01": [
2869
+ 0.0,
2870
+ 0.0,
2871
+ 0.0,
2872
+ 0.0,
2873
+ 0.0,
2874
+ 0.0,
2875
+ 0.0
2876
+ ],
2877
+ "q99": [
2878
+ 0.0,
2879
+ 0.0,
2880
+ 0.0,
2881
+ 0.0,
2882
+ 0.0,
2883
+ 0.0,
2884
+ 0.0
2885
+ ],
2886
+ "std": [
2887
+ 0.0,
2888
+ 0.0,
2889
+ 0.0,
2890
+ 0.0,
2891
+ 0.0,
2892
+ 0.0,
2893
+ 0.0
2894
+ ]
2895
+ }
2896
+ },
2897
+ "utaustin_mutex": {
2898
+ "action": {
2899
+ "mask": [
2900
+ true,
2901
+ true,
2902
+ true,
2903
+ true,
2904
+ true,
2905
+ true,
2906
+ false
2907
+ ],
2908
+ "max": [
2909
+ 1.0,
2910
+ 1.0,
2911
+ 1.0,
2912
+ 0.375,
2913
+ 0.375,
2914
+ 0.375,
2915
+ 1.0
2916
+ ],
2917
+ "mean": [
2918
+ 0.06176406890153885,
2919
+ -0.005005486309528351,
2920
+ 0.10216785222291946,
2921
+ -0.03314131125807762,
2922
+ 0.013895004987716675,
2923
+ -0.011317633092403412,
2924
+ 0.5038976669311523
2925
+ ],
2926
+ "min": [
2927
+ -1.0,
2928
+ -1.0,
2929
+ -1.0,
2930
+ -0.375,
2931
+ -0.375,
2932
+ -0.375,
2933
+ 0.0
2934
+ ],
2935
+ "q01": [
2936
+ -0.4285714328289032,
2937
+ -0.9800000190734863,
2938
+ -0.5571428537368774,
2939
+ -0.375,
2940
+ -0.15642857551574707,
2941
+ -0.335357129573822,
2942
+ 0.0
2943
+ ],
2944
+ "q99": [
2945
+ 0.5914285778999329,
2946
+ 0.9714285731315613,
2947
+ 1.0,
2948
+ 0.3278571367263794,
2949
+ 0.207857146859169,
2950
+ 0.25607141852378845,
2951
+ 1.0
2952
+ ],
2953
+ "std": [
2954
+ 0.1875014752149582,
2955
+ 0.4468473494052887,
2956
+ 0.3792876601219177,
2957
+ 0.14097853004932404,
2958
+ 0.06453701853752136,
2959
+ 0.11765272170305252,
2960
+ 0.501045286655426
2961
+ ]
2962
+ },
2963
+ "num_trajectories": 1500,
2964
+ "num_transitions": 361883,
2965
+ "proprio": {
2966
+ "max": [
2967
+ 0.0,
2968
+ 0.0,
2969
+ 0.0,
2970
+ 0.0,
2971
+ 0.0,
2972
+ 0.0,
2973
+ 0.0
2974
+ ],
2975
+ "mean": [
2976
+ 0.0,
2977
+ 0.0,
2978
+ 0.0,
2979
+ 0.0,
2980
+ 0.0,
2981
+ 0.0,
2982
+ 0.0
2983
+ ],
2984
+ "min": [
2985
+ 0.0,
2986
+ 0.0,
2987
+ 0.0,
2988
+ 0.0,
2989
+ 0.0,
2990
+ 0.0,
2991
+ 0.0
2992
+ ],
2993
+ "q01": [
2994
+ 0.0,
2995
+ 0.0,
2996
+ 0.0,
2997
+ 0.0,
2998
+ 0.0,
2999
+ 0.0,
3000
+ 0.0
3001
+ ],
3002
+ "q99": [
3003
+ 0.0,
3004
+ 0.0,
3005
+ 0.0,
3006
+ 0.0,
3007
+ 0.0,
3008
+ 0.0,
3009
+ 0.0
3010
+ ],
3011
+ "std": [
3012
+ 0.0,
3013
+ 0.0,
3014
+ 0.0,
3015
+ 0.0,
3016
+ 0.0,
3017
+ 0.0,
3018
+ 0.0
3019
+ ]
3020
+ }
3021
+ },
3022
+ "viola": {
3023
+ "action": {
3024
+ "mask": [
3025
+ true,
3026
+ true,
3027
+ true,
3028
+ true,
3029
+ true,
3030
+ true,
3031
+ false
3032
+ ],
3033
+ "max": [
3034
+ 1.0,
3035
+ 1.0,
3036
+ 1.0,
3037
+ 0.375,
3038
+ 0.36321428418159485,
3039
+ 0.375,
3040
+ 1.0
3041
+ ],
3042
+ "mean": [
3043
+ 0.04761844128370285,
3044
+ -0.029204415157437325,
3045
+ 0.05586736649274826,
3046
+ -0.002618510741740465,
3047
+ 0.006867344491183758,
3048
+ -0.01682133786380291,
3049
+ 0.7323777675628662
3050
+ ],
3051
+ "min": [
3052
+ -1.0,
3053
+ -1.0,
3054
+ -1.0,
3055
+ -0.375,
3056
+ -0.375,
3057
+ -0.375,
3058
+ 0.0
3059
+ ],
3060
+ "q01": [
3061
+ -0.9628571271896362,
3062
+ -1.0,
3063
+ -1.0,
3064
+ -0.26249998807907104,
3065
+ -0.21321429312229156,
3066
+ -0.3385714292526245,
3067
+ 0.0
3068
+ ],
3069
+ "q99": [
3070
+ 0.9114285707473755,
3071
+ 0.868571400642395,
3072
+ 1.0,
3073
+ 0.2817857265472412,
3074
+ 0.2239285707473755,
3075
+ 0.3557142913341522,
3076
+ 1.0
3077
+ ],
3078
+ "std": [
3079
+ 0.39157867431640625,
3080
+ 0.4076525568962097,
3081
+ 0.40077948570251465,
3082
+ 0.10023996233940125,
3083
+ 0.0844319611787796,
3084
+ 0.10375042259693146,
3085
+ 0.44260647892951965
3086
+ ]
3087
+ },
3088
+ "num_trajectories": 150,
3089
+ "num_transitions": 76324,
3090
+ "proprio": {
3091
+ "max": [
3092
+ 0.0,
3093
+ 0.0,
3094
+ 0.0,
3095
+ 0.0,
3096
+ 0.0,
3097
+ 0.0,
3098
+ 0.0
3099
+ ],
3100
+ "mean": [
3101
+ 0.0,
3102
+ 0.0,
3103
+ 0.0,
3104
+ 0.0,
3105
+ 0.0,
3106
+ 0.0,
3107
+ 0.0
3108
+ ],
3109
+ "min": [
3110
+ 0.0,
3111
+ 0.0,
3112
+ 0.0,
3113
+ 0.0,
3114
+ 0.0,
3115
+ 0.0,
3116
+ 0.0
3117
+ ],
3118
+ "q01": [
3119
+ 0.0,
3120
+ 0.0,
3121
+ 0.0,
3122
+ 0.0,
3123
+ 0.0,
3124
+ 0.0,
3125
+ 0.0
3126
+ ],
3127
+ "q99": [
3128
+ 0.0,
3129
+ 0.0,
3130
+ 0.0,
3131
+ 0.0,
3132
+ 0.0,
3133
+ 0.0,
3134
+ 0.0
3135
+ ],
3136
+ "std": [
3137
+ 0.0,
3138
+ 0.0,
3139
+ 0.0,
3140
+ 0.0,
3141
+ 0.0,
3142
+ 0.0,
3143
+ 0.0
3144
+ ]
3145
+ }
3146
+ }
3147
+ },
3148
+ "output_projector_states": false,
3149
+ "pad_to_multiple_of": 64,
3150
+ "pad_token_id": 32000,
3151
+ "text_config": {
3152
+ "model_type": "llama",
3153
+ "pad_token_id": 32000,
3154
+ "torch_dtype": "bfloat16",
3155
+ "vocab_size": 32064
3156
+ },
3157
+ "timm_model_ids": [
3158
+ "vit_large_patch14_reg4_dinov2.lvd142m",
3159
+ "vit_so400m_patch14_siglip_224"
3160
+ ],
3161
+ "timm_override_act_layers": [
3162
+ null,
3163
+ null
3164
+ ],
3165
+ "torch_dtype": "bfloat16",
3166
+ "transformers_version": "4.40.1",
3167
+ "use_fused_vision_backbone": true,
3168
+ "vision_backbone_id": "dinosiglip-vit-so-224px"
3169
+ }
dataset_statistics.json ADDED
@@ -0,0 +1,627 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "maniskill_dataset_converted_externally_to_rlds": {
3
+ "action": {
4
+ "mean": [
5
+ 0.001753032673150301,
6
+ 0.004022886045277119,
7
+ 0.0018199377227574587,
8
+ 0.0012986620422452688,
9
+ 0.001954670064151287,
10
+ -0.008406715467572212,
11
+ -0.1669192761182785
12
+ ],
13
+ "std": [
14
+ 0.0249963216483593,
15
+ 0.07045494765043259,
16
+ 0.04063529893755913,
17
+ 0.04287172481417656,
18
+ 0.04291927441954613,
19
+ 0.11181189864873886,
20
+ 0.9687231183052063
21
+ ],
22
+ "max": [
23
+ 1.0,
24
+ 1.0,
25
+ 0.9904654026031494,
26
+ 0.9965949058532715,
27
+ 0.9993983507156372,
28
+ 0.9999291896820068,
29
+ 1.0800000429153442
30
+ ],
31
+ "min": [
32
+ -1.0,
33
+ -1.0,
34
+ -0.8282245397567749,
35
+ -0.955905556678772,
36
+ -0.9993988275527954,
37
+ -0.9999651312828064,
38
+ -1.0
39
+ ],
40
+ "q01": [
41
+ -0.053749379515647885,
42
+ -0.1874772420525551,
43
+ -0.0887893095612526,
44
+ -0.10677555210888386,
45
+ -0.13712280973792076,
46
+ -0.30810734152793884,
47
+ -1.0
48
+ ],
49
+ "q99": [
50
+ 0.07217406630516066,
51
+ 0.1822862920165062,
52
+ 0.11025339215993885,
53
+ 0.15626964762806908,
54
+ 0.17284625649452212,
55
+ 0.3177985239028931,
56
+ 1.0
57
+ ],
58
+ "mask": [
59
+ true,
60
+ true,
61
+ true,
62
+ true,
63
+ true,
64
+ true,
65
+ false
66
+ ]
67
+ },
68
+ "proprio": {
69
+ "mean": [
70
+ 0.0,
71
+ 0.0,
72
+ 0.0,
73
+ 0.0,
74
+ 0.0,
75
+ 0.0,
76
+ 0.0
77
+ ],
78
+ "std": [
79
+ 0.0,
80
+ 0.0,
81
+ 0.0,
82
+ 0.0,
83
+ 0.0,
84
+ 0.0,
85
+ 0.0
86
+ ],
87
+ "max": [
88
+ 0.0,
89
+ 0.0,
90
+ 0.0,
91
+ 0.0,
92
+ 0.0,
93
+ 0.0,
94
+ 0.0
95
+ ],
96
+ "min": [
97
+ 0.0,
98
+ 0.0,
99
+ 0.0,
100
+ 0.0,
101
+ 0.0,
102
+ 0.0,
103
+ 0.0
104
+ ],
105
+ "q01": [
106
+ 0.0,
107
+ 0.0,
108
+ 0.0,
109
+ 0.0,
110
+ 0.0,
111
+ 0.0,
112
+ 0.0
113
+ ],
114
+ "q99": [
115
+ 0.0,
116
+ 0.0,
117
+ 0.0,
118
+ 0.0,
119
+ 0.0,
120
+ 0.0,
121
+ 0.0
122
+ ]
123
+ },
124
+ "num_transitions": 4537402,
125
+ "num_trajectories": 30213
126
+ },
127
+ "cmu_franka_exploration_dataset_converted_externally_to_rlds": {
128
+ "action": {
129
+ "mean": [
130
+ 0.023629561066627502,
131
+ 0.005161500535905361,
132
+ -0.015222280286252499,
133
+ 0.04188229888677597,
134
+ 0.0046763550490140915,
135
+ 0.09881123155355453,
136
+ 0.30000001192092896
137
+ ],
138
+ "std": [
139
+ 0.11304982006549835,
140
+ 0.11631360650062561,
141
+ 0.07852676510810852,
142
+ 0.19957201182842255,
143
+ 0.09077262878417969,
144
+ 1.0257258415222168,
145
+ 0.45825448632240295
146
+ ],
147
+ "max": [
148
+ 0.4725336730480194,
149
+ 0.3901922404766083,
150
+ 0.10486119985580444,
151
+ 0.9421265721321106,
152
+ 0.5169905424118042,
153
+ 6.256486415863037,
154
+ 1.0
155
+ ],
156
+ "min": [
157
+ -0.1463591456413269,
158
+ -0.4534304141998291,
159
+ -0.3293706774711609,
160
+ -0.2900730073451996,
161
+ -0.48279625177383423,
162
+ -6.289149761199951,
163
+ 0.0
164
+ ],
165
+ "q01": [
166
+ -0.09845174193382263,
167
+ -0.39011656552553176,
168
+ -0.3058631345629692,
169
+ -0.18888406455516815,
170
+ -0.20234539553523065,
171
+ -0.675922526717186,
172
+ 0.0
173
+ ],
174
+ "q99": [
175
+ 0.4625110590457916,
176
+ 0.32559849202632896,
177
+ 0.0893813088536262,
178
+ 0.8969308358430862,
179
+ 0.3370739933848377,
180
+ 5.3530522727966305,
181
+ 1.0
182
+ ],
183
+ "mask": [
184
+ true,
185
+ true,
186
+ true,
187
+ true,
188
+ true,
189
+ true,
190
+ false
191
+ ]
192
+ },
193
+ "proprio": {
194
+ "mean": [
195
+ 0.0,
196
+ 0.0,
197
+ 0.0,
198
+ 0.0,
199
+ 0.0,
200
+ 0.0,
201
+ 0.0
202
+ ],
203
+ "std": [
204
+ 0.0,
205
+ 0.0,
206
+ 0.0,
207
+ 0.0,
208
+ 0.0,
209
+ 0.0,
210
+ 0.0
211
+ ],
212
+ "max": [
213
+ 0.0,
214
+ 0.0,
215
+ 0.0,
216
+ 0.0,
217
+ 0.0,
218
+ 0.0,
219
+ 0.0
220
+ ],
221
+ "min": [
222
+ 0.0,
223
+ 0.0,
224
+ 0.0,
225
+ 0.0,
226
+ 0.0,
227
+ 0.0,
228
+ 0.0
229
+ ],
230
+ "q01": [
231
+ 0.0,
232
+ 0.0,
233
+ 0.0,
234
+ 0.0,
235
+ 0.0,
236
+ 0.0,
237
+ 0.0
238
+ ],
239
+ "q99": [
240
+ 0.0,
241
+ 0.0,
242
+ 0.0,
243
+ 0.0,
244
+ 0.0,
245
+ 0.0,
246
+ 0.0
247
+ ]
248
+ },
249
+ "num_transitions": 1990,
250
+ "num_trajectories": 199
251
+ },
252
+ "kaist_nonprehensile_converted_externally_to_rlds": {
253
+ "action": {
254
+ "mean": [
255
+ 0.001946943229995668,
256
+ 0.00023607404727954417,
257
+ 0.000902869098354131,
258
+ -0.0022928407415747643,
259
+ 0.00011903639096999541,
260
+ -0.0036542697343975306,
261
+ 0.0
262
+ ],
263
+ "std": [
264
+ 0.014686590991914272,
265
+ 0.016561254858970642,
266
+ 0.012853579595685005,
267
+ 0.02320992574095726,
268
+ 0.02049344778060913,
269
+ 0.02003857120871544,
270
+ 0.0
271
+ ],
272
+ "max": [
273
+ 0.019999999552965164,
274
+ 0.019999999552965164,
275
+ 0.019999999552965164,
276
+ 0.029999999329447746,
277
+ 0.029999999329447746,
278
+ 0.029999999329447746,
279
+ 0.0
280
+ ],
281
+ "min": [
282
+ -0.019999999552965164,
283
+ -0.019999999552965164,
284
+ -0.019999999552965164,
285
+ -0.029999999329447746,
286
+ -0.029999999329447746,
287
+ -0.029999999329447746,
288
+ 0.0
289
+ ],
290
+ "q01": [
291
+ -0.019999999552965164,
292
+ -0.019999999552965164,
293
+ -0.019999999552965164,
294
+ -0.029999999329447746,
295
+ -0.029999999329447746,
296
+ -0.029999999329447746,
297
+ 0.0
298
+ ],
299
+ "q99": [
300
+ 0.019999999552965164,
301
+ 0.019999999552965164,
302
+ 0.019999999552965164,
303
+ 0.029999999329447746,
304
+ 0.029999999329447746,
305
+ 0.029999999329447746,
306
+ 0.0
307
+ ],
308
+ "mask": [
309
+ true,
310
+ true,
311
+ true,
312
+ true,
313
+ true,
314
+ true,
315
+ false
316
+ ]
317
+ },
318
+ "proprio": {
319
+ "mean": [
320
+ 0.0,
321
+ 0.0,
322
+ 0.0,
323
+ 0.0,
324
+ 0.0,
325
+ 0.0,
326
+ 0.0
327
+ ],
328
+ "std": [
329
+ 0.0,
330
+ 0.0,
331
+ 0.0,
332
+ 0.0,
333
+ 0.0,
334
+ 0.0,
335
+ 0.0
336
+ ],
337
+ "max": [
338
+ 0.0,
339
+ 0.0,
340
+ 0.0,
341
+ 0.0,
342
+ 0.0,
343
+ 0.0,
344
+ 0.0
345
+ ],
346
+ "min": [
347
+ 0.0,
348
+ 0.0,
349
+ 0.0,
350
+ 0.0,
351
+ 0.0,
352
+ 0.0,
353
+ 0.0
354
+ ],
355
+ "q01": [
356
+ 0.0,
357
+ 0.0,
358
+ 0.0,
359
+ 0.0,
360
+ 0.0,
361
+ 0.0,
362
+ 0.0
363
+ ],
364
+ "q99": [
365
+ 0.0,
366
+ 0.0,
367
+ 0.0,
368
+ 0.0,
369
+ 0.0,
370
+ 0.0,
371
+ 0.0
372
+ ]
373
+ },
374
+ "num_transitions": 32429,
375
+ "num_trajectories": 201
376
+ },
377
+ "stanford_robocook_converted_externally_to_rlds": {
378
+ "action": {
379
+ "mean": [
380
+ -2.678420059964992e-06,
381
+ 1.8303692286281148e-06,
382
+ -0.0013767639175057411,
383
+ -2.3712427719146945e-05,
384
+ -0.00010789699445012957,
385
+ -4.2797779315151274e-05,
386
+ -2.897957165259868e-05
387
+ ],
388
+ "std": [
389
+ 0.0022755141835659742,
390
+ 0.002386162057518959,
391
+ 0.010277057066559792,
392
+ 0.0005761811626143754,
393
+ 0.0015414082445204258,
394
+ 0.0006268072756938636,
395
+ 0.002792784245684743
396
+ ],
397
+ "max": [
398
+ 0.056665658950805664,
399
+ 0.05632849037647247,
400
+ 0.11884553730487823,
401
+ 0.022299306467175484,
402
+ 0.02912251278758049,
403
+ 0.010286045260727406,
404
+ 0.042904630303382874
405
+ ],
406
+ "min": [
407
+ -0.05887693166732788,
408
+ -0.05669987574219704,
409
+ -0.11804911494255066,
410
+ -0.012663912028074265,
411
+ -0.030290456488728523,
412
+ -0.01201140508055687,
413
+ -0.05652061104774475
414
+ ],
415
+ "q01": [
416
+ -0.0024662628769874574,
417
+ -0.002278556525707245,
418
+ -0.012126719951629639,
419
+ -0.0013559132115915419,
420
+ -0.0035992980259470643,
421
+ -0.0011550676298793406,
422
+ -0.003419263679534197
423
+ ],
424
+ "q99": [
425
+ 0.0031803366541862345,
426
+ 0.003376326411962505,
427
+ 0.0002590838074684092,
428
+ 0.001089718458242705,
429
+ 0.0019524201226886323,
430
+ 0.0008385598671156899,
431
+ 0.013301393277942958
432
+ ],
433
+ "mask": [
434
+ true,
435
+ true,
436
+ true,
437
+ true,
438
+ true,
439
+ true,
440
+ false
441
+ ]
442
+ },
443
+ "proprio": {
444
+ "mean": [
445
+ 0.0,
446
+ 0.0,
447
+ 0.0,
448
+ 0.0,
449
+ 0.0,
450
+ 0.0,
451
+ 0.0
452
+ ],
453
+ "std": [
454
+ 0.0,
455
+ 0.0,
456
+ 0.0,
457
+ 0.0,
458
+ 0.0,
459
+ 0.0,
460
+ 0.0
461
+ ],
462
+ "max": [
463
+ 0.0,
464
+ 0.0,
465
+ 0.0,
466
+ 0.0,
467
+ 0.0,
468
+ 0.0,
469
+ 0.0
470
+ ],
471
+ "min": [
472
+ 0.0,
473
+ 0.0,
474
+ 0.0,
475
+ 0.0,
476
+ 0.0,
477
+ 0.0,
478
+ 0.0
479
+ ],
480
+ "q01": [
481
+ 0.0,
482
+ 0.0,
483
+ 0.0,
484
+ 0.0,
485
+ 0.0,
486
+ 0.0,
487
+ 0.0
488
+ ],
489
+ "q99": [
490
+ 0.0,
491
+ 0.0,
492
+ 0.0,
493
+ 0.0,
494
+ 0.0,
495
+ 0.0,
496
+ 0.0
497
+ ]
498
+ },
499
+ "num_transitions": 112980,
500
+ "num_trajectories": 2460
501
+ },
502
+ "cmu_play_fusion": {
503
+ "action": {
504
+ "mean": [
505
+ 0.0005235312273725867,
506
+ 4.235409141983837e-05,
507
+ -0.00017124312580563128,
508
+ -0.0001588397572049871,
509
+ 4.5165429582993966e-06,
510
+ 0.5705317854881287,
511
+ 0.002441484946757555
512
+ ],
513
+ "std": [
514
+ 0.0018017141846939921,
515
+ 0.002387305023148656,
516
+ 0.0018721572123467922,
517
+ 0.005302113015204668,
518
+ 0.007521406747400761,
519
+ 0.49449095129966736,
520
+ 0.04930602014064789
521
+ ],
522
+ "max": [
523
+ 0.012690633535385132,
524
+ 0.01298077404499054,
525
+ 0.015158325433731079,
526
+ 0.4699133038520813,
527
+ 1.000421166419983,
528
+ 1.0,
529
+ 1.0
530
+ ],
531
+ "min": [
532
+ -0.009934544563293457,
533
+ -0.025727394968271255,
534
+ -0.010410726070404053,
535
+ -0.48077064752578735,
536
+ -1.0008366107940674,
537
+ 0.0,
538
+ 0.0
539
+ ],
540
+ "q01": [
541
+ -0.004354403614997864,
542
+ -0.006213024510070681,
543
+ -0.003597210943698883,
544
+ -0.004367449581623078,
545
+ -0.005852417796850204,
546
+ 0.0,
547
+ 0.0
548
+ ],
549
+ "q99": [
550
+ 0.00525536358356476,
551
+ 0.006261475905776026,
552
+ 0.0057483944296836875,
553
+ 0.005373069681227213,
554
+ 0.006020984072238213,
555
+ 1.0,
556
+ 0.0
557
+ ],
558
+ "mask": [
559
+ true,
560
+ true,
561
+ true,
562
+ true,
563
+ true,
564
+ true,
565
+ false
566
+ ]
567
+ },
568
+ "proprio": {
569
+ "mean": [
570
+ 0.0,
571
+ 0.0,
572
+ 0.0,
573
+ 0.0,
574
+ 0.0,
575
+ 0.0,
576
+ 0.0
577
+ ],
578
+ "std": [
579
+ 0.0,
580
+ 0.0,
581
+ 0.0,
582
+ 0.0,
583
+ 0.0,
584
+ 0.0,
585
+ 0.0
586
+ ],
587
+ "max": [
588
+ 0.0,
589
+ 0.0,
590
+ 0.0,
591
+ 0.0,
592
+ 0.0,
593
+ 0.0,
594
+ 0.0
595
+ ],
596
+ "min": [
597
+ 0.0,
598
+ 0.0,
599
+ 0.0,
600
+ 0.0,
601
+ 0.0,
602
+ 0.0,
603
+ 0.0
604
+ ],
605
+ "q01": [
606
+ 0.0,
607
+ 0.0,
608
+ 0.0,
609
+ 0.0,
610
+ 0.0,
611
+ 0.0,
612
+ 0.0
613
+ ],
614
+ "q99": [
615
+ 0.0,
616
+ 0.0,
617
+ 0.0,
618
+ 0.0,
619
+ 0.0,
620
+ 0.0,
621
+ 0.0
622
+ ]
623
+ },
624
+ "num_transitions": 235922,
625
+ "num_trajectories": 576
626
+ }
627
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 32000,
6
+ "transformers_version": "4.40.1"
7
+ }
logs.txt ADDED
@@ -0,0 +1,2155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metrics at Step 0:
2
+ Train Loss: 11.283738136291504
3
+ Action Accuracy: 0.0803571417927742
4
+ L1 Loss: 0.49411764705882355
5
+
6
+ Metrics at Step 100:
7
+ Train Loss: 4.692451477050781
8
+ Action Accuracy: 0.0982142835855484
9
+ L1 Loss: 0.5128151260504202
10
+
11
+ Metrics at Step 200:
12
+ Train Loss: 3.888653516769409
13
+ Action Accuracy: 0.1517857164144516
14
+ L1 Loss: 0.5456582633053222
15
+
16
+ Metrics at Step 300:
17
+ Train Loss: 3.634946346282959
18
+ Action Accuracy: 0.2142857164144516
19
+ L1 Loss: 0.41064425770308116
20
+
21
+ Metrics at Step 400:
22
+ Train Loss: 3.6455233097076416
23
+ Action Accuracy: 0.2410714328289032
24
+ L1 Loss: 0.5002100840336134
25
+
26
+ Metrics at Step 500:
27
+ Train Loss: 3.5222232341766357
28
+ Action Accuracy: 0.2678571343421936
29
+ L1 Loss: 0.45315126050420174
30
+
31
+ Metrics at Step 600:
32
+ Train Loss: 2.8315274715423584
33
+ Action Accuracy: 0.3928571343421936
34
+ L1 Loss: 0.2766106442577031
35
+
36
+ Metrics at Step 700:
37
+ Train Loss: 3.6869568824768066
38
+ Action Accuracy: 0.2410714328289032
39
+ L1 Loss: 0.49565826330532214
40
+
41
+ Metrics at Step 800:
42
+ Train Loss: 3.497051477432251
43
+ Action Accuracy: 0.2232142835855484
44
+ L1 Loss: 0.4337535014005602
45
+
46
+ Metrics at Step 900:
47
+ Train Loss: 3.1197683811187744
48
+ Action Accuracy: 0.2946428656578064
49
+ L1 Loss: 0.2939775910364145
50
+
51
+ Metrics at Step 1000:
52
+ Train Loss: 3.154481887817383
53
+ Action Accuracy: 0.2857142984867096
54
+ L1 Loss: 0.3914565826330532
55
+
56
+ Metrics at Step 1100:
57
+ Train Loss: 3.4265575408935547
58
+ Action Accuracy: 0.2857142984867096
59
+ L1 Loss: 0.41036414565826335
60
+
61
+ Metrics at Step 1200:
62
+ Train Loss: 3.5959086418151855
63
+ Action Accuracy: 0.2410714328289032
64
+ L1 Loss: 0.3147058823529412
65
+
66
+ Metrics at Step 1300:
67
+ Train Loss: 3.138047218322754
68
+ Action Accuracy: 0.3035714328289032
69
+ L1 Loss: 0.298109243697479
70
+
71
+ Metrics at Step 1400:
72
+ Train Loss: 3.4500045776367188
73
+ Action Accuracy: 0.2232142835855484
74
+ L1 Loss: 0.37492997198879546
75
+
76
+ Metrics at Step 1500:
77
+ Train Loss: 2.579338788986206
78
+ Action Accuracy: 0.4196428656578064
79
+ L1 Loss: 0.1864145658263305
80
+
81
+ Metrics at Step 1600:
82
+ Train Loss: 2.755974292755127
83
+ Action Accuracy: 0.3839285671710968
84
+ L1 Loss: 0.2477591036414566
85
+
86
+ Metrics at Step 1700:
87
+ Train Loss: 3.2012226581573486
88
+ Action Accuracy: 0.2767857015132904
89
+ L1 Loss: 0.35749299719887956
90
+
91
+ Metrics at Step 1800:
92
+ Train Loss: 3.4083454608917236
93
+ Action Accuracy: 0.2321428507566452
94
+ L1 Loss: 0.4197478991596639
95
+
96
+ Metrics at Step 1900:
97
+ Train Loss: 2.676654815673828
98
+ Action Accuracy: 0.3928571343421936
99
+ L1 Loss: 0.27464985994397756
100
+
101
+ Metrics at Step 2000:
102
+ Train Loss: 3.176718235015869
103
+ Action Accuracy: 0.3125
104
+ L1 Loss: 0.3396358543417367
105
+
106
+ Metrics at Step 2100:
107
+ Train Loss: 2.7569656372070312
108
+ Action Accuracy: 0.3660714328289032
109
+ L1 Loss: 0.2807422969187675
110
+
111
+ Metrics at Step 2200:
112
+ Train Loss: 2.7209908962249756
113
+ Action Accuracy: 0.3839285671710968
114
+ L1 Loss: 0.30007002801120447
115
+
116
+ Metrics at Step 2300:
117
+ Train Loss: 2.164219379425049
118
+ Action Accuracy: 0.4464285671710968
119
+ L1 Loss: 0.14138655462184874
120
+
121
+ Metrics at Step 2400:
122
+ Train Loss: 2.434448719024658
123
+ Action Accuracy: 0.4196428656578064
124
+ L1 Loss: 0.21960784313725493
125
+
126
+ Metrics at Step 2500:
127
+ Train Loss: 2.8976306915283203
128
+ Action Accuracy: 0.3392857015132904
129
+ L1 Loss: 0.27948179271708684
130
+
131
+ Metrics at Step 2600:
132
+ Train Loss: 2.4756674766540527
133
+ Action Accuracy: 0.4285714328289032
134
+ L1 Loss: 0.1957282913165266
135
+
136
+ Metrics at Step 2700:
137
+ Train Loss: 2.775954484939575
138
+ Action Accuracy: 0.3392857015132904
139
+ L1 Loss: 0.17801120448179272
140
+
141
+ Metrics at Step 2800:
142
+ Train Loss: 2.9459335803985596
143
+ Action Accuracy: 0.3214285671710968
144
+ L1 Loss: 0.2936274509803921
145
+
146
+ Metrics at Step 2900:
147
+ Train Loss: 3.008369207382202
148
+ Action Accuracy: 0.3125
149
+ L1 Loss: 0.3667366946778712
150
+
151
+ Metrics at Step 3000:
152
+ Train Loss: 2.796247720718384
153
+ Action Accuracy: 0.3482142984867096
154
+ L1 Loss: 0.18921568627450983
155
+
156
+ Metrics at Step 3100:
157
+ Train Loss: 2.702439069747925
158
+ Action Accuracy: 0.4107142984867096
159
+ L1 Loss: 0.26512605042016807
160
+
161
+ Metrics at Step 3200:
162
+ Train Loss: 2.6889519691467285
163
+ Action Accuracy: 0.3214285671710968
164
+ L1 Loss: 0.19894957983193276
165
+
166
+ Metrics at Step 3300:
167
+ Train Loss: 2.443497896194458
168
+ Action Accuracy: 0.4375
169
+ L1 Loss: 0.24369747899159663
170
+
171
+ Metrics at Step 3400:
172
+ Train Loss: 2.836542844772339
173
+ Action Accuracy: 0.3482142984867096
174
+ L1 Loss: 0.2812324929971989
175
+
176
+ Metrics at Step 3500:
177
+ Train Loss: 3.1418747901916504
178
+ Action Accuracy: 0.25
179
+ L1 Loss: 0.37745098039215685
180
+
181
+ Metrics at Step 3600:
182
+ Train Loss: 2.194730758666992
183
+ Action Accuracy: 0.4910714328289032
184
+ L1 Loss: 0.12058823529411765
185
+
186
+ Metrics at Step 3700:
187
+ Train Loss: 2.4688100814819336
188
+ Action Accuracy: 0.4107142984867096
189
+ L1 Loss: 0.19180672268907561
190
+
191
+ Metrics at Step 3800:
192
+ Train Loss: 2.6065316200256348
193
+ Action Accuracy: 0.375
194
+ L1 Loss: 0.244187675070028
195
+
196
+ Metrics at Step 3900:
197
+ Train Loss: 2.84863543510437
198
+ Action Accuracy: 0.3482142984867096
199
+ L1 Loss: 0.2939775910364145
200
+
201
+ Metrics at Step 4000:
202
+ Train Loss: 2.6200811862945557
203
+ Action Accuracy: 0.375
204
+ L1 Loss: 0.1873249299719888
205
+
206
+ Metrics at Step 4100:
207
+ Train Loss: 2.3722083568573
208
+ Action Accuracy: 0.4285714328289032
209
+ L1 Loss: 0.1861344537815126
210
+
211
+ Metrics at Step 4200:
212
+ Train Loss: 2.768663167953491
213
+ Action Accuracy: 0.3303571343421936
214
+ L1 Loss: 0.2873249299719888
215
+
216
+ Metrics at Step 4300:
217
+ Train Loss: 2.703707456588745
218
+ Action Accuracy: 0.3839285671710968
219
+ L1 Loss: 0.26701680672268907
220
+
221
+ Metrics at Step 4400:
222
+ Train Loss: 2.809208393096924
223
+ Action Accuracy: 0.3392857015132904
224
+ L1 Loss: 0.25350140056022413
225
+
226
+ Metrics at Step 4500:
227
+ Train Loss: 2.7848126888275146
228
+ Action Accuracy: 0.3303571343421936
229
+ L1 Loss: 0.29873949579831927
230
+
231
+ Metrics at Step 4600:
232
+ Train Loss: 2.895956039428711
233
+ Action Accuracy: 0.3035714328289032
234
+ L1 Loss: 0.1908263305322129
235
+
236
+ Metrics at Step 4700:
237
+ Train Loss: 2.7759158611297607
238
+ Action Accuracy: 0.3482142984867096
239
+ L1 Loss: 0.21617647058823528
240
+
241
+ Metrics at Step 4800:
242
+ Train Loss: 2.7032222747802734
243
+ Action Accuracy: 0.3928571343421936
244
+ L1 Loss: 0.2804621848739496
245
+
246
+ Metrics at Step 4900:
247
+ Train Loss: 2.4150681495666504
248
+ Action Accuracy: 0.4017857015132904
249
+ L1 Loss: 0.16995798319327732
250
+
251
+ Metrics at Step 5000:
252
+ Train Loss: 3.1961159706115723
253
+ Action Accuracy: 0.2678571343421936
254
+ L1 Loss: 0.25028011204481787
255
+
256
+ Metrics at Step 5100:
257
+ Train Loss: 2.8850667476654053
258
+ Action Accuracy: 0.3214285671710968
259
+ L1 Loss: 0.35329131652661067
260
+
261
+ Metrics at Step 5200:
262
+ Train Loss: 2.7104954719543457
263
+ Action Accuracy: 0.375
264
+ L1 Loss: 0.32436974789915973
265
+
266
+ Metrics at Step 5300:
267
+ Train Loss: 2.311286211013794
268
+ Action Accuracy: 0.4821428656578064
269
+ L1 Loss: 0.275
270
+
271
+ Metrics at Step 5400:
272
+ Train Loss: 2.4624624252319336
273
+ Action Accuracy: 0.3928571343421936
274
+ L1 Loss: 0.15763305322128848
275
+
276
+ Metrics at Step 5500:
277
+ Train Loss: 2.592292070388794
278
+ Action Accuracy: 0.4107142984867096
279
+ L1 Loss: 0.2157563025210084
280
+
281
+ Metrics at Step 5600:
282
+ Train Loss: 2.832019329071045
283
+ Action Accuracy: 0.3482142984867096
284
+ L1 Loss: 0.2832633053221288
285
+
286
+ Metrics at Step 5700:
287
+ Train Loss: 2.1792399883270264
288
+ Action Accuracy: 0.4732142984867096
289
+ L1 Loss: 0.24075630252100838
290
+
291
+ Metrics at Step 5800:
292
+ Train Loss: 2.580368995666504
293
+ Action Accuracy: 0.3571428656578064
294
+ L1 Loss: 0.21715686274509802
295
+
296
+ Metrics at Step 5900:
297
+ Train Loss: 2.545167922973633
298
+ Action Accuracy: 0.3928571343421936
299
+ L1 Loss: 0.22170868347338937
300
+
301
+ Metrics at Step 6000:
302
+ Train Loss: 2.6547164916992188
303
+ Action Accuracy: 0.3928571343421936
304
+ L1 Loss: 0.2558823529411765
305
+
306
+ Metrics at Step 6100:
307
+ Train Loss: 3.080561399459839
308
+ Action Accuracy: 0.2589285671710968
309
+ L1 Loss: 0.3215686274509804
310
+
311
+ Metrics at Step 6200:
312
+ Train Loss: 2.2589054107666016
313
+ Action Accuracy: 0.4375
314
+ L1 Loss: 0.12415966386554622
315
+
316
+ Metrics at Step 6300:
317
+ Train Loss: 2.6764681339263916
318
+ Action Accuracy: 0.3482142984867096
319
+ L1 Loss: 0.16603641456582635
320
+
321
+ Metrics at Step 6400:
322
+ Train Loss: 2.434628486633301
323
+ Action Accuracy: 0.4375
324
+ L1 Loss: 0.18585434173669468
325
+
326
+ Metrics at Step 6500:
327
+ Train Loss: 2.758328676223755
328
+ Action Accuracy: 0.3392857015132904
329
+ L1 Loss: 0.2639355742296919
330
+
331
+ Metrics at Step 6600:
332
+ Train Loss: 2.548478364944458
333
+ Action Accuracy: 0.3928571343421936
334
+ L1 Loss: 0.20406162464985994
335
+
336
+ Metrics at Step 6700:
337
+ Train Loss: 2.6916017532348633
338
+ Action Accuracy: 0.3482142984867096
339
+ L1 Loss: 0.19628851540616246
340
+
341
+ Metrics at Step 6800:
342
+ Train Loss: 2.7832138538360596
343
+ Action Accuracy: 0.3660714328289032
344
+ L1 Loss: 0.34026610644257704
345
+
346
+ Metrics at Step 6900:
347
+ Train Loss: 2.2392587661743164
348
+ Action Accuracy: 0.4642857015132904
349
+ L1 Loss: 0.16939775910364144
350
+
351
+ Metrics at Step 7000:
352
+ Train Loss: 2.7706143856048584
353
+ Action Accuracy: 0.3125
354
+ L1 Loss: 0.2600140056022409
355
+
356
+ Metrics at Step 7100:
357
+ Train Loss: 2.784031629562378
358
+ Action Accuracy: 0.3125
359
+ L1 Loss: 0.2258403361344538
360
+
361
+ Metrics at Step 7200:
362
+ Train Loss: 2.8159115314483643
363
+ Action Accuracy: 0.3214285671710968
364
+ L1 Loss: 0.28095238095238095
365
+
366
+ Metrics at Step 7300:
367
+ Train Loss: 2.9562976360321045
368
+ Action Accuracy: 0.2946428656578064
369
+ L1 Loss: 0.2387955182072829
370
+
371
+ Metrics at Step 7400:
372
+ Train Loss: 2.8249378204345703
373
+ Action Accuracy: 0.3482142984867096
374
+ L1 Loss: 0.24348739495798322
375
+
376
+ Metrics at Step 7500:
377
+ Train Loss: 2.4500956535339355
378
+ Action Accuracy: 0.4285714328289032
379
+ L1 Loss: 0.18515406162464987
380
+
381
+ Metrics at Step 7600:
382
+ Train Loss: 2.624094009399414
383
+ Action Accuracy: 0.3303571343421936
384
+ L1 Loss: 0.1623249299719888
385
+
386
+ Metrics at Step 7700:
387
+ Train Loss: 2.7082910537719727
388
+ Action Accuracy: 0.3660714328289032
389
+ L1 Loss: 0.2553921568627451
390
+
391
+ Metrics at Step 7800:
392
+ Train Loss: 2.7804114818573
393
+ Action Accuracy: 0.3125
394
+ L1 Loss: 0.1747198879551821
395
+
396
+ Metrics at Step 7900:
397
+ Train Loss: 2.593278408050537
398
+ Action Accuracy: 0.3928571343421936
399
+ L1 Loss: 0.19747899159663865
400
+
401
+ Metrics at Step 8000:
402
+ Train Loss: 2.336899757385254
403
+ Action Accuracy: 0.4017857015132904
404
+ L1 Loss: 0.14362745098039215
405
+
406
+ Metrics at Step 8100:
407
+ Train Loss: 2.684706687927246
408
+ Action Accuracy: 0.3392857015132904
409
+ L1 Loss: 0.24642857142857144
410
+
411
+ Metrics at Step 8200:
412
+ Train Loss: 2.4176714420318604
413
+ Action Accuracy: 0.3928571343421936
414
+ L1 Loss: 0.17556022408963584
415
+
416
+ Metrics at Step 8300:
417
+ Train Loss: 2.5105082988739014
418
+ Action Accuracy: 0.4285714328289032
419
+ L1 Loss: 0.30238095238095236
420
+
421
+ Metrics at Step 8400:
422
+ Train Loss: 2.901784658432007
423
+ Action Accuracy: 0.2767857015132904
424
+ L1 Loss: 0.20896358543417365
425
+
426
+ Metrics at Step 8500:
427
+ Train Loss: 2.6758129596710205
428
+ Action Accuracy: 0.3660714328289032
429
+ L1 Loss: 0.1835434173669468
430
+
431
+ Metrics at Step 8600:
432
+ Train Loss: 2.4930522441864014
433
+ Action Accuracy: 0.4196428656578064
434
+ L1 Loss: 0.19740896358543417
435
+
436
+ Metrics at Step 8700:
437
+ Train Loss: 2.3012773990631104
438
+ Action Accuracy: 0.4285714328289032
439
+ L1 Loss: 0.14068627450980392
440
+
441
+ Metrics at Step 8800:
442
+ Train Loss: 2.4025990962982178
443
+ Action Accuracy: 0.4285714328289032
444
+ L1 Loss: 0.21428571428571427
445
+
446
+ Metrics at Step 8900:
447
+ Train Loss: 2.356821060180664
448
+ Action Accuracy: 0.4196428656578064
449
+ L1 Loss: 0.20994397759103642
450
+
451
+ Metrics at Step 9000:
452
+ Train Loss: 2.2955434322357178
453
+ Action Accuracy: 0.4464285671710968
454
+ L1 Loss: 0.1719887955182073
455
+
456
+ Metrics at Step 9100:
457
+ Train Loss: 2.8176116943359375
458
+ Action Accuracy: 0.2946428656578064
459
+ L1 Loss: 0.25042016806722683
460
+
461
+ Metrics at Step 9200:
462
+ Train Loss: 2.1161410808563232
463
+ Action Accuracy: 0.4732142984867096
464
+ L1 Loss: 0.09432773109243699
465
+
466
+ Metrics at Step 9300:
467
+ Train Loss: 2.8030076026916504
468
+ Action Accuracy: 0.3482142984867096
469
+ L1 Loss: 0.22570028011204485
470
+
471
+ Metrics at Step 9400:
472
+ Train Loss: 2.458373546600342
473
+ Action Accuracy: 0.3928571343421936
474
+ L1 Loss: 0.319327731092437
475
+
476
+ Metrics at Step 9500:
477
+ Train Loss: 2.299978494644165
478
+ Action Accuracy: 0.4285714328289032
479
+ L1 Loss: 0.15049019607843137
480
+
481
+ Metrics at Step 9600:
482
+ Train Loss: 2.7978646755218506
483
+ Action Accuracy: 0.3482142984867096
484
+ L1 Loss: 0.3095238095238095
485
+
486
+ Metrics at Step 9700:
487
+ Train Loss: 2.780874729156494
488
+ Action Accuracy: 0.3125
489
+ L1 Loss: 0.1904761904761905
490
+
491
+ Metrics at Step 9800:
492
+ Train Loss: 2.6058645248413086
493
+ Action Accuracy: 0.3928571343421936
494
+ L1 Loss: 0.23795518207282912
495
+
496
+ Metrics at Step 9900:
497
+ Train Loss: 2.6323556900024414
498
+ Action Accuracy: 0.3482142984867096
499
+ L1 Loss: 0.17976190476190476
500
+
501
+ Metrics at Step 10000:
502
+ Train Loss: 2.754030704498291
503
+ Action Accuracy: 0.3839285671710968
504
+ L1 Loss: 0.20392156862745095
505
+
506
+ Metrics at Step 10100:
507
+ Train Loss: 2.5260138511657715
508
+ Action Accuracy: 0.3839285671710968
509
+ L1 Loss: 0.20742296918767508
510
+
511
+ Metrics at Step 10200:
512
+ Train Loss: 2.861302614212036
513
+ Action Accuracy: 0.3035714328289032
514
+ L1 Loss: 0.2377450980392157
515
+
516
+ Metrics at Step 10300:
517
+ Train Loss: 2.481553554534912
518
+ Action Accuracy: 0.3482142984867096
519
+ L1 Loss: 0.259733893557423
520
+
521
+ Metrics at Step 10400:
522
+ Train Loss: 2.623908042907715
523
+ Action Accuracy: 0.3125
524
+ L1 Loss: 0.24376750700280111
525
+
526
+ Metrics at Step 10500:
527
+ Train Loss: 2.6209018230438232
528
+ Action Accuracy: 0.4017857015132904
529
+ L1 Loss: 0.22675070028011204
530
+
531
+ Metrics at Step 10600:
532
+ Train Loss: 2.1404707431793213
533
+ Action Accuracy: 0.4375
534
+ L1 Loss: 0.08991596638655462
535
+
536
+ Metrics at Step 10700:
537
+ Train Loss: 2.4306416511535645
538
+ Action Accuracy: 0.375
539
+ L1 Loss: 0.1775910364145658
540
+
541
+ Metrics at Step 10800:
542
+ Train Loss: 2.4611377716064453
543
+ Action Accuracy: 0.4285714328289032
544
+ L1 Loss: 0.19222689075630253
545
+
546
+ Metrics at Step 10900:
547
+ Train Loss: 2.2476696968078613
548
+ Action Accuracy: 0.4017857015132904
549
+ L1 Loss: 0.10392156862745099
550
+
551
+ Metrics at Step 11000:
552
+ Train Loss: 2.800825595855713
553
+ Action Accuracy: 0.3482142984867096
554
+ L1 Loss: 0.3211484593837535
555
+
556
+ Metrics at Step 11100:
557
+ Train Loss: 2.439239025115967
558
+ Action Accuracy: 0.4196428656578064
559
+ L1 Loss: 0.14593837535014004
560
+
561
+ Metrics at Step 11200:
562
+ Train Loss: 2.7753474712371826
563
+ Action Accuracy: 0.3839285671710968
564
+ L1 Loss: 0.2259103641456583
565
+
566
+ Metrics at Step 11300:
567
+ Train Loss: 1.9552767276763916
568
+ Action Accuracy: 0.5267857313156128
569
+ L1 Loss: 0.16400560224089636
570
+
571
+ Metrics at Step 11400:
572
+ Train Loss: 2.696350336074829
573
+ Action Accuracy: 0.3571428656578064
574
+ L1 Loss: 0.2548319327731093
575
+
576
+ Metrics at Step 11500:
577
+ Train Loss: 2.6713144779205322
578
+ Action Accuracy: 0.3839285671710968
579
+ L1 Loss: 0.2954481792717087
580
+
581
+ Metrics at Step 11600:
582
+ Train Loss: 2.5589704513549805
583
+ Action Accuracy: 0.375
584
+ L1 Loss: 0.18123249299719887
585
+
586
+ Metrics at Step 11700:
587
+ Train Loss: 3.0028443336486816
588
+ Action Accuracy: 0.3125
589
+ L1 Loss: 0.31953781512605045
590
+
591
+ Metrics at Step 11800:
592
+ Train Loss: 2.381074905395508
593
+ Action Accuracy: 0.4642857015132904
594
+ L1 Loss: 0.21204481792717086
595
+
596
+ Metrics at Step 11900:
597
+ Train Loss: 2.067065477371216
598
+ Action Accuracy: 0.4910714328289032
599
+ L1 Loss: 0.19677871148459383
600
+
601
+ Metrics at Step 12000:
602
+ Train Loss: 3.0575480461120605
603
+ Action Accuracy: 0.2589285671710968
604
+ L1 Loss: 0.2623249299719888
605
+
606
+ Metrics at Step 12100:
607
+ Train Loss: 2.7219786643981934
608
+ Action Accuracy: 0.3571428656578064
609
+ L1 Loss: 0.17976190476190476
610
+
611
+ Metrics at Step 12200:
612
+ Train Loss: 2.729116201400757
613
+ Action Accuracy: 0.3035714328289032
614
+ L1 Loss: 0.18690476190476188
615
+
616
+ Metrics at Step 12300:
617
+ Train Loss: 2.499894142150879
618
+ Action Accuracy: 0.3482142984867096
619
+ L1 Loss: 0.1272408963585434
620
+
621
+ Metrics at Step 12400:
622
+ Train Loss: 2.5197713375091553
623
+ Action Accuracy: 0.3125
624
+ L1 Loss: 0.15686274509803924
625
+
626
+ Metrics at Step 12500:
627
+ Train Loss: 1.9609370231628418
628
+ Action Accuracy: 0.4732142984867096
629
+ L1 Loss: 0.14061624649859944
630
+
631
+ Metrics at Step 12600:
632
+ Train Loss: 2.483083963394165
633
+ Action Accuracy: 0.3660714328289032
634
+ L1 Loss: 0.19901960784313724
635
+
636
+ Metrics at Step 12700:
637
+ Train Loss: 2.4976046085357666
638
+ Action Accuracy: 0.4017857015132904
639
+ L1 Loss: 0.2111344537815126
640
+
641
+ Metrics at Step 12800:
642
+ Train Loss: 2.525709629058838
643
+ Action Accuracy: 0.3392857015132904
644
+ L1 Loss: 0.2103641456582633
645
+
646
+ Metrics at Step 12900:
647
+ Train Loss: 2.679342269897461
648
+ Action Accuracy: 0.3482142984867096
649
+ L1 Loss: 0.2876750700280112
650
+
651
+ Metrics at Step 13000:
652
+ Train Loss: 2.5020804405212402
653
+ Action Accuracy: 0.3928571343421936
654
+ L1 Loss: 0.16393557422969188
655
+
656
+ Metrics at Step 13100:
657
+ Train Loss: 2.1561121940612793
658
+ Action Accuracy: 0.4017857015132904
659
+ L1 Loss: 0.16372549019607846
660
+
661
+ Metrics at Step 13200:
662
+ Train Loss: 2.3236947059631348
663
+ Action Accuracy: 0.4285714328289032
664
+ L1 Loss: 0.18599439775910365
665
+
666
+ Metrics at Step 13300:
667
+ Train Loss: 2.866992950439453
668
+ Action Accuracy: 0.3035714328289032
669
+ L1 Loss: 0.28032212885154056
670
+
671
+ Metrics at Step 13400:
672
+ Train Loss: 2.7574410438537598
673
+ Action Accuracy: 0.3392857015132904
674
+ L1 Loss: 0.16680672268907565
675
+
676
+ Metrics at Step 13500:
677
+ Train Loss: 2.1679110527038574
678
+ Action Accuracy: 0.4196428656578064
679
+ L1 Loss: 0.10497198879551821
680
+
681
+ Metrics at Step 13600:
682
+ Train Loss: 2.735081672668457
683
+ Action Accuracy: 0.3571428656578064
684
+ L1 Loss: 0.21477591036414564
685
+
686
+ Metrics at Step 13700:
687
+ Train Loss: 2.6060729026794434
688
+ Action Accuracy: 0.4017857015132904
689
+ L1 Loss: 0.21834733893557426
690
+
691
+ Metrics at Step 13800:
692
+ Train Loss: 2.2805371284484863
693
+ Action Accuracy: 0.4285714328289032
694
+ L1 Loss: 0.19593837535014005
695
+
696
+ Metrics at Step 13900:
697
+ Train Loss: 2.343679666519165
698
+ Action Accuracy: 0.3839285671710968
699
+ L1 Loss: 0.15560224089635852
700
+
701
+ Metrics at Step 14000:
702
+ Train Loss: 2.5432333946228027
703
+ Action Accuracy: 0.3839285671710968
704
+ L1 Loss: 0.2926470588235294
705
+
706
+ Metrics at Step 14100:
707
+ Train Loss: 2.94400954246521
708
+ Action Accuracy: 0.2946428656578064
709
+ L1 Loss: 0.25588235294117645
710
+
711
+ Metrics at Step 14200:
712
+ Train Loss: 2.881465196609497
713
+ Action Accuracy: 0.3482142984867096
714
+ L1 Loss: 0.3165966386554621
715
+
716
+ Metrics at Step 14300:
717
+ Train Loss: 2.5592429637908936
718
+ Action Accuracy: 0.3482142984867096
719
+ L1 Loss: 0.18123249299719887
720
+
721
+ Metrics at Step 14400:
722
+ Train Loss: 2.641413688659668
723
+ Action Accuracy: 0.3571428656578064
724
+ L1 Loss: 0.20392156862745098
725
+
726
+ Metrics at Step 14500:
727
+ Train Loss: 2.3688113689422607
728
+ Action Accuracy: 0.375
729
+ L1 Loss: 0.13991596638655462
730
+
731
+ Metrics at Step 14600:
732
+ Train Loss: 2.2667410373687744
733
+ Action Accuracy: 0.4196428656578064
734
+ L1 Loss: 0.11526610644257702
735
+
736
+ Metrics at Step 14700:
737
+ Train Loss: 2.197873115539551
738
+ Action Accuracy: 0.4017857015132904
739
+ L1 Loss: 0.15532212885154065
740
+
741
+ Metrics at Step 14800:
742
+ Train Loss: 2.6290395259857178
743
+ Action Accuracy: 0.3660714328289032
744
+ L1 Loss: 0.136484593837535
745
+
746
+ Metrics at Step 14900:
747
+ Train Loss: 2.2531940937042236
748
+ Action Accuracy: 0.4821428656578064
749
+ L1 Loss: 0.18956582633053223
750
+
751
+ Metrics at Step 15000:
752
+ Train Loss: 2.8909120559692383
753
+ Action Accuracy: 0.3482142984867096
754
+ L1 Loss: 0.26330532212885155
755
+
756
+ Metrics at Step 15100:
757
+ Train Loss: 2.699003219604492
758
+ Action Accuracy: 0.3660714328289032
759
+ L1 Loss: 0.37731092436974795
760
+
761
+ Metrics at Step 15200:
762
+ Train Loss: 2.456005573272705
763
+ Action Accuracy: 0.4196428656578064
764
+ L1 Loss: 0.1473389355742297
765
+
766
+ Metrics at Step 15300:
767
+ Train Loss: 2.876605987548828
768
+ Action Accuracy: 0.2946428656578064
769
+ L1 Loss: 0.2042016806722689
770
+
771
+ Metrics at Step 15400:
772
+ Train Loss: 2.368387222290039
773
+ Action Accuracy: 0.4285714328289032
774
+ L1 Loss: 0.18823529411764706
775
+
776
+ Metrics at Step 15500:
777
+ Train Loss: 2.3174080848693848
778
+ Action Accuracy: 0.375
779
+ L1 Loss: 0.18032212885154061
780
+
781
+ Metrics at Step 15600:
782
+ Train Loss: 2.3788299560546875
783
+ Action Accuracy: 0.3839285671710968
784
+ L1 Loss: 0.1438375350140056
785
+
786
+ Metrics at Step 15700:
787
+ Train Loss: 3.0021302700042725
788
+ Action Accuracy: 0.3214285671710968
789
+ L1 Loss: 0.3163165266106442
790
+
791
+ Metrics at Step 15800:
792
+ Train Loss: 2.8756368160247803
793
+ Action Accuracy: 0.3125
794
+ L1 Loss: 0.20490196078431372
795
+
796
+ Metrics at Step 15900:
797
+ Train Loss: 2.6213035583496094
798
+ Action Accuracy: 0.3660714328289032
799
+ L1 Loss: 0.18123249299719887
800
+
801
+ Metrics at Step 16000:
802
+ Train Loss: 2.8140082359313965
803
+ Action Accuracy: 0.3125
804
+ L1 Loss: 0.16820728291316525
805
+
806
+ Metrics at Step 16100:
807
+ Train Loss: 2.2727062702178955
808
+ Action Accuracy: 0.3660714328289032
809
+ L1 Loss: 0.11393557422969187
810
+
811
+ Metrics at Step 16200:
812
+ Train Loss: 2.841827154159546
813
+ Action Accuracy: 0.3839285671710968
814
+ L1 Loss: 0.3848039215686274
815
+
816
+ Metrics at Step 16300:
817
+ Train Loss: 2.875748634338379
818
+ Action Accuracy: 0.3303571343421936
819
+ L1 Loss: 0.27514005602240893
820
+
821
+ Metrics at Step 16400:
822
+ Train Loss: 2.2877585887908936
823
+ Action Accuracy: 0.4642857015132904
824
+ L1 Loss: 0.20511204481792716
825
+
826
+ Metrics at Step 16500:
827
+ Train Loss: 2.083641767501831
828
+ Action Accuracy: 0.5357142686843872
829
+ L1 Loss: 0.14313725490196078
830
+
831
+ Metrics at Step 16600:
832
+ Train Loss: 2.192638397216797
833
+ Action Accuracy: 0.4285714328289032
834
+ L1 Loss: 0.13508403361344537
835
+
836
+ Metrics at Step 16700:
837
+ Train Loss: 2.517031669616699
838
+ Action Accuracy: 0.3839285671710968
839
+ L1 Loss: 0.19110644257703083
840
+
841
+ Metrics at Step 16800:
842
+ Train Loss: 3.001518726348877
843
+ Action Accuracy: 0.2857142984867096
844
+ L1 Loss: 0.32212885154061627
845
+
846
+ Metrics at Step 16900:
847
+ Train Loss: 2.211148262023926
848
+ Action Accuracy: 0.4375
849
+ L1 Loss: 0.15770308123249302
850
+
851
+ Metrics at Step 17000:
852
+ Train Loss: 2.5069284439086914
853
+ Action Accuracy: 0.3839285671710968
854
+ L1 Loss: 0.1615546218487395
855
+
856
+ Metrics at Step 17100:
857
+ Train Loss: 2.272242784500122
858
+ Action Accuracy: 0.4375
859
+ L1 Loss: 0.12976190476190477
860
+
861
+ Metrics at Step 17200:
862
+ Train Loss: 2.7423152923583984
863
+ Action Accuracy: 0.3214285671710968
864
+ L1 Loss: 0.23207282913165267
865
+
866
+ Metrics at Step 17300:
867
+ Train Loss: 2.3114943504333496
868
+ Action Accuracy: 0.4642857015132904
869
+ L1 Loss: 0.1980392156862745
870
+
871
+ Metrics at Step 17400:
872
+ Train Loss: 2.3180558681488037
873
+ Action Accuracy: 0.3928571343421936
874
+ L1 Loss: 0.128921568627451
875
+
876
+ Metrics at Step 17500:
877
+ Train Loss: 2.7351207733154297
878
+ Action Accuracy: 0.3214285671710968
879
+ L1 Loss: 0.20238095238095236
880
+
881
+ Metrics at Step 17600:
882
+ Train Loss: 2.5291357040405273
883
+ Action Accuracy: 0.3839285671710968
884
+ L1 Loss: 0.2724789915966387
885
+
886
+ Metrics at Step 17700:
887
+ Train Loss: 2.357170581817627
888
+ Action Accuracy: 0.4017857015132904
889
+ L1 Loss: 0.16183473389355743
890
+
891
+ Metrics at Step 17800:
892
+ Train Loss: 2.6442501544952393
893
+ Action Accuracy: 0.3660714328289032
894
+ L1 Loss: 0.13977591036414566
895
+
896
+ Metrics at Step 17900:
897
+ Train Loss: 2.641629934310913
898
+ Action Accuracy: 0.3482142984867096
899
+ L1 Loss: 0.10665266106442577
900
+
901
+ Metrics at Step 18000:
902
+ Train Loss: 2.6390011310577393
903
+ Action Accuracy: 0.3482142984867096
904
+ L1 Loss: 0.23207282913165267
905
+
906
+ Metrics at Step 18100:
907
+ Train Loss: 2.3044257164001465
908
+ Action Accuracy: 0.4464285671710968
909
+ L1 Loss: 0.13949579831932774
910
+
911
+ Metrics at Step 18200:
912
+ Train Loss: 2.5867929458618164
913
+ Action Accuracy: 0.375
914
+ L1 Loss: 0.23774509803921567
915
+
916
+ Metrics at Step 18300:
917
+ Train Loss: 2.167102575302124
918
+ Action Accuracy: 0.4642857015132904
919
+ L1 Loss: 0.10308123249299721
920
+
921
+ Metrics at Step 18400:
922
+ Train Loss: 2.844383716583252
923
+ Action Accuracy: 0.2946428656578064
924
+ L1 Loss: 0.18515406162464987
925
+
926
+ Metrics at Step 18500:
927
+ Train Loss: 2.007664680480957
928
+ Action Accuracy: 0.5
929
+ L1 Loss: 0.1785014005602241
930
+
931
+ Metrics at Step 18600:
932
+ Train Loss: 2.9427406787872314
933
+ Action Accuracy: 0.2767857015132904
934
+ L1 Loss: 0.3182072829131653
935
+
936
+ Metrics at Step 18700:
937
+ Train Loss: 2.484571933746338
938
+ Action Accuracy: 0.3660714328289032
939
+ L1 Loss: 0.21281512605042016
940
+
941
+ Metrics at Step 18800:
942
+ Train Loss: 2.28843355178833
943
+ Action Accuracy: 0.4196428656578064
944
+ L1 Loss: 0.21792717086834737
945
+
946
+ Metrics at Step 18900:
947
+ Train Loss: 2.278202772140503
948
+ Action Accuracy: 0.4107142984867096
949
+ L1 Loss: 0.13767507002801121
950
+
951
+ Metrics at Step 19000:
952
+ Train Loss: 3.029863119125366
953
+ Action Accuracy: 0.3035714328289032
954
+ L1 Loss: 0.3065126050420168
955
+
956
+ Metrics at Step 19100:
957
+ Train Loss: 2.3582475185394287
958
+ Action Accuracy: 0.4375
959
+ L1 Loss: 0.17717086834733894
960
+
961
+ Metrics at Step 19200:
962
+ Train Loss: 2.5662364959716797
963
+ Action Accuracy: 0.3392857015132904
964
+ L1 Loss: 0.16442577030812328
965
+
966
+ Metrics at Step 19300:
967
+ Train Loss: 2.25809645652771
968
+ Action Accuracy: 0.4553571343421936
969
+ L1 Loss: 0.1957282913165266
970
+
971
+ Metrics at Step 19400:
972
+ Train Loss: 2.2398667335510254
973
+ Action Accuracy: 0.4107142984867096
974
+ L1 Loss: 0.1719187675070028
975
+
976
+ Metrics at Step 19500:
977
+ Train Loss: 2.138171672821045
978
+ Action Accuracy: 0.4821428656578064
979
+ L1 Loss: 0.16134453781512606
980
+
981
+ Metrics at Step 19600:
982
+ Train Loss: 2.246659517288208
983
+ Action Accuracy: 0.4375
984
+ L1 Loss: 0.12598039215686274
985
+
986
+ Metrics at Step 19700:
987
+ Train Loss: 2.643136739730835
988
+ Action Accuracy: 0.3571428656578064
989
+ L1 Loss: 0.21603641456582637
990
+
991
+ Metrics at Step 19800:
992
+ Train Loss: 2.3394150733947754
993
+ Action Accuracy: 0.4464285671710968
994
+ L1 Loss: 0.14579831932773107
995
+
996
+ Metrics at Step 19900:
997
+ Train Loss: 2.2926571369171143
998
+ Action Accuracy: 0.4017857015132904
999
+ L1 Loss: 0.1551120448179272
1000
+
1001
+ Metrics at Step 20000:
1002
+ Train Loss: 2.757124900817871
1003
+ Action Accuracy: 0.3571428656578064
1004
+ L1 Loss: 0.18879551820728294
1005
+
1006
+ Metrics at Step 20100:
1007
+ Train Loss: 2.4672584533691406
1008
+ Action Accuracy: 0.4017857015132904
1009
+ L1 Loss: 0.13970588235294118
1010
+
1011
+ Metrics at Step 20200:
1012
+ Train Loss: 2.408475160598755
1013
+ Action Accuracy: 0.3839285671710968
1014
+ L1 Loss: 0.1769607843137255
1015
+
1016
+ Metrics at Step 20300:
1017
+ Train Loss: 2.4391376972198486
1018
+ Action Accuracy: 0.4196428656578064
1019
+ L1 Loss: 0.18081232492997198
1020
+
1021
+ Metrics at Step 20400:
1022
+ Train Loss: 2.8557231426239014
1023
+ Action Accuracy: 0.2946428656578064
1024
+ L1 Loss: 0.2336134453781513
1025
+
1026
+ Metrics at Step 20500:
1027
+ Train Loss: 2.5312554836273193
1028
+ Action Accuracy: 0.3571428656578064
1029
+ L1 Loss: 0.12464985994397759
1030
+
1031
+ Metrics at Step 20600:
1032
+ Train Loss: 2.652484893798828
1033
+ Action Accuracy: 0.3660714328289032
1034
+ L1 Loss: 0.2285714285714286
1035
+
1036
+ Metrics at Step 20700:
1037
+ Train Loss: 2.746551513671875
1038
+ Action Accuracy: 0.3571428656578064
1039
+ L1 Loss: 0.20231092436974787
1040
+
1041
+ Metrics at Step 20800:
1042
+ Train Loss: 2.310941219329834
1043
+ Action Accuracy: 0.4464285671710968
1044
+ L1 Loss: 0.20483193277310924
1045
+
1046
+ Metrics at Step 20900:
1047
+ Train Loss: 2.69929838180542
1048
+ Action Accuracy: 0.2946428656578064
1049
+ L1 Loss: 0.2621848739495798
1050
+
1051
+ Metrics at Step 21000:
1052
+ Train Loss: 2.4914510250091553
1053
+ Action Accuracy: 0.375
1054
+ L1 Loss: 0.19859943977591035
1055
+
1056
+ Metrics at Step 21100:
1057
+ Train Loss: 2.548098564147949
1058
+ Action Accuracy: 0.3482142984867096
1059
+ L1 Loss: 0.19187675070028012
1060
+
1061
+ Metrics at Step 21200:
1062
+ Train Loss: 2.702975034713745
1063
+ Action Accuracy: 0.2857142984867096
1064
+ L1 Loss: 0.2042717086834734
1065
+
1066
+ Metrics at Step 21300:
1067
+ Train Loss: 2.6890692710876465
1068
+ Action Accuracy: 0.3303571343421936
1069
+ L1 Loss: 0.16778711484593836
1070
+
1071
+ Metrics at Step 21400:
1072
+ Train Loss: 2.5742831230163574
1073
+ Action Accuracy: 0.3214285671710968
1074
+ L1 Loss: 0.1938375350140056
1075
+
1076
+ Metrics at Step 21500:
1077
+ Train Loss: 2.5277600288391113
1078
+ Action Accuracy: 0.3928571343421936
1079
+ L1 Loss: 0.1908263305322129
1080
+
1081
+ Metrics at Step 21600:
1082
+ Train Loss: 2.345900535583496
1083
+ Action Accuracy: 0.4285714328289032
1084
+ L1 Loss: 0.16967787114845936
1085
+
1086
+ Metrics at Step 21700:
1087
+ Train Loss: 2.5520613193511963
1088
+ Action Accuracy: 0.3392857015132904
1089
+ L1 Loss: 0.12023809523809523
1090
+
1091
+ Metrics at Step 21800:
1092
+ Train Loss: 2.6387531757354736
1093
+ Action Accuracy: 0.3482142984867096
1094
+ L1 Loss: 0.19082633053221287
1095
+
1096
+ Metrics at Step 21900:
1097
+ Train Loss: 2.4327454566955566
1098
+ Action Accuracy: 0.3660714328289032
1099
+ L1 Loss: 0.1392156862745098
1100
+
1101
+ Metrics at Step 22000:
1102
+ Train Loss: 2.2205660343170166
1103
+ Action Accuracy: 0.4017857015132904
1104
+ L1 Loss: 0.14082633053221288
1105
+
1106
+ Metrics at Step 22100:
1107
+ Train Loss: 2.599471092224121
1108
+ Action Accuracy: 0.3214285671710968
1109
+ L1 Loss: 0.19642857142857142
1110
+
1111
+ Metrics at Step 22200:
1112
+ Train Loss: 2.1068458557128906
1113
+ Action Accuracy: 0.4732142984867096
1114
+ L1 Loss: 0.09425770308123249
1115
+
1116
+ Metrics at Step 22300:
1117
+ Train Loss: 2.4195382595062256
1118
+ Action Accuracy: 0.3839285671710968
1119
+ L1 Loss: 0.1766106442577031
1120
+
1121
+ Metrics at Step 22400:
1122
+ Train Loss: 2.7456164360046387
1123
+ Action Accuracy: 0.2946428656578064
1124
+ L1 Loss: 0.19138655462184875
1125
+
1126
+ Metrics at Step 22500:
1127
+ Train Loss: 2.2480876445770264
1128
+ Action Accuracy: 0.4285714328289032
1129
+ L1 Loss: 0.14145658263305322
1130
+
1131
+ Metrics at Step 22600:
1132
+ Train Loss: 2.6429600715637207
1133
+ Action Accuracy: 0.3571428656578064
1134
+ L1 Loss: 0.15882352941176472
1135
+
1136
+ Metrics at Step 22700:
1137
+ Train Loss: 2.567577600479126
1138
+ Action Accuracy: 0.3571428656578064
1139
+ L1 Loss: 0.16379551820728291
1140
+
1141
+ Metrics at Step 22800:
1142
+ Train Loss: 2.4611613750457764
1143
+ Action Accuracy: 0.3571428656578064
1144
+ L1 Loss: 0.11302521008403363
1145
+
1146
+ Metrics at Step 22900:
1147
+ Train Loss: 2.395846366882324
1148
+ Action Accuracy: 0.4464285671710968
1149
+ L1 Loss: 0.22787114845938375
1150
+
1151
+ Metrics at Step 23000:
1152
+ Train Loss: 2.6362602710723877
1153
+ Action Accuracy: 0.375
1154
+ L1 Loss: 0.21428571428571433
1155
+
1156
+ Metrics at Step 23100:
1157
+ Train Loss: 2.816523790359497
1158
+ Action Accuracy: 0.2946428656578064
1159
+ L1 Loss: 0.26540616246498605
1160
+
1161
+ Metrics at Step 23200:
1162
+ Train Loss: 2.3881032466888428
1163
+ Action Accuracy: 0.4107142984867096
1164
+ L1 Loss: 0.14663865546218488
1165
+
1166
+ Metrics at Step 23300:
1167
+ Train Loss: 1.9613714218139648
1168
+ Action Accuracy: 0.5
1169
+ L1 Loss: 0.17710084033613446
1170
+
1171
+ Metrics at Step 23400:
1172
+ Train Loss: 2.232170343399048
1173
+ Action Accuracy: 0.4107142984867096
1174
+ L1 Loss: 0.1634453781512605
1175
+
1176
+ Metrics at Step 23500:
1177
+ Train Loss: 2.1763176918029785
1178
+ Action Accuracy: 0.4375
1179
+ L1 Loss: 0.1600840336134454
1180
+
1181
+ Metrics at Step 23600:
1182
+ Train Loss: 2.895970344543457
1183
+ Action Accuracy: 0.3660714328289032
1184
+ L1 Loss: 0.1895658263305322
1185
+
1186
+ Metrics at Step 23700:
1187
+ Train Loss: 2.6769771575927734
1188
+ Action Accuracy: 0.375
1189
+ L1 Loss: 0.23137254901960785
1190
+
1191
+ Metrics at Step 23800:
1192
+ Train Loss: 2.455296039581299
1193
+ Action Accuracy: 0.4107142984867096
1194
+ L1 Loss: 0.22401960784313726
1195
+
1196
+ Metrics at Step 23900:
1197
+ Train Loss: 2.2204291820526123
1198
+ Action Accuracy: 0.4553571343421936
1199
+ L1 Loss: 0.15875350140056024
1200
+
1201
+ Metrics at Step 24000:
1202
+ Train Loss: 2.3788163661956787
1203
+ Action Accuracy: 0.4464285671710968
1204
+ L1 Loss: 0.273249299719888
1205
+
1206
+ Metrics at Step 24100:
1207
+ Train Loss: 2.3045220375061035
1208
+ Action Accuracy: 0.4017857015132904
1209
+ L1 Loss: 0.11680672268907563
1210
+
1211
+ Metrics at Step 24200:
1212
+ Train Loss: 3.0360846519470215
1213
+ Action Accuracy: 0.2857142984867096
1214
+ L1 Loss: 0.23676470588235293
1215
+
1216
+ Metrics at Step 24300:
1217
+ Train Loss: 2.3477511405944824
1218
+ Action Accuracy: 0.3928571343421936
1219
+ L1 Loss: 0.16029411764705884
1220
+
1221
+ Metrics at Step 24400:
1222
+ Train Loss: 2.565641164779663
1223
+ Action Accuracy: 0.3214285671710968
1224
+ L1 Loss: 0.13914565826330533
1225
+
1226
+ Metrics at Step 24500:
1227
+ Train Loss: 2.150364398956299
1228
+ Action Accuracy: 0.4553571343421936
1229
+ L1 Loss: 0.13298319327731092
1230
+
1231
+ Metrics at Step 24600:
1232
+ Train Loss: 2.8736183643341064
1233
+ Action Accuracy: 0.3214285671710968
1234
+ L1 Loss: 0.28081232492997193
1235
+
1236
+ Metrics at Step 24700:
1237
+ Train Loss: 2.6567161083221436
1238
+ Action Accuracy: 0.3660714328289032
1239
+ L1 Loss: 0.1938375350140056
1240
+
1241
+ Metrics at Step 24800:
1242
+ Train Loss: 2.6469786167144775
1243
+ Action Accuracy: 0.3660714328289032
1244
+ L1 Loss: 0.20665266106442576
1245
+
1246
+ Metrics at Step 24900:
1247
+ Train Loss: 2.6770317554473877
1248
+ Action Accuracy: 0.3660714328289032
1249
+ L1 Loss: 0.1218487394957983
1250
+
1251
+ Metrics at Step 25000:
1252
+ Train Loss: 2.5097432136535645
1253
+ Action Accuracy: 0.4285714328289032
1254
+ L1 Loss: 0.1784313725490196
1255
+
1256
+ Metrics at Step 25100:
1257
+ Train Loss: 2.483226776123047
1258
+ Action Accuracy: 0.3214285671710968
1259
+ L1 Loss: 0.12675070028011204
1260
+
1261
+ Metrics at Step 25200:
1262
+ Train Loss: 2.8860294818878174
1263
+ Action Accuracy: 0.2946428656578064
1264
+ L1 Loss: 0.21043417366946776
1265
+
1266
+ Metrics at Step 25300:
1267
+ Train Loss: 2.0882515907287598
1268
+ Action Accuracy: 0.4732142984867096
1269
+ L1 Loss: 0.1888655462184874
1270
+
1271
+ Metrics at Step 25400:
1272
+ Train Loss: 2.3967783451080322
1273
+ Action Accuracy: 0.4107142984867096
1274
+ L1 Loss: 0.1295518207282913
1275
+
1276
+ Metrics at Step 25500:
1277
+ Train Loss: 2.665044069290161
1278
+ Action Accuracy: 0.3571428656578064
1279
+ L1 Loss: 0.22640056022408966
1280
+
1281
+ Metrics at Step 25600:
1282
+ Train Loss: 2.7088754177093506
1283
+ Action Accuracy: 0.4107142984867096
1284
+ L1 Loss: 0.22387955182072825
1285
+
1286
+ Metrics at Step 25700:
1287
+ Train Loss: 2.5513648986816406
1288
+ Action Accuracy: 0.3928571343421936
1289
+ L1 Loss: 0.24243697478991597
1290
+
1291
+ Metrics at Step 25800:
1292
+ Train Loss: 2.476778745651245
1293
+ Action Accuracy: 0.3660714328289032
1294
+ L1 Loss: 0.17794117647058824
1295
+
1296
+ Metrics at Step 25900:
1297
+ Train Loss: 2.4008753299713135
1298
+ Action Accuracy: 0.3660714328289032
1299
+ L1 Loss: 0.0741596638655462
1300
+
1301
+ Metrics at Step 26000:
1302
+ Train Loss: 2.697103977203369
1303
+ Action Accuracy: 0.3660714328289032
1304
+ L1 Loss: 0.18116246498599442
1305
+
1306
+ Metrics at Step 26100:
1307
+ Train Loss: 3.0089974403381348
1308
+ Action Accuracy: 0.2321428507566452
1309
+ L1 Loss: 0.19439775910364146
1310
+
1311
+ Metrics at Step 26200:
1312
+ Train Loss: 2.585254669189453
1313
+ Action Accuracy: 0.3214285671710968
1314
+ L1 Loss: 0.20441176470588235
1315
+
1316
+ Metrics at Step 26300:
1317
+ Train Loss: 2.253098249435425
1318
+ Action Accuracy: 0.4642857015132904
1319
+ L1 Loss: 0.1692577030812325
1320
+
1321
+ Metrics at Step 26400:
1322
+ Train Loss: 2.4285268783569336
1323
+ Action Accuracy: 0.4642857015132904
1324
+ L1 Loss: 0.14159663865546218
1325
+
1326
+ Metrics at Step 26500:
1327
+ Train Loss: 2.503079891204834
1328
+ Action Accuracy: 0.4017857015132904
1329
+ L1 Loss: 0.16946778711484597
1330
+
1331
+ Metrics at Step 26600:
1332
+ Train Loss: 2.324185371398926
1333
+ Action Accuracy: 0.4464285671710968
1334
+ L1 Loss: 0.1574229691876751
1335
+
1336
+ Metrics at Step 26700:
1337
+ Train Loss: 2.496527910232544
1338
+ Action Accuracy: 0.3303571343421936
1339
+ L1 Loss: 0.10490196078431371
1340
+
1341
+ Metrics at Step 26800:
1342
+ Train Loss: 2.7768945693969727
1343
+ Action Accuracy: 0.3571428656578064
1344
+ L1 Loss: 0.22177871148459388
1345
+
1346
+ Metrics at Step 26900:
1347
+ Train Loss: 2.3749208450317383
1348
+ Action Accuracy: 0.4107142984867096
1349
+ L1 Loss: 0.13704481792717088
1350
+
1351
+ Metrics at Step 27000:
1352
+ Train Loss: 2.1103250980377197
1353
+ Action Accuracy: 0.4732142984867096
1354
+ L1 Loss: 0.08067226890756303
1355
+
1356
+ Metrics at Step 27100:
1357
+ Train Loss: 2.433387279510498
1358
+ Action Accuracy: 0.4017857015132904
1359
+ L1 Loss: 0.14124649859943977
1360
+
1361
+ Metrics at Step 27200:
1362
+ Train Loss: 2.476686716079712
1363
+ Action Accuracy: 0.4107142984867096
1364
+ L1 Loss: 0.257563025210084
1365
+
1366
+ Metrics at Step 27300:
1367
+ Train Loss: 2.499882698059082
1368
+ Action Accuracy: 0.3660714328289032
1369
+ L1 Loss: 0.11267507002801122
1370
+
1371
+ Metrics at Step 27400:
1372
+ Train Loss: 2.64467191696167
1373
+ Action Accuracy: 0.3571428656578064
1374
+ L1 Loss: 0.19481792717086835
1375
+
1376
+ Metrics at Step 27500:
1377
+ Train Loss: 2.2746450901031494
1378
+ Action Accuracy: 0.4017857015132904
1379
+ L1 Loss: 0.14747899159663863
1380
+
1381
+ Metrics at Step 27600:
1382
+ Train Loss: 2.3942384719848633
1383
+ Action Accuracy: 0.4107142984867096
1384
+ L1 Loss: 0.22661064425770308
1385
+
1386
+ Metrics at Step 27700:
1387
+ Train Loss: 2.428712844848633
1388
+ Action Accuracy: 0.3839285671710968
1389
+ L1 Loss: 0.1499299719887955
1390
+
1391
+ Metrics at Step 27800:
1392
+ Train Loss: 2.3120930194854736
1393
+ Action Accuracy: 0.4017857015132904
1394
+ L1 Loss: 0.1931372549019608
1395
+
1396
+ Metrics at Step 27900:
1397
+ Train Loss: 2.6921684741973877
1398
+ Action Accuracy: 0.4107142984867096
1399
+ L1 Loss: 0.21106442577030812
1400
+
1401
+ Metrics at Step 28000:
1402
+ Train Loss: 2.191570997238159
1403
+ Action Accuracy: 0.4107142984867096
1404
+ L1 Loss: 0.05392156862745096
1405
+
1406
+ Metrics at Step 28100:
1407
+ Train Loss: 2.6279544830322266
1408
+ Action Accuracy: 0.375
1409
+ L1 Loss: 0.19922969187675071
1410
+
1411
+ Metrics at Step 28200:
1412
+ Train Loss: 2.6910200119018555
1413
+ Action Accuracy: 0.3035714328289032
1414
+ L1 Loss: 0.23508403361344538
1415
+
1416
+ Metrics at Step 28300:
1417
+ Train Loss: 2.3672876358032227
1418
+ Action Accuracy: 0.375
1419
+ L1 Loss: 0.17002801120448177
1420
+
1421
+ Metrics at Step 28400:
1422
+ Train Loss: 2.3348255157470703
1423
+ Action Accuracy: 0.4196428656578064
1424
+ L1 Loss: 0.20343137254901958
1425
+
1426
+ Metrics at Step 28500:
1427
+ Train Loss: 2.0747382640838623
1428
+ Action Accuracy: 0.4732142984867096
1429
+ L1 Loss: 0.1647058823529412
1430
+
1431
+ Metrics at Step 28600:
1432
+ Train Loss: 2.5315566062927246
1433
+ Action Accuracy: 0.4196428656578064
1434
+ L1 Loss: 0.20273109243697476
1435
+
1436
+ Metrics at Step 28700:
1437
+ Train Loss: 2.472719430923462
1438
+ Action Accuracy: 0.3839285671710968
1439
+ L1 Loss: 0.092296918767507
1440
+
1441
+ Metrics at Step 28800:
1442
+ Train Loss: 2.48940372467041
1443
+ Action Accuracy: 0.4196428656578064
1444
+ L1 Loss: 0.18228291316526612
1445
+
1446
+ Metrics at Step 28900:
1447
+ Train Loss: 2.5994350910186768
1448
+ Action Accuracy: 0.3214285671710968
1449
+ L1 Loss: 0.2011204481792717
1450
+
1451
+ Metrics at Step 29000:
1452
+ Train Loss: 2.3969616889953613
1453
+ Action Accuracy: 0.4017857015132904
1454
+ L1 Loss: 0.2225490196078431
1455
+
1456
+ Metrics at Step 29100:
1457
+ Train Loss: 2.3400933742523193
1458
+ Action Accuracy: 0.3660714328289032
1459
+ L1 Loss: 0.19061624649859943
1460
+
1461
+ Metrics at Step 29200:
1462
+ Train Loss: 1.8352972269058228
1463
+ Action Accuracy: 0.5446428656578064
1464
+ L1 Loss: 0.10742296918767506
1465
+
1466
+ Metrics at Step 29300:
1467
+ Train Loss: 2.5214030742645264
1468
+ Action Accuracy: 0.3660714328289032
1469
+ L1 Loss: 0.19481792717086835
1470
+
1471
+ Metrics at Step 29400:
1472
+ Train Loss: 2.852506160736084
1473
+ Action Accuracy: 0.2946428656578064
1474
+ L1 Loss: 0.24187675070028009
1475
+
1476
+ Metrics at Step 29500:
1477
+ Train Loss: 2.7796151638031006
1478
+ Action Accuracy: 0.2946428656578064
1479
+ L1 Loss: 0.22906162464985996
1480
+
1481
+ Metrics at Step 29600:
1482
+ Train Loss: 2.486267566680908
1483
+ Action Accuracy: 0.4107142984867096
1484
+ L1 Loss: 0.23144257703081234
1485
+
1486
+ Metrics at Step 29700:
1487
+ Train Loss: 2.767063617706299
1488
+ Action Accuracy: 0.2857142984867096
1489
+ L1 Loss: 0.14019607843137255
1490
+
1491
+ Metrics at Step 29800:
1492
+ Train Loss: 2.5440962314605713
1493
+ Action Accuracy: 0.3303571343421936
1494
+ L1 Loss: 0.16596638655462184
1495
+
1496
+ Metrics at Step 29900:
1497
+ Train Loss: 2.6243319511413574
1498
+ Action Accuracy: 0.3928571343421936
1499
+ L1 Loss: 0.1453081232492997
1500
+
1501
+ Metrics at Step 30000:
1502
+ Train Loss: 2.4468345642089844
1503
+ Action Accuracy: 0.375
1504
+ L1 Loss: 0.18396358543417368
1505
+
1506
+ Metrics at Step 30100:
1507
+ Train Loss: 2.9225780963897705
1508
+ Action Accuracy: 0.3214285671710968
1509
+ L1 Loss: 0.24474789915966386
1510
+
1511
+ Metrics at Step 30200:
1512
+ Train Loss: 2.714298963546753
1513
+ Action Accuracy: 0.3660714328289032
1514
+ L1 Loss: 0.2061624649859944
1515
+
1516
+ Metrics at Step 30300:
1517
+ Train Loss: 2.28800892829895
1518
+ Action Accuracy: 0.4375
1519
+ L1 Loss: 0.21512605042016805
1520
+
1521
+ Metrics at Step 30400:
1522
+ Train Loss: 2.537346839904785
1523
+ Action Accuracy: 0.3839285671710968
1524
+ L1 Loss: 0.19509803921568628
1525
+
1526
+ Metrics at Step 30500:
1527
+ Train Loss: 2.230858325958252
1528
+ Action Accuracy: 0.3928571343421936
1529
+ L1 Loss: 0.09943977591036414
1530
+
1531
+ Metrics at Step 30600:
1532
+ Train Loss: 2.451775550842285
1533
+ Action Accuracy: 0.3571428656578064
1534
+ L1 Loss: 0.16806722689075632
1535
+
1536
+ Metrics at Step 30700:
1537
+ Train Loss: 2.176706075668335
1538
+ Action Accuracy: 0.4285714328289032
1539
+ L1 Loss: 0.17780112044817928
1540
+
1541
+ Metrics at Step 30800:
1542
+ Train Loss: 2.6619019508361816
1543
+ Action Accuracy: 0.3482142984867096
1544
+ L1 Loss: 0.1496498599439776
1545
+
1546
+ Metrics at Step 30900:
1547
+ Train Loss: 2.6377339363098145
1548
+ Action Accuracy: 0.4196428656578064
1549
+ L1 Loss: 0.2507002801120448
1550
+
1551
+ Metrics at Step 31000:
1552
+ Train Loss: 2.6825571060180664
1553
+ Action Accuracy: 0.2946428656578064
1554
+ L1 Loss: 0.16365546218487395
1555
+
1556
+ Metrics at Step 31100:
1557
+ Train Loss: 2.7002737522125244
1558
+ Action Accuracy: 0.3035714328289032
1559
+ L1 Loss: 0.265406162464986
1560
+
1561
+ Metrics at Step 31200:
1562
+ Train Loss: 2.4773738384246826
1563
+ Action Accuracy: 0.3571428656578064
1564
+ L1 Loss: 0.14593837535014004
1565
+
1566
+ Metrics at Step 31300:
1567
+ Train Loss: 2.260373830795288
1568
+ Action Accuracy: 0.3839285671710968
1569
+ L1 Loss: 0.1334033613445378
1570
+
1571
+ Metrics at Step 31400:
1572
+ Train Loss: 2.6005821228027344
1573
+ Action Accuracy: 0.2678571343421936
1574
+ L1 Loss: 0.10889355742296918
1575
+
1576
+ Metrics at Step 31500:
1577
+ Train Loss: 2.4543890953063965
1578
+ Action Accuracy: 0.3928571343421936
1579
+ L1 Loss: 0.18375350140056024
1580
+
1581
+ Metrics at Step 31600:
1582
+ Train Loss: 2.699457883834839
1583
+ Action Accuracy: 0.375
1584
+ L1 Loss: 0.3311624649859944
1585
+
1586
+ Metrics at Step 31700:
1587
+ Train Loss: 1.9142192602157593
1588
+ Action Accuracy: 0.5089285969734192
1589
+ L1 Loss: 0.1285014005602241
1590
+
1591
+ Metrics at Step 31800:
1592
+ Train Loss: 2.314319372177124
1593
+ Action Accuracy: 0.4107142984867096
1594
+ L1 Loss: 0.1399159663865546
1595
+
1596
+ Metrics at Step 31900:
1597
+ Train Loss: 2.8122427463531494
1598
+ Action Accuracy: 0.2767857015132904
1599
+ L1 Loss: 0.20826330532212883
1600
+
1601
+ Metrics at Step 32000:
1602
+ Train Loss: 2.8480165004730225
1603
+ Action Accuracy: 0.3303571343421936
1604
+ L1 Loss: 0.17542016806722688
1605
+
1606
+ Metrics at Step 32100:
1607
+ Train Loss: 2.8726181983947754
1608
+ Action Accuracy: 0.3303571343421936
1609
+ L1 Loss: 0.2312324929971989
1610
+
1611
+ Metrics at Step 32200:
1612
+ Train Loss: 2.7423593997955322
1613
+ Action Accuracy: 0.3392857015132904
1614
+ L1 Loss: 0.21883753501400563
1615
+
1616
+ Metrics at Step 32300:
1617
+ Train Loss: 2.3215255737304688
1618
+ Action Accuracy: 0.3482142984867096
1619
+ L1 Loss: 0.12212885154061624
1620
+
1621
+ Metrics at Step 32400:
1622
+ Train Loss: 2.4533345699310303
1623
+ Action Accuracy: 0.4375
1624
+ L1 Loss: 0.30805322128851537
1625
+
1626
+ Metrics at Step 32500:
1627
+ Train Loss: 2.782496452331543
1628
+ Action Accuracy: 0.375
1629
+ L1 Loss: 0.2541316526610644
1630
+
1631
+ Metrics at Step 32600:
1632
+ Train Loss: 2.362183094024658
1633
+ Action Accuracy: 0.4285714328289032
1634
+ L1 Loss: 0.1856442577030812
1635
+
1636
+ Metrics at Step 32700:
1637
+ Train Loss: 2.546544075012207
1638
+ Action Accuracy: 0.3839285671710968
1639
+ L1 Loss: 0.15126050420168066
1640
+
1641
+ Metrics at Step 32800:
1642
+ Train Loss: 2.351996660232544
1643
+ Action Accuracy: 0.4107142984867096
1644
+ L1 Loss: 0.11218487394957984
1645
+
1646
+ Metrics at Step 32900:
1647
+ Train Loss: 2.173738956451416
1648
+ Action Accuracy: 0.4553571343421936
1649
+ L1 Loss: 0.13438375350140055
1650
+
1651
+ Metrics at Step 33000:
1652
+ Train Loss: 2.426116466522217
1653
+ Action Accuracy: 0.3660714328289032
1654
+ L1 Loss: 0.18284313725490195
1655
+
1656
+ Metrics at Step 33100:
1657
+ Train Loss: 1.943084478378296
1658
+ Action Accuracy: 0.5267857313156128
1659
+ L1 Loss: 0.1526610644257703
1660
+
1661
+ Metrics at Step 33200:
1662
+ Train Loss: 2.5049021244049072
1663
+ Action Accuracy: 0.3571428656578064
1664
+ L1 Loss: 0.15595238095238098
1665
+
1666
+ Metrics at Step 33300:
1667
+ Train Loss: 2.4632320404052734
1668
+ Action Accuracy: 0.3482142984867096
1669
+ L1 Loss: 0.09670868347338935
1670
+
1671
+ Metrics at Step 33400:
1672
+ Train Loss: 2.1705029010772705
1673
+ Action Accuracy: 0.4107142984867096
1674
+ L1 Loss: 0.10735294117647058
1675
+
1676
+ Metrics at Step 33500:
1677
+ Train Loss: 2.6659083366394043
1678
+ Action Accuracy: 0.375
1679
+ L1 Loss: 0.255812324929972
1680
+
1681
+ Metrics at Step 33600:
1682
+ Train Loss: 2.609971761703491
1683
+ Action Accuracy: 0.3660714328289032
1684
+ L1 Loss: 0.2195378151260504
1685
+
1686
+ Metrics at Step 33700:
1687
+ Train Loss: 2.2336180210113525
1688
+ Action Accuracy: 0.4642857015132904
1689
+ L1 Loss: 0.12037815126050422
1690
+
1691
+ Metrics at Step 33800:
1692
+ Train Loss: 2.4834938049316406
1693
+ Action Accuracy: 0.3839285671710968
1694
+ L1 Loss: 0.2776610644257703
1695
+
1696
+ Metrics at Step 33900:
1697
+ Train Loss: 2.8309502601623535
1698
+ Action Accuracy: 0.2857142984867096
1699
+ L1 Loss: 0.1961484593837535
1700
+
1701
+ Metrics at Step 34000:
1702
+ Train Loss: 2.2545108795166016
1703
+ Action Accuracy: 0.3839285671710968
1704
+ L1 Loss: 0.15273109243697477
1705
+
1706
+ Metrics at Step 34100:
1707
+ Train Loss: 2.654754400253296
1708
+ Action Accuracy: 0.3482142984867096
1709
+ L1 Loss: 0.18760504201680672
1710
+
1711
+ Metrics at Step 34200:
1712
+ Train Loss: 2.6335091590881348
1713
+ Action Accuracy: 0.3482142984867096
1714
+ L1 Loss: 0.2104341736694678
1715
+
1716
+ Metrics at Step 34300:
1717
+ Train Loss: 2.621370553970337
1718
+ Action Accuracy: 0.3571428656578064
1719
+ L1 Loss: 0.19733893557422968
1720
+
1721
+ Metrics at Step 34400:
1722
+ Train Loss: 2.3436295986175537
1723
+ Action Accuracy: 0.4285714328289032
1724
+ L1 Loss: 0.113515406162465
1725
+
1726
+ Metrics at Step 34500:
1727
+ Train Loss: 2.3265297412872314
1728
+ Action Accuracy: 0.4017857015132904
1729
+ L1 Loss: 0.12850140056022408
1730
+
1731
+ Metrics at Step 34600:
1732
+ Train Loss: 2.552643299102783
1733
+ Action Accuracy: 0.3660714328289032
1734
+ L1 Loss: 0.19719887955182072
1735
+
1736
+ Metrics at Step 34700:
1737
+ Train Loss: 2.6257760524749756
1738
+ Action Accuracy: 0.375
1739
+ L1 Loss: 0.1334733893557423
1740
+
1741
+ Metrics at Step 34800:
1742
+ Train Loss: 2.633481979370117
1743
+ Action Accuracy: 0.3303571343421936
1744
+ L1 Loss: 0.12661064425770308
1745
+
1746
+ Metrics at Step 34900:
1747
+ Train Loss: 2.294109582901001
1748
+ Action Accuracy: 0.3482142984867096
1749
+ L1 Loss: 0.11435574229691878
1750
+
1751
+ Metrics at Step 35000:
1752
+ Train Loss: 2.806119918823242
1753
+ Action Accuracy: 0.3214285671710968
1754
+ L1 Loss: 0.20651260504201682
1755
+
1756
+ Metrics at Step 35100:
1757
+ Train Loss: 2.5079562664031982
1758
+ Action Accuracy: 0.4196428656578064
1759
+ L1 Loss: 0.1679971988795518
1760
+
1761
+ Metrics at Step 35200:
1762
+ Train Loss: 2.275381326675415
1763
+ Action Accuracy: 0.3571428656578064
1764
+ L1 Loss: 0.07920168067226892
1765
+
1766
+ Metrics at Step 35300:
1767
+ Train Loss: 2.9633872509002686
1768
+ Action Accuracy: 0.2767857015132904
1769
+ L1 Loss: 0.23284313725490197
1770
+
1771
+ Metrics at Step 35400:
1772
+ Train Loss: 2.424741744995117
1773
+ Action Accuracy: 0.3571428656578064
1774
+ L1 Loss: 0.18417366946778713
1775
+
1776
+ Metrics at Step 35500:
1777
+ Train Loss: 2.2473816871643066
1778
+ Action Accuracy: 0.4107142984867096
1779
+ L1 Loss: 0.14103641456582633
1780
+
1781
+ Metrics at Step 35600:
1782
+ Train Loss: 2.361846923828125
1783
+ Action Accuracy: 0.3928571343421936
1784
+ L1 Loss: 0.16876750700280113
1785
+
1786
+ Metrics at Step 35700:
1787
+ Train Loss: 2.389406681060791
1788
+ Action Accuracy: 0.4107142984867096
1789
+ L1 Loss: 0.13592436974789915
1790
+
1791
+ Metrics at Step 35800:
1792
+ Train Loss: 1.9899805784225464
1793
+ Action Accuracy: 0.5446428656578064
1794
+ L1 Loss: 0.0964985994397759
1795
+
1796
+ Metrics at Step 35900:
1797
+ Train Loss: 2.4725775718688965
1798
+ Action Accuracy: 0.3660714328289032
1799
+ L1 Loss: 0.19215686274509802
1800
+
1801
+ Metrics at Step 36000:
1802
+ Train Loss: 2.4204158782958984
1803
+ Action Accuracy: 0.4107142984867096
1804
+ L1 Loss: 0.19082633053221287
1805
+
1806
+ Metrics at Step 36100:
1807
+ Train Loss: 2.368380069732666
1808
+ Action Accuracy: 0.3928571343421936
1809
+ L1 Loss: 0.19684873949579834
1810
+
1811
+ Metrics at Step 36200:
1812
+ Train Loss: 2.7979342937469482
1813
+ Action Accuracy: 0.3214285671710968
1814
+ L1 Loss: 0.2322128851540616
1815
+
1816
+ Metrics at Step 36300:
1817
+ Train Loss: 2.760383129119873
1818
+ Action Accuracy: 0.3660714328289032
1819
+ L1 Loss: 0.2247198879551821
1820
+
1821
+ Metrics at Step 36400:
1822
+ Train Loss: 2.4865267276763916
1823
+ Action Accuracy: 0.3482142984867096
1824
+ L1 Loss: 0.1739495798319328
1825
+
1826
+ Metrics at Step 36500:
1827
+ Train Loss: 2.4262313842773438
1828
+ Action Accuracy: 0.375
1829
+ L1 Loss: 0.2350140056022409
1830
+
1831
+ Metrics at Step 36600:
1832
+ Train Loss: 2.9244091510772705
1833
+ Action Accuracy: 0.3214285671710968
1834
+ L1 Loss: 0.2593137254901961
1835
+
1836
+ Metrics at Step 36700:
1837
+ Train Loss: 2.9525880813598633
1838
+ Action Accuracy: 0.2589285671710968
1839
+ L1 Loss: 0.1838935574229692
1840
+
1841
+ Metrics at Step 36800:
1842
+ Train Loss: 2.6818349361419678
1843
+ Action Accuracy: 0.3660714328289032
1844
+ L1 Loss: 0.23410364145658263
1845
+
1846
+ Metrics at Step 36900:
1847
+ Train Loss: 2.3595056533813477
1848
+ Action Accuracy: 0.4017857015132904
1849
+ L1 Loss: 0.1361344537815126
1850
+
1851
+ Metrics at Step 37000:
1852
+ Train Loss: 2.458455801010132
1853
+ Action Accuracy: 0.4285714328289032
1854
+ L1 Loss: 0.19789915966386554
1855
+
1856
+ Metrics at Step 37100:
1857
+ Train Loss: 2.5655465126037598
1858
+ Action Accuracy: 0.3303571343421936
1859
+ L1 Loss: 0.20154061624649858
1860
+
1861
+ Metrics at Step 37200:
1862
+ Train Loss: 2.553483247756958
1863
+ Action Accuracy: 0.3839285671710968
1864
+ L1 Loss: 0.15567226890756306
1865
+
1866
+ Metrics at Step 37300:
1867
+ Train Loss: 2.8341431617736816
1868
+ Action Accuracy: 0.2678571343421936
1869
+ L1 Loss: 0.22401960784313726
1870
+
1871
+ Metrics at Step 37400:
1872
+ Train Loss: 2.1173758506774902
1873
+ Action Accuracy: 0.4464285671710968
1874
+ L1 Loss: 0.1184873949579832
1875
+
1876
+ Metrics at Step 37500:
1877
+ Train Loss: 2.748405933380127
1878
+ Action Accuracy: 0.2857142984867096
1879
+ L1 Loss: 0.1596638655462185
1880
+
1881
+ Metrics at Step 37600:
1882
+ Train Loss: 2.262052059173584
1883
+ Action Accuracy: 0.4553571343421936
1884
+ L1 Loss: 0.16309523809523813
1885
+
1886
+ Metrics at Step 37700:
1887
+ Train Loss: 2.472287654876709
1888
+ Action Accuracy: 0.3125
1889
+ L1 Loss: 0.12072829131652661
1890
+
1891
+ Metrics at Step 37800:
1892
+ Train Loss: 2.3393163681030273
1893
+ Action Accuracy: 0.3660714328289032
1894
+ L1 Loss: 0.10161064425770308
1895
+
1896
+ Metrics at Step 37900:
1897
+ Train Loss: 2.0258522033691406
1898
+ Action Accuracy: 0.4910714328289032
1899
+ L1 Loss: 0.1254201680672269
1900
+
1901
+ Metrics at Step 38000:
1902
+ Train Loss: 2.3539509773254395
1903
+ Action Accuracy: 0.3660714328289032
1904
+ L1 Loss: 0.23676470588235296
1905
+
1906
+ Metrics at Step 38100:
1907
+ Train Loss: 1.877508282661438
1908
+ Action Accuracy: 0.5357142686843872
1909
+ L1 Loss: 0.1323529411764706
1910
+
1911
+ Metrics at Step 38200:
1912
+ Train Loss: 2.1988377571105957
1913
+ Action Accuracy: 0.4553571343421936
1914
+ L1 Loss: 0.1542016806722689
1915
+
1916
+ Metrics at Step 38300:
1917
+ Train Loss: 2.3760719299316406
1918
+ Action Accuracy: 0.4464285671710968
1919
+ L1 Loss: 0.20532212885154058
1920
+
1921
+ Metrics at Step 38400:
1922
+ Train Loss: 2.7941296100616455
1923
+ Action Accuracy: 0.2946428656578064
1924
+ L1 Loss: 0.2273109243697479
1925
+
1926
+ Metrics at Step 38500:
1927
+ Train Loss: 2.057755708694458
1928
+ Action Accuracy: 0.4732142984867096
1929
+ L1 Loss: 0.16617647058823531
1930
+
1931
+ Metrics at Step 38600:
1932
+ Train Loss: 2.1800696849823
1933
+ Action Accuracy: 0.4375
1934
+ L1 Loss: 0.1566526610644258
1935
+
1936
+ Metrics at Step 38700:
1937
+ Train Loss: 2.6522841453552246
1938
+ Action Accuracy: 0.3125
1939
+ L1 Loss: 0.16302521008403362
1940
+
1941
+ Metrics at Step 38800:
1942
+ Train Loss: 2.730538845062256
1943
+ Action Accuracy: 0.3392857015132904
1944
+ L1 Loss: 0.14782913165266107
1945
+
1946
+ Metrics at Step 38900:
1947
+ Train Loss: 2.3829264640808105
1948
+ Action Accuracy: 0.4107142984867096
1949
+ L1 Loss: 0.17675070028011206
1950
+
1951
+ Metrics at Step 39000:
1952
+ Train Loss: 2.581739664077759
1953
+ Action Accuracy: 0.3660714328289032
1954
+ L1 Loss: 0.19292717086834732
1955
+
1956
+ Metrics at Step 39100:
1957
+ Train Loss: 2.498366594314575
1958
+ Action Accuracy: 0.3660714328289032
1959
+ L1 Loss: 0.15560224089635852
1960
+
1961
+ Metrics at Step 39200:
1962
+ Train Loss: 2.431891441345215
1963
+ Action Accuracy: 0.375
1964
+ L1 Loss: 0.1968487394957983
1965
+
1966
+ Metrics at Step 39300:
1967
+ Train Loss: 2.228703737258911
1968
+ Action Accuracy: 0.4375
1969
+ L1 Loss: 0.20875350140056023
1970
+
1971
+ Metrics at Step 39400:
1972
+ Train Loss: 2.6022043228149414
1973
+ Action Accuracy: 0.3839285671710968
1974
+ L1 Loss: 0.3074929971988795
1975
+
1976
+ Metrics at Step 39500:
1977
+ Train Loss: 2.318842887878418
1978
+ Action Accuracy: 0.3839285671710968
1979
+ L1 Loss: 0.15371148459383752
1980
+
1981
+ Metrics at Step 39600:
1982
+ Train Loss: 2.8260815143585205
1983
+ Action Accuracy: 0.3214285671710968
1984
+ L1 Loss: 0.23053221288515408
1985
+
1986
+ Metrics at Step 39700:
1987
+ Train Loss: 2.6222963333129883
1988
+ Action Accuracy: 0.3125
1989
+ L1 Loss: 0.207703081232493
1990
+
1991
+ Metrics at Step 39800:
1992
+ Train Loss: 2.675447702407837
1993
+ Action Accuracy: 0.3125
1994
+ L1 Loss: 0.21260504201680672
1995
+
1996
+ Metrics at Step 39900:
1997
+ Train Loss: 2.674267053604126
1998
+ Action Accuracy: 0.3125
1999
+ L1 Loss: 0.21617647058823528
2000
+
2001
+ Metrics at Step 40000:
2002
+ Train Loss: 2.7509145736694336
2003
+ Action Accuracy: 0.3482142984867096
2004
+ L1 Loss: 0.1931372549019608
2005
+
2006
+ Metrics at Step 40100:
2007
+ Train Loss: 2.2835841178894043
2008
+ Action Accuracy: 0.4196428656578064
2009
+ L1 Loss: 0.17170868347338936
2010
+
2011
+ Metrics at Step 40200:
2012
+ Train Loss: 2.1172170639038086
2013
+ Action Accuracy: 0.4553571343421936
2014
+ L1 Loss: 0.19831932773109243
2015
+
2016
+ Metrics at Step 40300:
2017
+ Train Loss: 2.2738022804260254
2018
+ Action Accuracy: 0.3928571343421936
2019
+ L1 Loss: 0.17464985994397758
2020
+
2021
+ Metrics at Step 40400:
2022
+ Train Loss: 2.2434847354888916
2023
+ Action Accuracy: 0.4821428656578064
2024
+ L1 Loss: 0.14537815126050418
2025
+
2026
+ Metrics at Step 40500:
2027
+ Train Loss: 2.7729668617248535
2028
+ Action Accuracy: 0.3035714328289032
2029
+ L1 Loss: 0.18767507002801123
2030
+
2031
+ Metrics at Step 40600:
2032
+ Train Loss: 2.7575526237487793
2033
+ Action Accuracy: 0.3392857015132904
2034
+ L1 Loss: 0.14992997198879549
2035
+
2036
+ Metrics at Step 40700:
2037
+ Train Loss: 2.4399783611297607
2038
+ Action Accuracy: 0.4107142984867096
2039
+ L1 Loss: 0.12079831932773111
2040
+
2041
+ Metrics at Step 40800:
2042
+ Train Loss: 2.2587897777557373
2043
+ Action Accuracy: 0.3839285671710968
2044
+ L1 Loss: 0.14978991596638652
2045
+
2046
+ Metrics at Step 40900:
2047
+ Train Loss: 2.459272623062134
2048
+ Action Accuracy: 0.4017857015132904
2049
+ L1 Loss: 0.17563025210084035
2050
+
2051
+ Metrics at Step 41000:
2052
+ Train Loss: 2.9701664447784424
2053
+ Action Accuracy: 0.3035714328289032
2054
+ L1 Loss: 0.24831932773109244
2055
+
2056
+ Metrics at Step 41100:
2057
+ Train Loss: 2.475799322128296
2058
+ Action Accuracy: 0.3660714328289032
2059
+ L1 Loss: 0.19586834733893557
2060
+
2061
+ Metrics at Step 41200:
2062
+ Train Loss: 2.468787670135498
2063
+ Action Accuracy: 0.3214285671710968
2064
+ L1 Loss: 0.14201680672268907
2065
+
2066
+ Metrics at Step 41300:
2067
+ Train Loss: 2.331364631652832
2068
+ Action Accuracy: 0.375
2069
+ L1 Loss: 0.19635854341736694
2070
+
2071
+ Metrics at Step 41400:
2072
+ Train Loss: 2.122570037841797
2073
+ Action Accuracy: 0.4285714328289032
2074
+ L1 Loss: 0.12436974789915967
2075
+
2076
+ Metrics at Step 41500:
2077
+ Train Loss: 2.2856009006500244
2078
+ Action Accuracy: 0.4375
2079
+ L1 Loss: 0.1299019607843137
2080
+
2081
+ Metrics at Step 41600:
2082
+ Train Loss: 2.6296727657318115
2083
+ Action Accuracy: 0.3571428656578064
2084
+ L1 Loss: 0.17275910364145658
2085
+
2086
+ Metrics at Step 41700:
2087
+ Train Loss: 2.295574188232422
2088
+ Action Accuracy: 0.3839285671710968
2089
+ L1 Loss: 0.08025210084033614
2090
+
2091
+ Metrics at Step 41800:
2092
+ Train Loss: 2.660079002380371
2093
+ Action Accuracy: 0.3303571343421936
2094
+ L1 Loss: 0.16050420168067228
2095
+
2096
+ Metrics at Step 41900:
2097
+ Train Loss: 2.6224076747894287
2098
+ Action Accuracy: 0.375
2099
+ L1 Loss: 0.19446778711484594
2100
+
2101
+ Metrics at Step 42000:
2102
+ Train Loss: 2.7851827144622803
2103
+ Action Accuracy: 0.3214285671710968
2104
+ L1 Loss: 0.20567226890756302
2105
+
2106
+ Metrics at Step 42100:
2107
+ Train Loss: 2.1320412158966064
2108
+ Action Accuracy: 0.4107142984867096
2109
+ L1 Loss: 0.0930672268907563
2110
+
2111
+ Metrics at Step 42200:
2112
+ Train Loss: 2.2695605754852295
2113
+ Action Accuracy: 0.4196428656578064
2114
+ L1 Loss: 0.13599439775910363
2115
+
2116
+ Metrics at Step 42300:
2117
+ Train Loss: 2.245612859725952
2118
+ Action Accuracy: 0.4375
2119
+ L1 Loss: 0.11876750700280111
2120
+
2121
+ Metrics at Step 42400:
2122
+ Train Loss: 2.204586982727051
2123
+ Action Accuracy: 0.4285714328289032
2124
+ L1 Loss: 0.13984593837535014
2125
+
2126
+ Metrics at Step 42500:
2127
+ Train Loss: 2.3280088901519775
2128
+ Action Accuracy: 0.3928571343421936
2129
+ L1 Loss: 0.15539215686274513
2130
+
2131
+ Metrics at Step 42600:
2132
+ Train Loss: 2.2034990787506104
2133
+ Action Accuracy: 0.4553571343421936
2134
+ L1 Loss: 0.14943977591036414
2135
+
2136
+ Metrics at Step 42700:
2137
+ Train Loss: 2.5912086963653564
2138
+ Action Accuracy: 0.3660714328289032
2139
+ L1 Loss: 0.19180672268907564
2140
+
2141
+ Metrics at Step 42800:
2142
+ Train Loss: 2.0345263481140137
2143
+ Action Accuracy: 0.4553571343421936
2144
+ L1 Loss: 0.13186274509803922
2145
+
2146
+ Metrics at Step 42900:
2147
+ Train Loss: 2.5923688411712646
2148
+ Action Accuracy: 0.3392857015132904
2149
+ L1 Loss: 0.17296918767507002
2150
+
2151
+ Metrics at Step 0:
2152
+ Train Loss: 2.5031685829162598
2153
+ Action Accuracy: 0.3482142984867096
2154
+ L1 Loss: 0.21708683473389354
2155
+
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a10567fbd7b8aa16979045d331736b0ba27ffbb3ffa64c3dfd26c5d1462227b
3
+ size 4925122448
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35cde23ef437b145f648f17f493fab74fec9751e01aa5c5af9ee7dda34f7db11
3
+ size 4947392496
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6332d38c51c0dd50f48236a27bfbb6686a2700c371af43513f5c49cfcfca1c7
3
+ size 4947417456
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c04d3714def0e912d211bad07937233cb16a1d1b162ffe5c758a732b8bc64ccf
3
+ size 262668432
model.safetensors.index.json ADDED
@@ -0,0 +1,989 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15082474368
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
109
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
128
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
131
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
132
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
133
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
134
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "language_model.model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
235
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
238
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
270
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
271
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
273
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
274
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
279
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
280
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
281
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
282
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
283
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
284
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
285
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
286
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
287
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "language_model.model.norm.weight": "model-00003-of-00004.safetensors",
297
+ "projector.fc1.bias": "model-00001-of-00004.safetensors",
298
+ "projector.fc1.weight": "model-00001-of-00004.safetensors",
299
+ "projector.fc2.bias": "model-00001-of-00004.safetensors",
300
+ "projector.fc2.weight": "model-00001-of-00004.safetensors",
301
+ "projector.fc3.bias": "model-00001-of-00004.safetensors",
302
+ "projector.fc3.weight": "model-00001-of-00004.safetensors",
303
+ "vision_backbone.featurizer.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
304
+ "vision_backbone.featurizer.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
305
+ "vision_backbone.featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
306
+ "vision_backbone.featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
307
+ "vision_backbone.featurizer.blocks.0.ls1.scale_factor": "model-00001-of-00004.safetensors",
308
+ "vision_backbone.featurizer.blocks.0.ls2.scale_factor": "model-00001-of-00004.safetensors",
309
+ "vision_backbone.featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
310
+ "vision_backbone.featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
311
+ "vision_backbone.featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
312
+ "vision_backbone.featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
313
+ "vision_backbone.featurizer.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
314
+ "vision_backbone.featurizer.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
315
+ "vision_backbone.featurizer.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
316
+ "vision_backbone.featurizer.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
317
+ "vision_backbone.featurizer.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
318
+ "vision_backbone.featurizer.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
319
+ "vision_backbone.featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
320
+ "vision_backbone.featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
321
+ "vision_backbone.featurizer.blocks.1.ls1.scale_factor": "model-00001-of-00004.safetensors",
322
+ "vision_backbone.featurizer.blocks.1.ls2.scale_factor": "model-00001-of-00004.safetensors",
323
+ "vision_backbone.featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
324
+ "vision_backbone.featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
325
+ "vision_backbone.featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
326
+ "vision_backbone.featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
327
+ "vision_backbone.featurizer.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
328
+ "vision_backbone.featurizer.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
329
+ "vision_backbone.featurizer.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
330
+ "vision_backbone.featurizer.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
331
+ "vision_backbone.featurizer.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
332
+ "vision_backbone.featurizer.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
333
+ "vision_backbone.featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
334
+ "vision_backbone.featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
335
+ "vision_backbone.featurizer.blocks.10.ls1.scale_factor": "model-00001-of-00004.safetensors",
336
+ "vision_backbone.featurizer.blocks.10.ls2.scale_factor": "model-00001-of-00004.safetensors",
337
+ "vision_backbone.featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
338
+ "vision_backbone.featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
339
+ "vision_backbone.featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
340
+ "vision_backbone.featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
341
+ "vision_backbone.featurizer.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
342
+ "vision_backbone.featurizer.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
343
+ "vision_backbone.featurizer.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
344
+ "vision_backbone.featurizer.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
345
+ "vision_backbone.featurizer.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
346
+ "vision_backbone.featurizer.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
347
+ "vision_backbone.featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
348
+ "vision_backbone.featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
349
+ "vision_backbone.featurizer.blocks.11.ls1.scale_factor": "model-00001-of-00004.safetensors",
350
+ "vision_backbone.featurizer.blocks.11.ls2.scale_factor": "model-00001-of-00004.safetensors",
351
+ "vision_backbone.featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
352
+ "vision_backbone.featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
353
+ "vision_backbone.featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
354
+ "vision_backbone.featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
355
+ "vision_backbone.featurizer.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
356
+ "vision_backbone.featurizer.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
357
+ "vision_backbone.featurizer.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
358
+ "vision_backbone.featurizer.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
359
+ "vision_backbone.featurizer.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
360
+ "vision_backbone.featurizer.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
361
+ "vision_backbone.featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
362
+ "vision_backbone.featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
363
+ "vision_backbone.featurizer.blocks.12.ls1.scale_factor": "model-00001-of-00004.safetensors",
364
+ "vision_backbone.featurizer.blocks.12.ls2.scale_factor": "model-00001-of-00004.safetensors",
365
+ "vision_backbone.featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
366
+ "vision_backbone.featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
367
+ "vision_backbone.featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
368
+ "vision_backbone.featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
369
+ "vision_backbone.featurizer.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
370
+ "vision_backbone.featurizer.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
371
+ "vision_backbone.featurizer.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
372
+ "vision_backbone.featurizer.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
373
+ "vision_backbone.featurizer.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
374
+ "vision_backbone.featurizer.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
375
+ "vision_backbone.featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
376
+ "vision_backbone.featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
377
+ "vision_backbone.featurizer.blocks.13.ls1.scale_factor": "model-00001-of-00004.safetensors",
378
+ "vision_backbone.featurizer.blocks.13.ls2.scale_factor": "model-00001-of-00004.safetensors",
379
+ "vision_backbone.featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
380
+ "vision_backbone.featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
381
+ "vision_backbone.featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
382
+ "vision_backbone.featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
383
+ "vision_backbone.featurizer.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
384
+ "vision_backbone.featurizer.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
385
+ "vision_backbone.featurizer.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
386
+ "vision_backbone.featurizer.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
387
+ "vision_backbone.featurizer.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
388
+ "vision_backbone.featurizer.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
389
+ "vision_backbone.featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
390
+ "vision_backbone.featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
391
+ "vision_backbone.featurizer.blocks.14.ls1.scale_factor": "model-00001-of-00004.safetensors",
392
+ "vision_backbone.featurizer.blocks.14.ls2.scale_factor": "model-00001-of-00004.safetensors",
393
+ "vision_backbone.featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
394
+ "vision_backbone.featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
395
+ "vision_backbone.featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
396
+ "vision_backbone.featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
397
+ "vision_backbone.featurizer.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
398
+ "vision_backbone.featurizer.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
399
+ "vision_backbone.featurizer.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
400
+ "vision_backbone.featurizer.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
401
+ "vision_backbone.featurizer.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
402
+ "vision_backbone.featurizer.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
403
+ "vision_backbone.featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
404
+ "vision_backbone.featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
405
+ "vision_backbone.featurizer.blocks.15.ls1.scale_factor": "model-00001-of-00004.safetensors",
406
+ "vision_backbone.featurizer.blocks.15.ls2.scale_factor": "model-00001-of-00004.safetensors",
407
+ "vision_backbone.featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
408
+ "vision_backbone.featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
409
+ "vision_backbone.featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
410
+ "vision_backbone.featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
411
+ "vision_backbone.featurizer.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
412
+ "vision_backbone.featurizer.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
413
+ "vision_backbone.featurizer.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
414
+ "vision_backbone.featurizer.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
415
+ "vision_backbone.featurizer.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
416
+ "vision_backbone.featurizer.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
417
+ "vision_backbone.featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
418
+ "vision_backbone.featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
419
+ "vision_backbone.featurizer.blocks.16.ls1.scale_factor": "model-00001-of-00004.safetensors",
420
+ "vision_backbone.featurizer.blocks.16.ls2.scale_factor": "model-00001-of-00004.safetensors",
421
+ "vision_backbone.featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
422
+ "vision_backbone.featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
423
+ "vision_backbone.featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
424
+ "vision_backbone.featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
425
+ "vision_backbone.featurizer.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
426
+ "vision_backbone.featurizer.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
427
+ "vision_backbone.featurizer.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
428
+ "vision_backbone.featurizer.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
429
+ "vision_backbone.featurizer.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
430
+ "vision_backbone.featurizer.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
431
+ "vision_backbone.featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
432
+ "vision_backbone.featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
433
+ "vision_backbone.featurizer.blocks.17.ls1.scale_factor": "model-00001-of-00004.safetensors",
434
+ "vision_backbone.featurizer.blocks.17.ls2.scale_factor": "model-00001-of-00004.safetensors",
435
+ "vision_backbone.featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
436
+ "vision_backbone.featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
437
+ "vision_backbone.featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
438
+ "vision_backbone.featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
439
+ "vision_backbone.featurizer.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
440
+ "vision_backbone.featurizer.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
441
+ "vision_backbone.featurizer.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
442
+ "vision_backbone.featurizer.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
443
+ "vision_backbone.featurizer.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
444
+ "vision_backbone.featurizer.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
445
+ "vision_backbone.featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
446
+ "vision_backbone.featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
447
+ "vision_backbone.featurizer.blocks.18.ls1.scale_factor": "model-00001-of-00004.safetensors",
448
+ "vision_backbone.featurizer.blocks.18.ls2.scale_factor": "model-00001-of-00004.safetensors",
449
+ "vision_backbone.featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
450
+ "vision_backbone.featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
451
+ "vision_backbone.featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
452
+ "vision_backbone.featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
453
+ "vision_backbone.featurizer.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
454
+ "vision_backbone.featurizer.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
455
+ "vision_backbone.featurizer.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
456
+ "vision_backbone.featurizer.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
457
+ "vision_backbone.featurizer.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
458
+ "vision_backbone.featurizer.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
459
+ "vision_backbone.featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
460
+ "vision_backbone.featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
461
+ "vision_backbone.featurizer.blocks.19.ls1.scale_factor": "model-00001-of-00004.safetensors",
462
+ "vision_backbone.featurizer.blocks.19.ls2.scale_factor": "model-00001-of-00004.safetensors",
463
+ "vision_backbone.featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
464
+ "vision_backbone.featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
465
+ "vision_backbone.featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
466
+ "vision_backbone.featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
467
+ "vision_backbone.featurizer.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
468
+ "vision_backbone.featurizer.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
469
+ "vision_backbone.featurizer.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
470
+ "vision_backbone.featurizer.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
471
+ "vision_backbone.featurizer.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
472
+ "vision_backbone.featurizer.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
473
+ "vision_backbone.featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
474
+ "vision_backbone.featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
475
+ "vision_backbone.featurizer.blocks.2.ls1.scale_factor": "model-00001-of-00004.safetensors",
476
+ "vision_backbone.featurizer.blocks.2.ls2.scale_factor": "model-00001-of-00004.safetensors",
477
+ "vision_backbone.featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
478
+ "vision_backbone.featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
479
+ "vision_backbone.featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
480
+ "vision_backbone.featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
481
+ "vision_backbone.featurizer.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
482
+ "vision_backbone.featurizer.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
483
+ "vision_backbone.featurizer.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
484
+ "vision_backbone.featurizer.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
485
+ "vision_backbone.featurizer.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
486
+ "vision_backbone.featurizer.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
487
+ "vision_backbone.featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
488
+ "vision_backbone.featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
489
+ "vision_backbone.featurizer.blocks.20.ls1.scale_factor": "model-00001-of-00004.safetensors",
490
+ "vision_backbone.featurizer.blocks.20.ls2.scale_factor": "model-00001-of-00004.safetensors",
491
+ "vision_backbone.featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
492
+ "vision_backbone.featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
493
+ "vision_backbone.featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
494
+ "vision_backbone.featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
495
+ "vision_backbone.featurizer.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
496
+ "vision_backbone.featurizer.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
497
+ "vision_backbone.featurizer.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
498
+ "vision_backbone.featurizer.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
499
+ "vision_backbone.featurizer.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
500
+ "vision_backbone.featurizer.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
501
+ "vision_backbone.featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
502
+ "vision_backbone.featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
503
+ "vision_backbone.featurizer.blocks.21.ls1.scale_factor": "model-00001-of-00004.safetensors",
504
+ "vision_backbone.featurizer.blocks.21.ls2.scale_factor": "model-00001-of-00004.safetensors",
505
+ "vision_backbone.featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
506
+ "vision_backbone.featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
507
+ "vision_backbone.featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
508
+ "vision_backbone.featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
509
+ "vision_backbone.featurizer.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
510
+ "vision_backbone.featurizer.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
511
+ "vision_backbone.featurizer.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
512
+ "vision_backbone.featurizer.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
513
+ "vision_backbone.featurizer.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
514
+ "vision_backbone.featurizer.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
515
+ "vision_backbone.featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
516
+ "vision_backbone.featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
517
+ "vision_backbone.featurizer.blocks.22.ls1.scale_factor": "model-00001-of-00004.safetensors",
518
+ "vision_backbone.featurizer.blocks.22.ls2.scale_factor": "model-00001-of-00004.safetensors",
519
+ "vision_backbone.featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
520
+ "vision_backbone.featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
521
+ "vision_backbone.featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
522
+ "vision_backbone.featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
523
+ "vision_backbone.featurizer.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
524
+ "vision_backbone.featurizer.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
525
+ "vision_backbone.featurizer.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
526
+ "vision_backbone.featurizer.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
527
+ "vision_backbone.featurizer.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
528
+ "vision_backbone.featurizer.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
529
+ "vision_backbone.featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
530
+ "vision_backbone.featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
531
+ "vision_backbone.featurizer.blocks.23.ls1.scale_factor": "model-00001-of-00004.safetensors",
532
+ "vision_backbone.featurizer.blocks.23.ls2.scale_factor": "model-00001-of-00004.safetensors",
533
+ "vision_backbone.featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
534
+ "vision_backbone.featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
535
+ "vision_backbone.featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
536
+ "vision_backbone.featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
537
+ "vision_backbone.featurizer.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
538
+ "vision_backbone.featurizer.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
539
+ "vision_backbone.featurizer.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
540
+ "vision_backbone.featurizer.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
541
+ "vision_backbone.featurizer.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
542
+ "vision_backbone.featurizer.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
543
+ "vision_backbone.featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
544
+ "vision_backbone.featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
545
+ "vision_backbone.featurizer.blocks.3.ls1.scale_factor": "model-00001-of-00004.safetensors",
546
+ "vision_backbone.featurizer.blocks.3.ls2.scale_factor": "model-00001-of-00004.safetensors",
547
+ "vision_backbone.featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
548
+ "vision_backbone.featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
549
+ "vision_backbone.featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
550
+ "vision_backbone.featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
551
+ "vision_backbone.featurizer.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
552
+ "vision_backbone.featurizer.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
553
+ "vision_backbone.featurizer.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
554
+ "vision_backbone.featurizer.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
555
+ "vision_backbone.featurizer.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
556
+ "vision_backbone.featurizer.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
557
+ "vision_backbone.featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
558
+ "vision_backbone.featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
559
+ "vision_backbone.featurizer.blocks.4.ls1.scale_factor": "model-00001-of-00004.safetensors",
560
+ "vision_backbone.featurizer.blocks.4.ls2.scale_factor": "model-00001-of-00004.safetensors",
561
+ "vision_backbone.featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
562
+ "vision_backbone.featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
563
+ "vision_backbone.featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
564
+ "vision_backbone.featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
565
+ "vision_backbone.featurizer.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
566
+ "vision_backbone.featurizer.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
567
+ "vision_backbone.featurizer.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
568
+ "vision_backbone.featurizer.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
569
+ "vision_backbone.featurizer.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
570
+ "vision_backbone.featurizer.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
571
+ "vision_backbone.featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
572
+ "vision_backbone.featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
573
+ "vision_backbone.featurizer.blocks.5.ls1.scale_factor": "model-00001-of-00004.safetensors",
574
+ "vision_backbone.featurizer.blocks.5.ls2.scale_factor": "model-00001-of-00004.safetensors",
575
+ "vision_backbone.featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
576
+ "vision_backbone.featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
577
+ "vision_backbone.featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
578
+ "vision_backbone.featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
579
+ "vision_backbone.featurizer.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
580
+ "vision_backbone.featurizer.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
581
+ "vision_backbone.featurizer.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
582
+ "vision_backbone.featurizer.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
583
+ "vision_backbone.featurizer.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
584
+ "vision_backbone.featurizer.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
585
+ "vision_backbone.featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
586
+ "vision_backbone.featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
587
+ "vision_backbone.featurizer.blocks.6.ls1.scale_factor": "model-00001-of-00004.safetensors",
588
+ "vision_backbone.featurizer.blocks.6.ls2.scale_factor": "model-00001-of-00004.safetensors",
589
+ "vision_backbone.featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
590
+ "vision_backbone.featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
591
+ "vision_backbone.featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
592
+ "vision_backbone.featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
593
+ "vision_backbone.featurizer.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
594
+ "vision_backbone.featurizer.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
595
+ "vision_backbone.featurizer.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
596
+ "vision_backbone.featurizer.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
597
+ "vision_backbone.featurizer.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
598
+ "vision_backbone.featurizer.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
599
+ "vision_backbone.featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
600
+ "vision_backbone.featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
601
+ "vision_backbone.featurizer.blocks.7.ls1.scale_factor": "model-00001-of-00004.safetensors",
602
+ "vision_backbone.featurizer.blocks.7.ls2.scale_factor": "model-00001-of-00004.safetensors",
603
+ "vision_backbone.featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
604
+ "vision_backbone.featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
605
+ "vision_backbone.featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
606
+ "vision_backbone.featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
607
+ "vision_backbone.featurizer.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
608
+ "vision_backbone.featurizer.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
609
+ "vision_backbone.featurizer.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
610
+ "vision_backbone.featurizer.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
611
+ "vision_backbone.featurizer.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
612
+ "vision_backbone.featurizer.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
613
+ "vision_backbone.featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
614
+ "vision_backbone.featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
615
+ "vision_backbone.featurizer.blocks.8.ls1.scale_factor": "model-00001-of-00004.safetensors",
616
+ "vision_backbone.featurizer.blocks.8.ls2.scale_factor": "model-00001-of-00004.safetensors",
617
+ "vision_backbone.featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
618
+ "vision_backbone.featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
619
+ "vision_backbone.featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
620
+ "vision_backbone.featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
621
+ "vision_backbone.featurizer.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
622
+ "vision_backbone.featurizer.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
623
+ "vision_backbone.featurizer.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
624
+ "vision_backbone.featurizer.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
625
+ "vision_backbone.featurizer.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
626
+ "vision_backbone.featurizer.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
627
+ "vision_backbone.featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
628
+ "vision_backbone.featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
629
+ "vision_backbone.featurizer.blocks.9.ls1.scale_factor": "model-00001-of-00004.safetensors",
630
+ "vision_backbone.featurizer.blocks.9.ls2.scale_factor": "model-00001-of-00004.safetensors",
631
+ "vision_backbone.featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
632
+ "vision_backbone.featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
633
+ "vision_backbone.featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
634
+ "vision_backbone.featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
635
+ "vision_backbone.featurizer.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
636
+ "vision_backbone.featurizer.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
637
+ "vision_backbone.featurizer.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
638
+ "vision_backbone.featurizer.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
639
+ "vision_backbone.featurizer.cls_token": "model-00001-of-00004.safetensors",
640
+ "vision_backbone.featurizer.norm.bias": "model-00001-of-00004.safetensors",
641
+ "vision_backbone.featurizer.norm.weight": "model-00001-of-00004.safetensors",
642
+ "vision_backbone.featurizer.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
643
+ "vision_backbone.featurizer.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
644
+ "vision_backbone.featurizer.pos_embed": "model-00001-of-00004.safetensors",
645
+ "vision_backbone.featurizer.reg_token": "model-00001-of-00004.safetensors",
646
+ "vision_backbone.fused_featurizer.attn_pool.kv.bias": "model-00001-of-00004.safetensors",
647
+ "vision_backbone.fused_featurizer.attn_pool.kv.weight": "model-00001-of-00004.safetensors",
648
+ "vision_backbone.fused_featurizer.attn_pool.latent": "model-00001-of-00004.safetensors",
649
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc1.bias": "model-00001-of-00004.safetensors",
650
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc1.weight": "model-00001-of-00004.safetensors",
651
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc2.bias": "model-00001-of-00004.safetensors",
652
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc2.weight": "model-00001-of-00004.safetensors",
653
+ "vision_backbone.fused_featurizer.attn_pool.norm.bias": "model-00001-of-00004.safetensors",
654
+ "vision_backbone.fused_featurizer.attn_pool.norm.weight": "model-00001-of-00004.safetensors",
655
+ "vision_backbone.fused_featurizer.attn_pool.proj.bias": "model-00001-of-00004.safetensors",
656
+ "vision_backbone.fused_featurizer.attn_pool.proj.weight": "model-00001-of-00004.safetensors",
657
+ "vision_backbone.fused_featurizer.attn_pool.q.bias": "model-00001-of-00004.safetensors",
658
+ "vision_backbone.fused_featurizer.attn_pool.q.weight": "model-00001-of-00004.safetensors",
659
+ "vision_backbone.fused_featurizer.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
660
+ "vision_backbone.fused_featurizer.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
661
+ "vision_backbone.fused_featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
662
+ "vision_backbone.fused_featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
663
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
664
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
665
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
666
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
667
+ "vision_backbone.fused_featurizer.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
668
+ "vision_backbone.fused_featurizer.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
669
+ "vision_backbone.fused_featurizer.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
670
+ "vision_backbone.fused_featurizer.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
671
+ "vision_backbone.fused_featurizer.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
672
+ "vision_backbone.fused_featurizer.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
673
+ "vision_backbone.fused_featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
674
+ "vision_backbone.fused_featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
675
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
676
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
677
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
678
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
679
+ "vision_backbone.fused_featurizer.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
680
+ "vision_backbone.fused_featurizer.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
681
+ "vision_backbone.fused_featurizer.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
682
+ "vision_backbone.fused_featurizer.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
683
+ "vision_backbone.fused_featurizer.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
684
+ "vision_backbone.fused_featurizer.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
685
+ "vision_backbone.fused_featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
686
+ "vision_backbone.fused_featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
687
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
688
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
689
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
690
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
691
+ "vision_backbone.fused_featurizer.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
692
+ "vision_backbone.fused_featurizer.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
693
+ "vision_backbone.fused_featurizer.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
694
+ "vision_backbone.fused_featurizer.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
695
+ "vision_backbone.fused_featurizer.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
696
+ "vision_backbone.fused_featurizer.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
697
+ "vision_backbone.fused_featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
698
+ "vision_backbone.fused_featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
699
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
700
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
701
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
702
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
703
+ "vision_backbone.fused_featurizer.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
704
+ "vision_backbone.fused_featurizer.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
705
+ "vision_backbone.fused_featurizer.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
706
+ "vision_backbone.fused_featurizer.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
707
+ "vision_backbone.fused_featurizer.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
708
+ "vision_backbone.fused_featurizer.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
709
+ "vision_backbone.fused_featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
710
+ "vision_backbone.fused_featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
711
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
712
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
713
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
714
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
715
+ "vision_backbone.fused_featurizer.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
716
+ "vision_backbone.fused_featurizer.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
717
+ "vision_backbone.fused_featurizer.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
718
+ "vision_backbone.fused_featurizer.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
719
+ "vision_backbone.fused_featurizer.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
720
+ "vision_backbone.fused_featurizer.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
721
+ "vision_backbone.fused_featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
722
+ "vision_backbone.fused_featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
723
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
724
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
725
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
726
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
727
+ "vision_backbone.fused_featurizer.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
728
+ "vision_backbone.fused_featurizer.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
729
+ "vision_backbone.fused_featurizer.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
730
+ "vision_backbone.fused_featurizer.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
731
+ "vision_backbone.fused_featurizer.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
732
+ "vision_backbone.fused_featurizer.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
733
+ "vision_backbone.fused_featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
734
+ "vision_backbone.fused_featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
735
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
736
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
737
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
738
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
739
+ "vision_backbone.fused_featurizer.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
740
+ "vision_backbone.fused_featurizer.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
741
+ "vision_backbone.fused_featurizer.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
742
+ "vision_backbone.fused_featurizer.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
743
+ "vision_backbone.fused_featurizer.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
744
+ "vision_backbone.fused_featurizer.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
745
+ "vision_backbone.fused_featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
746
+ "vision_backbone.fused_featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
747
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
748
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
749
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
750
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
751
+ "vision_backbone.fused_featurizer.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
752
+ "vision_backbone.fused_featurizer.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
753
+ "vision_backbone.fused_featurizer.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
754
+ "vision_backbone.fused_featurizer.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
755
+ "vision_backbone.fused_featurizer.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
756
+ "vision_backbone.fused_featurizer.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
757
+ "vision_backbone.fused_featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
758
+ "vision_backbone.fused_featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
759
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
760
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
761
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
762
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
763
+ "vision_backbone.fused_featurizer.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
764
+ "vision_backbone.fused_featurizer.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
765
+ "vision_backbone.fused_featurizer.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
766
+ "vision_backbone.fused_featurizer.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
767
+ "vision_backbone.fused_featurizer.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
768
+ "vision_backbone.fused_featurizer.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
769
+ "vision_backbone.fused_featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
770
+ "vision_backbone.fused_featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
771
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
772
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
773
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
774
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
775
+ "vision_backbone.fused_featurizer.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
776
+ "vision_backbone.fused_featurizer.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
777
+ "vision_backbone.fused_featurizer.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
778
+ "vision_backbone.fused_featurizer.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
779
+ "vision_backbone.fused_featurizer.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
780
+ "vision_backbone.fused_featurizer.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
781
+ "vision_backbone.fused_featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
782
+ "vision_backbone.fused_featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
783
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
784
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
785
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
786
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
787
+ "vision_backbone.fused_featurizer.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
788
+ "vision_backbone.fused_featurizer.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
789
+ "vision_backbone.fused_featurizer.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
790
+ "vision_backbone.fused_featurizer.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
791
+ "vision_backbone.fused_featurizer.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
792
+ "vision_backbone.fused_featurizer.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
793
+ "vision_backbone.fused_featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
794
+ "vision_backbone.fused_featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
795
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
796
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
797
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
798
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
799
+ "vision_backbone.fused_featurizer.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
800
+ "vision_backbone.fused_featurizer.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
801
+ "vision_backbone.fused_featurizer.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
802
+ "vision_backbone.fused_featurizer.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
803
+ "vision_backbone.fused_featurizer.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
804
+ "vision_backbone.fused_featurizer.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
805
+ "vision_backbone.fused_featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
806
+ "vision_backbone.fused_featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
807
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
808
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
809
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
810
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
811
+ "vision_backbone.fused_featurizer.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
812
+ "vision_backbone.fused_featurizer.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
813
+ "vision_backbone.fused_featurizer.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
814
+ "vision_backbone.fused_featurizer.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
815
+ "vision_backbone.fused_featurizer.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
816
+ "vision_backbone.fused_featurizer.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
817
+ "vision_backbone.fused_featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
818
+ "vision_backbone.fused_featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
819
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
820
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
821
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
822
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
823
+ "vision_backbone.fused_featurizer.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
824
+ "vision_backbone.fused_featurizer.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
825
+ "vision_backbone.fused_featurizer.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
826
+ "vision_backbone.fused_featurizer.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
827
+ "vision_backbone.fused_featurizer.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
828
+ "vision_backbone.fused_featurizer.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
829
+ "vision_backbone.fused_featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
830
+ "vision_backbone.fused_featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
831
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
832
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
833
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
834
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
835
+ "vision_backbone.fused_featurizer.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
836
+ "vision_backbone.fused_featurizer.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
837
+ "vision_backbone.fused_featurizer.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
838
+ "vision_backbone.fused_featurizer.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
839
+ "vision_backbone.fused_featurizer.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
840
+ "vision_backbone.fused_featurizer.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
841
+ "vision_backbone.fused_featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
842
+ "vision_backbone.fused_featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
843
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
844
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
845
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
846
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
847
+ "vision_backbone.fused_featurizer.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
848
+ "vision_backbone.fused_featurizer.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
849
+ "vision_backbone.fused_featurizer.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
850
+ "vision_backbone.fused_featurizer.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
851
+ "vision_backbone.fused_featurizer.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
852
+ "vision_backbone.fused_featurizer.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
853
+ "vision_backbone.fused_featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
854
+ "vision_backbone.fused_featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
855
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
856
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
857
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
858
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
859
+ "vision_backbone.fused_featurizer.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
860
+ "vision_backbone.fused_featurizer.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
861
+ "vision_backbone.fused_featurizer.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
862
+ "vision_backbone.fused_featurizer.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
863
+ "vision_backbone.fused_featurizer.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
864
+ "vision_backbone.fused_featurizer.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
865
+ "vision_backbone.fused_featurizer.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
866
+ "vision_backbone.fused_featurizer.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
867
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
868
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
869
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
870
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
871
+ "vision_backbone.fused_featurizer.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
872
+ "vision_backbone.fused_featurizer.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
873
+ "vision_backbone.fused_featurizer.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
874
+ "vision_backbone.fused_featurizer.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
875
+ "vision_backbone.fused_featurizer.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
876
+ "vision_backbone.fused_featurizer.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
877
+ "vision_backbone.fused_featurizer.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
878
+ "vision_backbone.fused_featurizer.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
879
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
880
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
881
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
882
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
883
+ "vision_backbone.fused_featurizer.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
884
+ "vision_backbone.fused_featurizer.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
885
+ "vision_backbone.fused_featurizer.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
886
+ "vision_backbone.fused_featurizer.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
887
+ "vision_backbone.fused_featurizer.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
888
+ "vision_backbone.fused_featurizer.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
889
+ "vision_backbone.fused_featurizer.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
890
+ "vision_backbone.fused_featurizer.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
891
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
892
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
893
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
894
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
895
+ "vision_backbone.fused_featurizer.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
896
+ "vision_backbone.fused_featurizer.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
897
+ "vision_backbone.fused_featurizer.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
898
+ "vision_backbone.fused_featurizer.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
899
+ "vision_backbone.fused_featurizer.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
900
+ "vision_backbone.fused_featurizer.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
901
+ "vision_backbone.fused_featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
902
+ "vision_backbone.fused_featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
903
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
904
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
905
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
906
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
907
+ "vision_backbone.fused_featurizer.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
908
+ "vision_backbone.fused_featurizer.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
909
+ "vision_backbone.fused_featurizer.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
910
+ "vision_backbone.fused_featurizer.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
911
+ "vision_backbone.fused_featurizer.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
912
+ "vision_backbone.fused_featurizer.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
913
+ "vision_backbone.fused_featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
914
+ "vision_backbone.fused_featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
915
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
916
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
917
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
918
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
919
+ "vision_backbone.fused_featurizer.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
920
+ "vision_backbone.fused_featurizer.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
921
+ "vision_backbone.fused_featurizer.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
922
+ "vision_backbone.fused_featurizer.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
923
+ "vision_backbone.fused_featurizer.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
924
+ "vision_backbone.fused_featurizer.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
925
+ "vision_backbone.fused_featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
926
+ "vision_backbone.fused_featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
927
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
928
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
929
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
930
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
931
+ "vision_backbone.fused_featurizer.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
932
+ "vision_backbone.fused_featurizer.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
933
+ "vision_backbone.fused_featurizer.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
934
+ "vision_backbone.fused_featurizer.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
935
+ "vision_backbone.fused_featurizer.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
936
+ "vision_backbone.fused_featurizer.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
937
+ "vision_backbone.fused_featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
938
+ "vision_backbone.fused_featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
939
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
940
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
941
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
942
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
943
+ "vision_backbone.fused_featurizer.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
944
+ "vision_backbone.fused_featurizer.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
945
+ "vision_backbone.fused_featurizer.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
946
+ "vision_backbone.fused_featurizer.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
947
+ "vision_backbone.fused_featurizer.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
948
+ "vision_backbone.fused_featurizer.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
949
+ "vision_backbone.fused_featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
950
+ "vision_backbone.fused_featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
951
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
952
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
953
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
954
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
955
+ "vision_backbone.fused_featurizer.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
956
+ "vision_backbone.fused_featurizer.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
957
+ "vision_backbone.fused_featurizer.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
958
+ "vision_backbone.fused_featurizer.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
959
+ "vision_backbone.fused_featurizer.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
960
+ "vision_backbone.fused_featurizer.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
961
+ "vision_backbone.fused_featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
962
+ "vision_backbone.fused_featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
963
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
964
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
965
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
966
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
967
+ "vision_backbone.fused_featurizer.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
968
+ "vision_backbone.fused_featurizer.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
969
+ "vision_backbone.fused_featurizer.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
970
+ "vision_backbone.fused_featurizer.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
971
+ "vision_backbone.fused_featurizer.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
972
+ "vision_backbone.fused_featurizer.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
973
+ "vision_backbone.fused_featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
974
+ "vision_backbone.fused_featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
975
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
976
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
977
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
978
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
979
+ "vision_backbone.fused_featurizer.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
980
+ "vision_backbone.fused_featurizer.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
981
+ "vision_backbone.fused_featurizer.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
982
+ "vision_backbone.fused_featurizer.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
983
+ "vision_backbone.fused_featurizer.norm.bias": "model-00001-of-00004.safetensors",
984
+ "vision_backbone.fused_featurizer.norm.weight": "model-00001-of-00004.safetensors",
985
+ "vision_backbone.fused_featurizer.patch_embed.proj.bias": "model-00001-of-00004.safetensors",
986
+ "vision_backbone.fused_featurizer.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
987
+ "vision_backbone.fused_featurizer.pos_embed": "model-00001-of-00004.safetensors"
988
+ }
989
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "openvla/openvla-7b--processing_prismatic.PrismaticImageProcessor",
4
+ "AutoProcessor": "openvla/openvla-7b--processing_prismatic.PrismaticProcessor"
5
+ },
6
+ "image_processor_type": "PrismaticImageProcessor",
7
+ "image_resize_strategy": "resize-naive",
8
+ "input_sizes": [
9
+ [
10
+ 3,
11
+ 224,
12
+ 224
13
+ ],
14
+ [
15
+ 3,
16
+ 224,
17
+ 224
18
+ ]
19
+ ],
20
+ "interpolations": [
21
+ "bicubic",
22
+ "bicubic"
23
+ ],
24
+ "means": [
25
+ [
26
+ 0.485,
27
+ 0.456,
28
+ 0.406
29
+ ],
30
+ [
31
+ 0.5,
32
+ 0.5,
33
+ 0.5
34
+ ]
35
+ ],
36
+ "processor_class": "PrismaticProcessor",
37
+ "stds": [
38
+ [
39
+ 0.229,
40
+ 0.224,
41
+ 0.225
42
+ ],
43
+ [
44
+ 0.5,
45
+ 0.5,
46
+ 0.5
47
+ ]
48
+ ],
49
+ "tvf_crop_params": [
50
+ {
51
+ "output_size": [
52
+ 224,
53
+ 224
54
+ ]
55
+ },
56
+ {
57
+ "output_size": [
58
+ 224,
59
+ 224
60
+ ]
61
+ }
62
+ ],
63
+ "tvf_do_letterbox": false,
64
+ "tvf_letterbox_fill": null,
65
+ "tvf_normalize_params": [
66
+ {
67
+ "inplace": false,
68
+ "mean": [
69
+ 0.484375,
70
+ 0.455078125,
71
+ 0.40625
72
+ ],
73
+ "std": [
74
+ 0.228515625,
75
+ 0.2236328125,
76
+ 0.224609375
77
+ ]
78
+ },
79
+ {
80
+ "inplace": false,
81
+ "mean": [
82
+ 0.5,
83
+ 0.5,
84
+ 0.5
85
+ ],
86
+ "std": [
87
+ 0.5,
88
+ 0.5,
89
+ 0.5
90
+ ]
91
+ }
92
+ ],
93
+ "tvf_resize_params": [
94
+ {
95
+ "antialias": true,
96
+ "interpolation": 3,
97
+ "max_size": null,
98
+ "size": [
99
+ 224,
100
+ 224
101
+ ]
102
+ },
103
+ {
104
+ "antialias": true,
105
+ "interpolation": 3,
106
+ "max_size": null,
107
+ "size": [
108
+ 224,
109
+ 224
110
+ ]
111
+ }
112
+ ],
113
+ "use_fused_vision_backbone": true
114
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<PAD>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<PAD>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "auto_map": {
39
+ "AutoProcessor": "openvla/openvla-7b--processing_prismatic.PrismaticProcessor"
40
+ },
41
+ "bos_token": "<s>",
42
+ "clean_up_tokenization_spaces": false,
43
+ "eos_token": "</s>",
44
+ "legacy": false,
45
+ "model_max_length": 2048,
46
+ "pad_token": "<PAD>",
47
+ "padding_side": "right",
48
+ "processor_class": "PrismaticProcessor",
49
+ "sp_model_kwargs": {},
50
+ "tokenizer_class": "LlamaTokenizer",
51
+ "unk_token": "<unk>",
52
+ "use_default_system_prompt": false
53
+ }