Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- teknium/OpenHermes-2.5
|
5 |
+
- abhinand/ultrachat_200k_sharegpt
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
---
|
9 |
+
|
10 |
+
# TinyLLaMA OpenHermes2.5 [Work in Progress] (Quantized)
|
11 |
+
|
12 |
+
This a finetune of TinyLLaMA base model finetuned on [OpenHermes 2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) and [UltraChat 200k](https://huggingface.co/datasets/abhinand/ultrachat_200k_sharegpt) for a single epoch.
|
13 |
+
|
14 |
+
Training was generously supported by [Jarvislabs.ai](https://jarvislabs.ai/).
|
15 |
+
|
16 |
+
If you appreciate this work and would like to support its continued development, consider [buying me a coffee](https://www.buymeacoffee.com/abhinand.b). Your support is invaluable and greatly appreciated.
|
17 |
+
|
18 |
+
[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/abhinand.b)
|
19 |
+
|
20 |
+
<details><summary>See axolotl config</summary>
|
21 |
+
|
22 |
+
axolotl version: `0.4.0`
|
23 |
+
```yaml
|
24 |
+
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
25 |
+
model_type: AutoModelForCausalLM
|
26 |
+
tokenizer_type: AutoTokenizer
|
27 |
+
trust_remote_code: true
|
28 |
+
is_llama_derived_model: true
|
29 |
+
|
30 |
+
# huggingface repo
|
31 |
+
datasets:
|
32 |
+
- path: teknium/OpenHermes-2.5
|
33 |
+
type: sharegpt
|
34 |
+
conversation: chatml
|
35 |
+
train_on_split: train
|
36 |
+
|
37 |
+
- path: abhinand/ultrachat_200k_sharegpt
|
38 |
+
type: sharegpt
|
39 |
+
conversation: chatml
|
40 |
+
train_on_split: train
|
41 |
+
|
42 |
+
load_in_4bit: false
|
43 |
+
load_in_8bit: false
|
44 |
+
bf16: true # require >=ampere
|
45 |
+
chat_template: chatml
|
46 |
+
|
47 |
+
dataset_prepared_path: last_run_prepared_path
|
48 |
+
hub_model_id: abhinand/TinyLlama-1.1B-OpenHermes-2.5-Chat-v1.0
|
49 |
+
group_by_length: false
|
50 |
+
|
51 |
+
val_set_size: 0.0
|
52 |
+
sequence_len: 2048
|
53 |
+
sample_packing: true
|
54 |
+
pad_to_sequence_len: true
|
55 |
+
|
56 |
+
adapter: lora
|
57 |
+
lora_model_dir:
|
58 |
+
lora_r: 32
|
59 |
+
lora_alpha: 16
|
60 |
+
lora_target_modules:
|
61 |
+
- q_proj
|
62 |
+
- v_proj
|
63 |
+
- k_proj
|
64 |
+
- o_proj
|
65 |
+
- gate_proj
|
66 |
+
- down_proj
|
67 |
+
- up_proj
|
68 |
+
lora_modules_to_save:
|
69 |
+
- embed_tokens
|
70 |
+
- lm_head
|
71 |
+
lora_dropout: 0.05
|
72 |
+
lora_target_linear: true
|
73 |
+
lora_fan_in_fan_out:
|
74 |
+
|
75 |
+
output_dir: /home/tiny-llama/trained_models
|
76 |
+
|
77 |
+
gradient_accumulation_steps: 2
|
78 |
+
micro_batch_size: 32
|
79 |
+
eval_batch_size: 32
|
80 |
+
num_epochs: 1
|
81 |
+
logging_steps: 1
|
82 |
+
save_steps: 50
|
83 |
+
save_total_limit: 3
|
84 |
+
|
85 |
+
save_safetensors: true
|
86 |
+
gradient_checkpointing: true
|
87 |
+
|
88 |
+
lr_scheduler: cosine
|
89 |
+
optimizer: "adamw_bnb_8bit"
|
90 |
+
adam_beta2: 0.95
|
91 |
+
adam_epsilon: 0.00001
|
92 |
+
weight_decay: 0.1
|
93 |
+
learning_rate: 0.0005
|
94 |
+
max_grad_norm: 1.0
|
95 |
+
warmup_ratio: 0.05
|
96 |
+
# warmup_steps: 100
|
97 |
+
|
98 |
+
flash_attention: true
|
99 |
+
|
100 |
+
# Resume from a specific checkpoint dir
|
101 |
+
resume_from_checkpoint:
|
102 |
+
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
|
103 |
+
# Be careful with this being turned on between different models.
|
104 |
+
# auto_resume_from_checkpoints: true
|
105 |
+
|
106 |
+
# wandb configuration if you're using it
|
107 |
+
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
|
108 |
+
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
|
109 |
+
wandb_project: "tiny-llama-sft"
|
110 |
+
wandb_name:
|
111 |
+
wandb_run_id:
|
112 |
+
|
113 |
+
special_tokens:
|
114 |
+
bos_token: "<s>"
|
115 |
+
eos_token: "</s>"
|
116 |
+
unk_token: "<unk>"
|
117 |
+
tokens: # these are delimiters
|
118 |
+
- "<|im_start|>"
|
119 |
+
- "<|im_end|>"
|
120 |
+
|
121 |
+
```
|
122 |
+
|
123 |
+
</details>
|
124 |
+
|
125 |
+
## Training procedure
|
126 |
+
|
127 |
+
### Training hyperparameters
|
128 |
+
|
129 |
+
The following hyperparameters were used during training:
|
130 |
+
- learning_rate: 0.0005
|
131 |
+
- train_batch_size: 32
|
132 |
+
- eval_batch_size: 32
|
133 |
+
- seed: 42
|
134 |
+
- gradient_accumulation_steps: 2
|
135 |
+
- total_train_batch_size: 64
|
136 |
+
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
|
137 |
+
- lr_scheduler_type: cosine
|
138 |
+
- lr_scheduler_warmup_steps: 476
|
139 |
+
- num_epochs: 1
|
140 |
+
|
141 |
+
### Framework versions
|
142 |
+
|
143 |
+
- PEFT 0.8.2
|
144 |
+
- Transformers 4.38.0.dev0
|
145 |
+
- Pytorch 2.0.1
|
146 |
+
- Datasets 2.16.1
|
147 |
+
- Tokenizers 0.15.0
|