Upload with huggingface_hub
Browse files- 1_Pooling/config.json +1 -1
- README.md +6 -44
- config.json +16 -14
- modules.json +6 -0
- pytorch_model.bin +2 -2
- tokenizer_config.json +4 -2
1_Pooling/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"word_embedding_dimension":
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
|
|
1 |
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
README.md
CHANGED
@@ -4,13 +4,12 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
- transformers
|
8 |
|
9 |
---
|
10 |
|
11 |
# {MODEL_NAME}
|
12 |
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a
|
14 |
|
15 |
<!--- Describe your model here -->
|
16 |
|
@@ -35,44 +34,6 @@ print(embeddings)
|
|
35 |
|
36 |
|
37 |
|
38 |
-
## Usage (HuggingFace Transformers)
|
39 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
-
|
41 |
-
```python
|
42 |
-
from transformers import AutoTokenizer, AutoModel
|
43 |
-
import torch
|
44 |
-
|
45 |
-
|
46 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
47 |
-
def mean_pooling(model_output, attention_mask):
|
48 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
49 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
-
|
52 |
-
|
53 |
-
# Sentences we want sentence embeddings for
|
54 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
-
|
56 |
-
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
58 |
-
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
59 |
-
|
60 |
-
# Tokenize sentences
|
61 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
-
|
63 |
-
# Compute token embeddings
|
64 |
-
with torch.no_grad():
|
65 |
-
model_output = model(**encoded_input)
|
66 |
-
|
67 |
-
# Perform pooling. In this case, mean pooling.
|
68 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
-
|
70 |
-
print("Sentence embeddings:")
|
71 |
-
print(sentence_embeddings)
|
72 |
-
```
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
## Evaluation Results
|
77 |
|
78 |
<!--- Describe how your model was evaluated -->
|
@@ -85,7 +46,7 @@ The model was trained with the parameters:
|
|
85 |
|
86 |
**DataLoader**:
|
87 |
|
88 |
-
`torch.utils.data.dataloader.DataLoader` of length
|
89 |
```
|
90 |
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
```
|
@@ -110,7 +71,7 @@ Parameters of the fit()-Method:
|
|
110 |
},
|
111 |
"scheduler": "WarmupLinear",
|
112 |
"steps_per_epoch": null,
|
113 |
-
"warmup_steps":
|
114 |
"weight_decay": 0.01
|
115 |
}
|
116 |
```
|
@@ -119,8 +80,9 @@ Parameters of the fit()-Method:
|
|
119 |
## Full Model Architecture
|
120 |
```
|
121 |
SentenceTransformer(
|
122 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model:
|
123 |
-
(1): Pooling({'word_embedding_dimension':
|
|
|
124 |
)
|
125 |
```
|
126 |
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
|
|
7 |
|
8 |
---
|
9 |
|
10 |
# {MODEL_NAME}
|
11 |
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
|
|
34 |
|
35 |
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
## Evaluation Results
|
38 |
|
39 |
<!--- Describe how your model was evaluated -->
|
|
|
46 |
|
47 |
**DataLoader**:
|
48 |
|
49 |
+
`torch.utils.data.dataloader.DataLoader` of length 1369 with parameters:
|
50 |
```
|
51 |
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
```
|
|
|
71 |
},
|
72 |
"scheduler": "WarmupLinear",
|
73 |
"steps_per_epoch": null,
|
74 |
+
"warmup_steps": 1369,
|
75 |
"weight_decay": 0.01
|
76 |
}
|
77 |
```
|
|
|
80 |
## Full Model Architecture
|
81 |
```
|
82 |
SentenceTransformer(
|
83 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
84 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
85 |
+
(2): Normalize()
|
86 |
)
|
87 |
```
|
88 |
|
config.json
CHANGED
@@ -1,24 +1,26 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/home/jtang/.cache/torch/sentence_transformers/sentence-
|
3 |
-
"activation": "gelu",
|
4 |
"architectures": [
|
5 |
-
"
|
6 |
],
|
7 |
-
"
|
8 |
-
"
|
9 |
-
"
|
10 |
-
"
|
|
|
|
|
11 |
"initializer_range": 0.02,
|
|
|
|
|
12 |
"max_position_embeddings": 512,
|
13 |
-
"model_type": "
|
14 |
-
"
|
15 |
-
"
|
16 |
"pad_token_id": 0,
|
17 |
-
"
|
18 |
-
"seq_classif_dropout": 0.2,
|
19 |
-
"sinusoidal_pos_embds": false,
|
20 |
-
"tie_weights_": true,
|
21 |
"torch_dtype": "float32",
|
22 |
"transformers_version": "4.26.1",
|
|
|
|
|
23 |
"vocab_size": 30522
|
24 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/home/jtang/.cache/torch/sentence_transformers/sentence-transformers_multi-qa-MiniLM-L6-cos-v1/",
|
|
|
3 |
"architectures": [
|
4 |
+
"BertModel"
|
5 |
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
|
|
|
|
|
|
21 |
"torch_dtype": "float32",
|
22 |
"transformers_version": "4.26.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
"vocab_size": 30522
|
26 |
}
|
modules.json
CHANGED
@@ -10,5 +10,11 @@
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
]
|
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
}
|
20 |
]
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea83c0bc402863aaaea0d8cf6002f1da792a5c625eb7441d9295ceb5eed1d30e
|
3 |
+
size 90891565
|
tokenizer_config.json
CHANGED
@@ -1,14 +1,16 @@
|
|
1 |
{
|
2 |
"cls_token": "[CLS]",
|
|
|
3 |
"do_lower_case": true,
|
4 |
"mask_token": "[MASK]",
|
5 |
"model_max_length": 512,
|
6 |
-
"name_or_path": "/home/jtang/.cache/torch/sentence_transformers/sentence-
|
|
|
7 |
"pad_token": "[PAD]",
|
8 |
"sep_token": "[SEP]",
|
9 |
"special_tokens_map_file": null,
|
10 |
"strip_accents": null,
|
11 |
"tokenize_chinese_chars": true,
|
12 |
-
"tokenizer_class": "
|
13 |
"unk_token": "[UNK]"
|
14 |
}
|
|
|
1 |
{
|
2 |
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
"do_lower_case": true,
|
5 |
"mask_token": "[MASK]",
|
6 |
"model_max_length": 512,
|
7 |
+
"name_or_path": "/home/jtang/.cache/torch/sentence_transformers/sentence-transformers_multi-qa-MiniLM-L6-cos-v1/",
|
8 |
+
"never_split": null,
|
9 |
"pad_token": "[PAD]",
|
10 |
"sep_token": "[SEP]",
|
11 |
"special_tokens_map_file": null,
|
12 |
"strip_accents": null,
|
13 |
"tokenize_chinese_chars": true,
|
14 |
+
"tokenizer_class": "BertTokenizer",
|
15 |
"unk_token": "[UNK]"
|
16 |
}
|