abhijeet2022
commited on
Commit
•
7dad719
1
Parent(s):
0a8f6cb
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.17 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf85cda87b53be51f305f83d4137b535a9f938328ef81ff5cd84239211473eb1
|
3 |
+
size 108131
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d1f58d37010>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d1f58d3d400>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1698515381848999966,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhFEuP9lPrr4ayZO/7fd5PykDoT+hZKg/fCJlPl/nxDpPfOc+fCJlPl/nxDpPfOc+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvu+jPy8v4r5fHqe/MtGBP6Ntoj9keMs/sBAsv2xkO7862KC/ETssP/POMj7uzZ+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACEUS4/2U+uvhrJk79w6Sk/sSTLvaSjvb/t93k/KQOhP6FkqD8K1o0/KldgP9+ivD98ImU+X+fEOk985z49z/k+RT/Wu2/1wD58ImU+X+fEOk985z49z/k+RT/Wu2/1wD6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.6809313 -0.34045294 -1.1545746 ]\n [ 0.9764393 1.2579089 1.315571 ]\n [ 0.22376436 0.00150226 0.45212027]\n [ 0.22376436 0.00150226 0.45212027]]",
|
34 |
+
"desired_goal": "[[ 1.2807539 -0.44176623 -1.3056144 ]\n [ 1.0141966 1.2689708 1.5896115 ]\n [-0.67212963 -0.73200107 -1.2565987 ]\n [ 0.6727763 0.17461757 -1.248472 ]]",
|
35 |
+
"observation": "[[ 0.6809313 -0.34045294 -1.1545746 0.6637182 -0.09919108 -1.4815564 ]\n [ 0.9764393 1.2579089 1.315571 1.1080945 0.87633 1.4737204 ]\n [ 0.22376436 0.00150226 0.45212027 0.48790923 -0.0065383 0.3768725 ]\n [ 0.22376436 0.00150226 0.45212027 0.48790923 -0.0065383 0.3768725 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI4kDPnuFuz0q52U+wcQEvbDjeLxu2yI+u4GLPUXYzr1m5ks+bZzZvVe+072D4xs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.12845282 0.09156319 0.22451463]\n [-0.0324142 -0.015191 0.15904018]\n [ 0.06811853 -0.10099844 0.19912109]\n [-0.10625539 -0.10339039 0.15223508]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8ABBAv+OwSMAWyUSwKMAXSUR0Cm3UdN34bkdX2UKGgGR7+0kIHC4z7/aAdLAmgIR0Cm3OxdY4hmdX2UKGgGR7/GjSofjjrBaAdLA2gIR0Cm3bLdvbXZdX2UKGgGR7/K2Yv38GcGaAdLA2gIR0Cm3WA9mpVCdX2UKGgGR7/MBpYcNpdsaAdLA2gIR0Cm3QUiyIHkdX2UKGgGR7/WEovzvqkeaAdLBGgIR0Cm3K4/Vy3kdX2UKGgGR7+hwQ176YVqaAdLAWgIR0Cm3Q2XkYGddX2UKGgGR7+dQfp2U0N0aAdLAWgIR0Cm3LeAuqWDdX2UKGgGR7/FXVbzK9wnaAdLA2gIR0Cm3dG1x82KdX2UKGgGR7/TXMyJsO5KaAdLA2gIR0Cm3X+E7GNrdX2UKGgGR7+/+4smOU+taAdLAmgIR0Cm3M0se4kNdX2UKGgGR7/NHS4OMERraAdLA2gIR0Cm3SzVc2R8dX2UKGgGR7/Hg62fChvjaAdLA2gIR0Cm3eqr7wazdX2UKGgGR7/DP/JeVs1saAdLAmgIR0Cm3NzQNTcZdX2UKGgGR7/Gqfe1rqMWaAdLA2gIR0Cm3ZfUWl/IdX2UKGgGR7/QFo+OfdylaAdLA2gIR0Cm3UblzU7TdX2UKGgGR7/JpBX0XgtOaAdLA2gIR0Cm3Pb349HMdX2UKGgGR7/fWgezUqhEaAdLBGgIR0Cm3gw66reZdX2UKGgGR7/NVAAyVObiaAdLA2gIR0Cm3bFqrR0EdX2UKGgGR7/T2ZRbbDdhaAdLA2gIR0Cm3V1lXiiqdX2UKGgGR7+y0b961LJ0aAdLAmgIR0Cm3QYjbBXTdX2UKGgGR7/VoUBXCCSSaAdLBGgIR0Cm3i6P0Zm7dX2UKGgGR7/WDJEH+qBFaAdLBGgIR0Cm3dRIjGDMdX2UKGgGR7/Rgq3EyckMaAdLA2gIR0Cm3XkM1CPZdX2UKGgGR7/SZOi35N48aAdLA2gIR0Cm3SIdMj/udX2UKGgGR7+/LB9Cu2ZzaAdLAmgIR0Cm3TDe0ojOdX2UKGgGR7/SSVGCqZMMaAdLA2gIR0Cm3kXOGCZndX2UKGgGR7/Usjmjj7yhaAdLA2gIR0Cm3esyBTXKdX2UKGgGR7/V6Gxlg+hXaAdLA2gIR0Cm3Y/D+BH1dX2UKGgGR7/GB06o2n89aAdLAmgIR0Cm3ldUCJXRdX2UKGgGR7+0Xwb2lEZ0aAdLAmgIR0Cm3aEIHC40dX2UKGgGR7/J9ORDCxeLaAdLA2gIR0Cm3Upda+vhdX2UKGgGR7/OLncL0BfbaAdLA2gIR0Cm3gSNwR5DdX2UKGgGR7+yiXY150KaaAdLAmgIR0Cm3mcQqZtvdX2UKGgGR7/Do6jnFHawaAdLAmgIR0Cm3bDRc/t6dX2UKGgGR7/JwYtQKrq/aAdLA2gIR0Cm3WCr92ovdX2UKGgGR7/RDbrTpgTiaAdLA2gIR0Cm3h969kBkdX2UKGgGR7/EIacZtNzsaAdLAmgIR0Cm3cRaPjn3dX2UKGgGR7/InsLORkmQaAdLA2gIR0Cm3oKcurZKdX2UKGgGR7/HTVDrqt5laAdLA2gIR0Cm3X1W0Z3tdX2UKGgGR7/K8La24NI9aAdLA2gIR0Cm3jdzfaYedX2UKGgGR7/EXuVopQUIaAdLA2gIR0Cm3pnOB19wdX2UKGgGR7/acAiml67eaAdLBGgIR0Cm3ePDxb0OdX2UKGgGR7/PR/EwWWQfaAdLA2gIR0Cm3ZgAp8WsdX2UKGgGR7/axFiKBNEgaAdLBGgIR0Cm3lwbEP1+dX2UKGgGR7/P1r6+FlCkaAdLA2gIR0Cm3gGdRR/FdX2UKGgGR7+/VZs9B8hLaAdLAmgIR0Cm3aqh11W9dX2UKGgGR7/W5IH1OCXhaAdLBGgIR0Cm3sDAzpHJdX2UKGgGR7/B3W4EwFkhaAdLAmgIR0Cm3hKJMxoJdX2UKGgGR7/TkcCHRCyAaAdLA2gIR0Cm3ch37k4ndX2UKGgGR7/Jz3AVO9FnaAdLA2gIR0Cm3t3k5p8GdX2UKGgGR7/Uh4dIXj2jaAdLBGgIR0Cm3oNpM6BAdX2UKGgGR7/Bwe/5+H8CaAdLAmgIR0Cm3ig+QlrudX2UKGgGR7+3KFIuoP07aAdLAmgIR0Cm3dkJjUd8dX2UKGgGR7+2ThYNiH6/aAdLAmgIR0Cm3jf7SApbdX2UKGgGR7/MXAuZkTYeaAdLA2gIR0Cm3prJbMX8dX2UKGgGR7/DKL876pHaaAdLAmgIR0Cm3eg13t8edX2UKGgGR7/ZpsoDxLCfaAdLBGgIR0Cm3wGEPDpDdX2UKGgGR7/EfBeokzGhaAdLAmgIR0Cm3kuez2OAdX2UKGgGR7+mI2wV0tAcaAdLAWgIR0Cm3lQjdHlPdX2UKGgGR7/P1DjR2KVIaAdLA2gIR0Cm3rfdAPd3dX2UKGgGR7/ErLhaTwDvaAdLA2gIR0Cm3xsVDa4+dX2UKGgGR7/dsYVIqbz9aAdLBGgIR0Cm3g0d7v5QdX2UKGgGR7/W4vN/vv0AaAdLA2gIR0Cm3mvuXu3MdX2UKGgGR7+o0/GEPDpDaAdLAWgIR0Cm3hSj59E1dX2UKGgGR7/RnIhhYvFnaAdLA2gIR0Cm3tKOtGNJdX2UKGgGR7/UtYjjaPCEaAdLA2gIR0Cm3zZVGTcJdX2UKGgGR7/MoaUA1ejVaAdLA2gIR0Cm3ojTz/ZNdX2UKGgGR7/I3y7PIGQkaAdLA2gIR0Cm3uyMDOkddX2UKGgGR7/aAwfyPMjeaAdLBGgIR0Cm3joexOcldX2UKGgGR7/Qjp9qk/KRaAdLA2gIR0Cm30+wcHW0dX2UKGgGR7+dD+irT6SDaAdLAWgIR0Cm31rJbMX8dX2UKGgGR7/Dz5GjKxLTaAdLAmgIR0Cm3v/z8P4EdX2UKGgGR7/DyBClabF1aAdLAmgIR0Cm3k0th/iHdX2UKGgGR7/YWEK3NLUTaAdLBGgIR0Cm3q0FKTStdX2UKGgGR7/SbgTAWSEEaAdLA2gIR0Cm33PBi1ArdX2UKGgGR7/PPuXu3MINaAdLA2gIR0Cm3xj3/PxAdX2UKGgGR7/Rfj0cwQDnaAdLA2gIR0Cm3mbnxJ/YdX2UKGgGR7/IBRQ79ycTaAdLA2gIR0Cm3sWFN+LFdX2UKGgGR7++fChvitJWaAdLAmgIR0Cm34chs67vdX2UKGgGR7/Spudf9gndaAdLA2gIR0Cm3zOgxrSFdX2UKGgGR7/P3cpLEk0KaAdLA2gIR0Cm3oHDJlredX2UKGgGR7/Ts6aLGaQWaAdLA2gIR0Cm3uDaoMrmdX2UKGgGR7/ZZof0VafSaAdLBGgIR0Cm36d12aDxdX2UKGgGR7/UNahYeT3ZaAdLA2gIR0Cm30y+Yc//dX2UKGgGR7+lRFZxJd0JaAdLAWgIR0Cm31jH4oJBdX2UKGgGR7/RN3GGVRk3aAdLA2gIR0Cm3v2oegctdX2UKGgGR7/cz1K5CngpaAdLBGgIR0Cm3qabnX/YdX2UKGgGR7/B0eU6gdwOaAdLAmgIR0Cm37xY7q6fdX2UKGgGR7/OYht+CsfaaAdLA2gIR0Cm33CaZx7zdX2UKGgGR7/LMlkYoAn2aAdLA2gIR0Cm3r4+KTB7dX2UKGgGR7/O717IDHOsaAdLA2gIR0Cm39OPFNtZdX2UKGgGR7/NBSDRMN+caAdLBGgIR0Cm3x1EVnEmdX2UKGgGR7/Mx59mYjSoaAdLA2gIR0Cm34uY6XBydX2UKGgGR7/Ka2F36hxpaAdLA2gIR0Cm3+4eLehxdX2UKGgGR7+mW4Vh1DBuaAdLAWgIR0Cm35N4RmK7dX2UKGgGR7/MvtdAxBVuaAdLA2gIR0Cm3zjUd7v5dX2UKGgGR7/cFXJYDDCQaAdLBGgIR0Cm3uGGdqcmdX2UKGgGR7/BwMH8jzI4aAdLAmgIR0Cm30iml67edX2UKGgGR7+2quKXOW0JaAdLAmgIR0Cm3vFtKqXGdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99966afba516542e655aa28be8d41db1100b386237419c9167e3eaf907c681dc
|
3 |
+
size 45167
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f716c045dfef2cacb18dabd51fbd953ab548e6745b7a0c0e1fa9bd888a17d5e2
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d1f58d37010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d1f58d3d400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698515381848999966, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhFEuP9lPrr4ayZO/7fd5PykDoT+hZKg/fCJlPl/nxDpPfOc+fCJlPl/nxDpPfOc+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvu+jPy8v4r5fHqe/MtGBP6Ntoj9keMs/sBAsv2xkO7862KC/ETssP/POMj7uzZ+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACEUS4/2U+uvhrJk79w6Sk/sSTLvaSjvb/t93k/KQOhP6FkqD8K1o0/KldgP9+ivD98ImU+X+fEOk985z49z/k+RT/Wu2/1wD58ImU+X+fEOk985z49z/k+RT/Wu2/1wD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.6809313 -0.34045294 -1.1545746 ]\n [ 0.9764393 1.2579089 1.315571 ]\n [ 0.22376436 0.00150226 0.45212027]\n [ 0.22376436 0.00150226 0.45212027]]", "desired_goal": "[[ 1.2807539 -0.44176623 -1.3056144 ]\n [ 1.0141966 1.2689708 1.5896115 ]\n [-0.67212963 -0.73200107 -1.2565987 ]\n [ 0.6727763 0.17461757 -1.248472 ]]", "observation": "[[ 0.6809313 -0.34045294 -1.1545746 0.6637182 -0.09919108 -1.4815564 ]\n [ 0.9764393 1.2579089 1.315571 1.1080945 0.87633 1.4737204 ]\n [ 0.22376436 0.00150226 0.45212027 0.48790923 -0.0065383 0.3768725 ]\n [ 0.22376436 0.00150226 0.45212027 0.48790923 -0.0065383 0.3768725 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI4kDPnuFuz0q52U+wcQEvbDjeLxu2yI+u4GLPUXYzr1m5ks+bZzZvVe+072D4xs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12845282 0.09156319 0.22451463]\n [-0.0324142 -0.015191 0.15904018]\n [ 0.06811853 -0.10099844 0.19912109]\n [-0.10625539 -0.10339039 0.15223508]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8ABBAv+OwSMAWyUSwKMAXSUR0Cm3UdN34bkdX2UKGgGR7+0kIHC4z7/aAdLAmgIR0Cm3OxdY4hmdX2UKGgGR7/GjSofjjrBaAdLA2gIR0Cm3bLdvbXZdX2UKGgGR7/K2Yv38GcGaAdLA2gIR0Cm3WA9mpVCdX2UKGgGR7/MBpYcNpdsaAdLA2gIR0Cm3QUiyIHkdX2UKGgGR7/WEovzvqkeaAdLBGgIR0Cm3K4/Vy3kdX2UKGgGR7+hwQ176YVqaAdLAWgIR0Cm3Q2XkYGddX2UKGgGR7+dQfp2U0N0aAdLAWgIR0Cm3LeAuqWDdX2UKGgGR7/FXVbzK9wnaAdLA2gIR0Cm3dG1x82KdX2UKGgGR7/TXMyJsO5KaAdLA2gIR0Cm3X+E7GNrdX2UKGgGR7+/+4smOU+taAdLAmgIR0Cm3M0se4kNdX2UKGgGR7/NHS4OMERraAdLA2gIR0Cm3SzVc2R8dX2UKGgGR7/Hg62fChvjaAdLA2gIR0Cm3eqr7wazdX2UKGgGR7/DP/JeVs1saAdLAmgIR0Cm3NzQNTcZdX2UKGgGR7/Gqfe1rqMWaAdLA2gIR0Cm3ZfUWl/IdX2UKGgGR7/QFo+OfdylaAdLA2gIR0Cm3UblzU7TdX2UKGgGR7/JpBX0XgtOaAdLA2gIR0Cm3Pb349HMdX2UKGgGR7/fWgezUqhEaAdLBGgIR0Cm3gw66reZdX2UKGgGR7/NVAAyVObiaAdLA2gIR0Cm3bFqrR0EdX2UKGgGR7/T2ZRbbDdhaAdLA2gIR0Cm3V1lXiiqdX2UKGgGR7+y0b961LJ0aAdLAmgIR0Cm3QYjbBXTdX2UKGgGR7/VoUBXCCSSaAdLBGgIR0Cm3i6P0Zm7dX2UKGgGR7/WDJEH+qBFaAdLBGgIR0Cm3dRIjGDMdX2UKGgGR7/Rgq3EyckMaAdLA2gIR0Cm3XkM1CPZdX2UKGgGR7/SZOi35N48aAdLA2gIR0Cm3SIdMj/udX2UKGgGR7+/LB9Cu2ZzaAdLAmgIR0Cm3TDe0ojOdX2UKGgGR7/SSVGCqZMMaAdLA2gIR0Cm3kXOGCZndX2UKGgGR7/Usjmjj7yhaAdLA2gIR0Cm3esyBTXKdX2UKGgGR7/V6Gxlg+hXaAdLA2gIR0Cm3Y/D+BH1dX2UKGgGR7/GB06o2n89aAdLAmgIR0Cm3ldUCJXRdX2UKGgGR7+0Xwb2lEZ0aAdLAmgIR0Cm3aEIHC40dX2UKGgGR7/J9ORDCxeLaAdLA2gIR0Cm3Upda+vhdX2UKGgGR7/OLncL0BfbaAdLA2gIR0Cm3gSNwR5DdX2UKGgGR7+yiXY150KaaAdLAmgIR0Cm3mcQqZtvdX2UKGgGR7/Do6jnFHawaAdLAmgIR0Cm3bDRc/t6dX2UKGgGR7/JwYtQKrq/aAdLA2gIR0Cm3WCr92ovdX2UKGgGR7/RDbrTpgTiaAdLA2gIR0Cm3h969kBkdX2UKGgGR7/EIacZtNzsaAdLAmgIR0Cm3cRaPjn3dX2UKGgGR7/InsLORkmQaAdLA2gIR0Cm3oKcurZKdX2UKGgGR7/HTVDrqt5laAdLA2gIR0Cm3X1W0Z3tdX2UKGgGR7/K8La24NI9aAdLA2gIR0Cm3jdzfaYedX2UKGgGR7/EXuVopQUIaAdLA2gIR0Cm3pnOB19wdX2UKGgGR7/acAiml67eaAdLBGgIR0Cm3ePDxb0OdX2UKGgGR7/PR/EwWWQfaAdLA2gIR0Cm3ZgAp8WsdX2UKGgGR7/axFiKBNEgaAdLBGgIR0Cm3lwbEP1+dX2UKGgGR7/P1r6+FlCkaAdLA2gIR0Cm3gGdRR/FdX2UKGgGR7+/VZs9B8hLaAdLAmgIR0Cm3aqh11W9dX2UKGgGR7/W5IH1OCXhaAdLBGgIR0Cm3sDAzpHJdX2UKGgGR7/B3W4EwFkhaAdLAmgIR0Cm3hKJMxoJdX2UKGgGR7/TkcCHRCyAaAdLA2gIR0Cm3ch37k4ndX2UKGgGR7/Jz3AVO9FnaAdLA2gIR0Cm3t3k5p8GdX2UKGgGR7/Uh4dIXj2jaAdLBGgIR0Cm3oNpM6BAdX2UKGgGR7/Bwe/5+H8CaAdLAmgIR0Cm3ig+QlrudX2UKGgGR7+3KFIuoP07aAdLAmgIR0Cm3dkJjUd8dX2UKGgGR7+2ThYNiH6/aAdLAmgIR0Cm3jf7SApbdX2UKGgGR7/MXAuZkTYeaAdLA2gIR0Cm3prJbMX8dX2UKGgGR7/DKL876pHaaAdLAmgIR0Cm3eg13t8edX2UKGgGR7/ZpsoDxLCfaAdLBGgIR0Cm3wGEPDpDdX2UKGgGR7/EfBeokzGhaAdLAmgIR0Cm3kuez2OAdX2UKGgGR7+mI2wV0tAcaAdLAWgIR0Cm3lQjdHlPdX2UKGgGR7/P1DjR2KVIaAdLA2gIR0Cm3rfdAPd3dX2UKGgGR7/ErLhaTwDvaAdLA2gIR0Cm3xsVDa4+dX2UKGgGR7/dsYVIqbz9aAdLBGgIR0Cm3g0d7v5QdX2UKGgGR7/W4vN/vv0AaAdLA2gIR0Cm3mvuXu3MdX2UKGgGR7+o0/GEPDpDaAdLAWgIR0Cm3hSj59E1dX2UKGgGR7/RnIhhYvFnaAdLA2gIR0Cm3tKOtGNJdX2UKGgGR7/UtYjjaPCEaAdLA2gIR0Cm3zZVGTcJdX2UKGgGR7/MoaUA1ejVaAdLA2gIR0Cm3ojTz/ZNdX2UKGgGR7/I3y7PIGQkaAdLA2gIR0Cm3uyMDOkddX2UKGgGR7/aAwfyPMjeaAdLBGgIR0Cm3joexOcldX2UKGgGR7/Qjp9qk/KRaAdLA2gIR0Cm30+wcHW0dX2UKGgGR7+dD+irT6SDaAdLAWgIR0Cm31rJbMX8dX2UKGgGR7/Dz5GjKxLTaAdLAmgIR0Cm3v/z8P4EdX2UKGgGR7/DyBClabF1aAdLAmgIR0Cm3k0th/iHdX2UKGgGR7/YWEK3NLUTaAdLBGgIR0Cm3q0FKTStdX2UKGgGR7/SbgTAWSEEaAdLA2gIR0Cm33PBi1ArdX2UKGgGR7/PPuXu3MINaAdLA2gIR0Cm3xj3/PxAdX2UKGgGR7/Rfj0cwQDnaAdLA2gIR0Cm3mbnxJ/YdX2UKGgGR7/IBRQ79ycTaAdLA2gIR0Cm3sWFN+LFdX2UKGgGR7++fChvitJWaAdLAmgIR0Cm34chs67vdX2UKGgGR7/Spudf9gndaAdLA2gIR0Cm3zOgxrSFdX2UKGgGR7/P3cpLEk0KaAdLA2gIR0Cm3oHDJlredX2UKGgGR7/Ts6aLGaQWaAdLA2gIR0Cm3uDaoMrmdX2UKGgGR7/ZZof0VafSaAdLBGgIR0Cm36d12aDxdX2UKGgGR7/UNahYeT3ZaAdLA2gIR0Cm30y+Yc//dX2UKGgGR7+lRFZxJd0JaAdLAWgIR0Cm31jH4oJBdX2UKGgGR7/RN3GGVRk3aAdLA2gIR0Cm3v2oegctdX2UKGgGR7/cz1K5CngpaAdLBGgIR0Cm3qabnX/YdX2UKGgGR7/B0eU6gdwOaAdLAmgIR0Cm37xY7q6fdX2UKGgGR7/OYht+CsfaaAdLA2gIR0Cm33CaZx7zdX2UKGgGR7/LMlkYoAn2aAdLA2gIR0Cm3r4+KTB7dX2UKGgGR7/O717IDHOsaAdLA2gIR0Cm39OPFNtZdX2UKGgGR7/NBSDRMN+caAdLBGgIR0Cm3x1EVnEmdX2UKGgGR7/Mx59mYjSoaAdLA2gIR0Cm34uY6XBydX2UKGgGR7/Ka2F36hxpaAdLA2gIR0Cm3+4eLehxdX2UKGgGR7+mW4Vh1DBuaAdLAWgIR0Cm35N4RmK7dX2UKGgGR7/MvtdAxBVuaAdLA2gIR0Cm3zjUd7v5dX2UKGgGR7/cFXJYDDCQaAdLBGgIR0Cm3uGGdqcmdX2UKGgGR7/BwMH8jzI4aAdLAmgIR0Cm30iml67edX2UKGgGR7+2quKXOW0JaAdLAmgIR0Cm3vFtKqXGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (675 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.16890780916437506, "std_reward": 0.10516161697895798, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-28T18:45:09.818128"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:216db21d10310c7315d9f791b23ef33095dcbb1c37e8423f0c62009b609d3061
|
3 |
+
size 2636
|