End of training
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: facebook/wav2vec2-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: Wav2Vec2_Finetuned
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Wav2Vec2_Finetuned
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9886
|
22 |
+
- Accuracy: 0.7247
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 3e-05
|
42 |
+
- train_batch_size: 32
|
43 |
+
- eval_batch_size: 32
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 128
|
47 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
56 |
+
| 2.1066 | 0.9863 | 54 | 2.0550 | 0.3211 |
|
57 |
+
| 1.7945 | 1.9817 | 108 | 1.8463 | 0.3858 |
|
58 |
+
| 1.5042 | 2.9772 | 162 | 1.6106 | 0.4911 |
|
59 |
+
| 1.3307 | 3.9909 | 217 | 1.3656 | 0.6199 |
|
60 |
+
| 1.1295 | 4.9863 | 271 | 1.2506 | 0.6417 |
|
61 |
+
| 1.0127 | 5.9817 | 325 | 1.2754 | 0.6211 |
|
62 |
+
| 0.949 | 6.9772 | 379 | 1.0925 | 0.7041 |
|
63 |
+
| 0.8618 | 7.9909 | 434 | 1.0693 | 0.7052 |
|
64 |
+
| 0.7838 | 8.9863 | 488 | 1.0308 | 0.7138 |
|
65 |
+
| 0.7813 | 9.9452 | 540 | 0.9886 | 0.7247 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.46.2
|
71 |
+
- Pytorch 2.5.1+cu121
|
72 |
+
- Datasets 3.1.0
|
73 |
+
- Tokenizers 0.20.3
|