abdelhamidmalki
commited on
Commit
•
30a7e3c
1
Parent(s):
43d82f4
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.26 +/- 0.13
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c6f33ace182291aeefa2cea13adb11922aba43888f30908678f70aeb74682bd
|
3 |
+
size 106696
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ac1ca713250>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ac1ca70fb00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692525815058634585,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXdB4vS+x5z41wXS+DAcnPlPH7L7GN0e+dBSRPk9ktri6L9k+WDoiPxhL7z4O9Cs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASfKfPpS77T7sdk6/53JrP+JXQb8I6X6/cOVLPxERAz7Mq+2+vx0AP9deHT9kF6I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABd0Hi9L7HnPjXBdL4hCO+/4lTJPyMtq78MByc+U8fsvsY3R76Gk9K+2inMv6gUpL90FJE+T2S2uLov2T5fmQE/Qq6gu2Nmxz5YOiI/GEvvPg70Kz+tINk/P2fBP1NLjj+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-6.0745586e-02 4.5252368e-01 -2.3901828e-01]\n [ 1.6311282e-01 -4.6245822e-01 -1.9454870e-01]\n [ 2.8335917e-01 -8.6971202e-05 4.2419225e-01]\n [ 6.3370275e-01 4.6736979e-01 6.7169273e-01]]",
|
34 |
+
"desired_goal": "[[ 0.31239536 0.46432173 -0.8065021 ]\n [ 0.919722 -0.75524724 -0.9957433 ]\n [ 0.7964697 0.12799479 -0.46420133]\n [ 0.5004539 0.6147284 1.2663388 ]]",
|
35 |
+
"observation": "[[-6.0745586e-02 4.5252368e-01 -2.3901828e-01 -1.8674356e+00\n 1.5729029e+00 -1.3373150e+00]\n [ 1.6311282e-01 -4.6245822e-01 -1.9454870e-01 -4.1128176e-01\n -1.5950272e+00 -1.2818804e+00]\n [ 2.8335917e-01 -8.6971202e-05 4.2419225e-01 5.0624651e-01\n -4.9035857e-03 3.8945302e-01]\n [ 6.3370275e-01 4.6736979e-01 6.7169273e-01 1.6963097e+00\n 1.5109633e+00 1.1116737e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYlUPPi+kir2mNnU89TR0vWYArD2pRZs93N3GPUUAsb3VOIk+FUjWPY+xMb35hh0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.13997415 -0.06769597 0.01496664]\n [-0.05962082 0.08398513 0.07581646]\n [ 0.09710285 -0.0864263 0.26801172]\n [ 0.10462967 -0.04338222 0.15383519]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7PVy3kPtlaMAWyUSwKMAXSUR0Cc+z+1jRUndX2UKGgGR7/b+/xlQMx5aAdLBGgIR0Cc+q8zhxYJdX2UKGgGR7/F3A2ycCo1aAdLA2gIR0Cc/G/nW8RMdX2UKGgGR7/NPv8ZUDMeaAdLA2gIR0Cc+1OMl1KXdX2UKGgGR7+0ZccENe+maAdLAmgIR0Cc/Ht0V8CxdX2UKGgGR7/YuqFRHf/FaAdLBGgIR0Cc++lSjxkNdX2UKGgGR7+o3tKIznA7aAdLAWgIR0Cc+1oGIKtxdX2UKGgGR7/JwG4ZuQ6qaAdLA2gIR0Cc+sF7laKUdX2UKGgGR7/Hmq5sj3VTaAdLA2gIR0Cc/JAIY3vQdX2UKGgGR7/TevpyIYWMaAdLA2gIR0Cc+/3fyf+TdX2UKGgGR7/NUTcqOLiuaAdLA2gIR0Cc+tW2w3YMdX2UKGgGR7/aEFGG21D0aAdLBGgIR0Cc+3RYzSCwdX2UKGgGR7/FcGC7K7qZaAdLA2gIR0Cc/KHJtBOYdX2UKGgGR7/QglF+d9UkaAdLA2gIR0Cc/A+BH09RdX2UKGgGR7/UJZ4fOlfraAdLBGgIR0Cc+u+7lJYldX2UKGgGR7/HFuvUz9CNaAdLA2gIR0Cc/LWZ7XxwdX2UKGgGR7/PHZsbedkKaAdLA2gIR0Cc/CNWU8msdX2UKGgGR7/hH/95yEL6aAdLBmgIR0Cc+5mMwUQDdX2UKGgGR7/Z8xsVLzwuaAdLBGgIR0Cc+wZ1FH8TdX2UKGgGR7/I4ACGN70GaAdLA2gIR0Cc/Mm8/UvxdX2UKGgGR7/dX0XgtOEeaAdLBGgIR0Cc/Dzf779AdX2UKGgGR7/akvboKUmlaAdLBGgIR0Cc+x95yEL6dX2UKGgGR7/H4VRDTjNqaAdLA2gIR0Cc/E2LHdXUdX2UKGgGR7/erEtNBWxRaAdLBmgIR0Cc+75Fw1iwdX2UKGgGR7/SByjpLVWkaAdLBWgIR0Cc/OjENvwWdX2UKGgGR7/AUW2w3YL9aAdLAmgIR0Cc+8zO5avBdX2UKGgGR7/TkSVW0Z3taAdLA2gIR0Cc/GJqIrOJdX2UKGgGR7/Ye54GD+R6aAdLBGgIR0Cc+zpJPIn0dX2UKGgGR7/R6JqIrOJMaAdLBGgIR0Cc/QCHRCyAdX2UKGgGR7/MK64Ds+mnaAdLA2gIR0Cc+99U0elsdX2UKGgGR7+8hY/3WWhRaAdLAmgIR0Cc+0chTwUhdX2UKGgGR7+lrdnCfpUxaAdLAWgIR0Cc/Q3xnWaudX2UKGgGR7/Rs/6fra/RaAdLA2gIR0Cc/H2jO9nLdX2UKGgGR7+7JHRTjvNNaAdLAmgIR0Cc/SPfbblBdX2UKGgGR7+/AvcrRSgoaAdLAmgIR0Cc/JKuSwGGdX2UKGgGR7/KYgq3EyckaAdLA2gIR0Cc+2zNUwSKdX2UKGgGR7/RXsgMc6vJaAdLA2gIR0Cc/UmDUVi4dX2UKGgGR7/HGZNO/L1VaAdLA2gIR0Cc/Lhb4agmdX2UKGgGR7/UVtGd7OVxaAdLA2gIR0Cc+5H5rP+odX2UKGgGR7+/mgam4y44aAdLAmgIR0Cc+6SdvsJIdX2UKGgGR7/QKifxtpEhaAdLA2gIR0Cc/NTcqOLjdX2UKGgGR7/VZowmE5AAaAdLBGgIR0Cc/XATZg5SdX2UKGgGR7+7TtsvZh8ZaAdLAmgIR0Cc/Ye4kNWmdX2UKGgGR7/DhP0qYqoZaAdLA2gIR0Cc/Pa8Hv+gdX2UKGgGR7/aFUADJU5uaAdLBGgIR0Cc+9CjDbaidX2UKGgGR7/E7cO9WZJDaAdLAmgIR0Cc/QmyPdVOdX2UKGgGR7/CwFkhA4XGaAdLAmgIR0Cc++MvAXVLdX2UKGgGR7/0IFqzqrzYaAdLD2gIR0Cc/ISnLq2SdX2UKGgGR7/ZI6bONYKZaAdLBGgIR0Cc/bJyhi9adX2UKGgGR7/Gu2Zy+6AfaAdLA2gIR0Cc/AULUkOadX2UKGgGR7/LU6xPfsNUaAdLBGgIR0Cc/TWO6unudX2UKGgGR7/Qjvd/J/5MaAdLA2gIR0Cc/Kf29L6DdX2UKGgGR7/OVIqbz9S/aAdLA2gIR0Cc/dRoAXEZdX2UKGgGR7/CoH9m6GxmaAdLAmgIR0Cc/B3ztkWidX2UKGgGR7/CrKeTV2A5aAdLAmgIR0Cc/MBUaQ3hdX2UKGgGR7+23y7PIGQkaAdLAmgIR0Cc/e4uK4x2dX2UKGgGR7/TjENvwVj7aAdLA2gIR0Cc/VyoXKr8dX2UKGgGR7+3QgLZzxPPaAdLAmgIR0Cc/DXq7iAEdX2UKGgGR7/DsY2sJY1YaAdLAmgIR0Cc/NcKw6hhdX2UKGgGR7+V41P3ztkXaAdLAWgIR0Cc/D88s+V1dX2UKGgGR7/PAAQxvegtaAdLA2gIR0Cc/gzxgAp8dX2UKGgGR7/Pfv4M4LkTaAdLA2gIR0Cc/Xt78ejmdX2UKGgGR7/CFfzBhx5taAdLAmgIR0Cc/FT4cm0FdX2UKGgGR7+SCWeHzpX7aAdLAWgIR0Cc/hdXko4NdX2UKGgGR7/On5SFXaJzaAdLA2gIR0Cc/PdE9dNWdX2UKGgGR7/OU9IPK+zuaAdLA2gIR0Cc/aCF9KEndX2UKGgGR7+5yS3b212JaAdLAmgIR0Cc/RIomXw9dX2UKGgGR7/VygPEsJ6ZaAdLBGgIR0Cc/IP420iRdX2UKGgGR7/SHhS9/SYxaAdLA2gIR0Cc/b4+8oQWdX2UKGgGR7/eEFW4mTkiaAdLBmgIR0Cc/l2606YFdX2UKGgGR7+53OfNA1NyaAdLAmgIR0Cc/dRDkU9IdX2UKGgGR7/cdbxEv0yyaAdLBGgIR0Cc/K2RaHKwdX2UKGgGR7/GzlcQiA2AaAdLAmgIR0Cc/m9bX6IndX2UKGgGR7/L9MK1G9YfaAdLA2gIR0Cc/MfKZDzAdX2UKGgGR7/VMR6F/QSjaAdLA2gIR0Cc/ozvJA+qdX2UKGgGR7/YRtgrpaA4aAdLBGgIR0Cc/fv9cbBHdX2UKGgGR7/Q5gw482aVaAdLA2gIR0Cc/OXiBGx2dX2UKGgGR7/Gq//NqxkeaAdLA2gIR0Cc/qfpUxVRdX2UKGgGR7+7Ue+23KB/aAdLAmgIR0Cc/PepXIU8dX2UKGgGR7/0UfLcKw6iaAdLDmgIR0Cc/ZvoePq+dX2UKGgGR7/S0UoKD017aAdLA2gIR0Cc/sVQyhzvdX2UKGgGR7/Uafzz3AVPaAdLA2gIR0Cc/RTrVvuPdX2UKGgGR7/B+AmReTmoaAdLAmgIR0Cc/taQFLWadX2UKGgGR7/nBi1Aqur7aAdLCGgIR0Cc/kWWQfZFdX2UKGgGR7/L6zmfXf65aAdLA2gIR0Cc/bcIZ62OdX2UKGgGR7+y2LHdXT3JaAdLAmgIR0Cc/uxd6cAjdX2UKGgGR7/DbFjurp7kaAdLAmgIR0Cc/cwNLDhtdX2UKGgGR7/KNSZSeiBYaAdLA2gIR0Cc/TRArxy5dX2UKGgGR7/KtqYZ2pyZaAdLA2gIR0Cc/mRwZOzqdX2UKGgGR7/LcWTHKfWdaAdLA2gIR0Cc/U/LTx5LdX2UKGgGR7/YrFOwgTysaAdLBGgIR0Cc/xKMefZmdX2UKGgGR7/ToK2KEWZaaAdLBGgIR0Cc/fKzAvcrdX2UKGgGR7/dz6JqIrOJaAdLBGgIR0Cc/o8/lhgFdX2UKGgGR7/OxA0Kqn3taAdLA2gIR0Cc/XDK5kLAdX2UKGgGR7/UCwbEP1+RaAdLA2gIR0Cc/zK/mDDkdX2UKGgGR7/H8Jlar3j/aAdLA2gIR0Cc/hKYRdyDdX2UKGgGR7+mRT0g8r7PaAdLAWgIR0Cc/zxG2CumdX2UKGgGR7/LTvy9VWCFaAdLA2gIR0Cc/qrVe8f3dX2UKGgGR7/Bp9qk/KQraAdLAmgIR0Cc/YP8AJb/dX2UKGgGR7/BDG96C17ZaAdLAmgIR0Cc/iUfgaWHdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8c0668cf6293efa5df6899dc5f6543f24995f4e36a8ce158fa7dd96efc339f5
|
3 |
+
size 44606
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad4cbeb4c0f92fd3230d40863a5a71367e9784d5f0d87b9db02e4a7ba0acf16d
|
3 |
+
size 45886
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.0
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ac1ca713250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ac1ca70fb00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692525815058634585, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXdB4vS+x5z41wXS+DAcnPlPH7L7GN0e+dBSRPk9ktri6L9k+WDoiPxhL7z4O9Cs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASfKfPpS77T7sdk6/53JrP+JXQb8I6X6/cOVLPxERAz7Mq+2+vx0AP9deHT9kF6I/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABd0Hi9L7HnPjXBdL4hCO+/4lTJPyMtq78MByc+U8fsvsY3R76Gk9K+2inMv6gUpL90FJE+T2S2uLov2T5fmQE/Qq6gu2Nmxz5YOiI/GEvvPg70Kz+tINk/P2fBP1NLjj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-6.0745586e-02 4.5252368e-01 -2.3901828e-01]\n [ 1.6311282e-01 -4.6245822e-01 -1.9454870e-01]\n [ 2.8335917e-01 -8.6971202e-05 4.2419225e-01]\n [ 6.3370275e-01 4.6736979e-01 6.7169273e-01]]", "desired_goal": "[[ 0.31239536 0.46432173 -0.8065021 ]\n [ 0.919722 -0.75524724 -0.9957433 ]\n [ 0.7964697 0.12799479 -0.46420133]\n [ 0.5004539 0.6147284 1.2663388 ]]", "observation": "[[-6.0745586e-02 4.5252368e-01 -2.3901828e-01 -1.8674356e+00\n 1.5729029e+00 -1.3373150e+00]\n [ 1.6311282e-01 -4.6245822e-01 -1.9454870e-01 -4.1128176e-01\n -1.5950272e+00 -1.2818804e+00]\n [ 2.8335917e-01 -8.6971202e-05 4.2419225e-01 5.0624651e-01\n -4.9035857e-03 3.8945302e-01]\n [ 6.3370275e-01 4.6736979e-01 6.7169273e-01 1.6963097e+00\n 1.5109633e+00 1.1116737e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYlUPPi+kir2mNnU89TR0vWYArD2pRZs93N3GPUUAsb3VOIk+FUjWPY+xMb35hh0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13997415 -0.06769597 0.01496664]\n [-0.05962082 0.08398513 0.07581646]\n [ 0.09710285 -0.0864263 0.26801172]\n [ 0.10462967 -0.04338222 0.15383519]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7PVy3kPtlaMAWyUSwKMAXSUR0Cc+z+1jRUndX2UKGgGR7/b+/xlQMx5aAdLBGgIR0Cc+q8zhxYJdX2UKGgGR7/F3A2ycCo1aAdLA2gIR0Cc/G/nW8RMdX2UKGgGR7/NPv8ZUDMeaAdLA2gIR0Cc+1OMl1KXdX2UKGgGR7+0ZccENe+maAdLAmgIR0Cc/Ht0V8CxdX2UKGgGR7/YuqFRHf/FaAdLBGgIR0Cc++lSjxkNdX2UKGgGR7+o3tKIznA7aAdLAWgIR0Cc+1oGIKtxdX2UKGgGR7/JwG4ZuQ6qaAdLA2gIR0Cc+sF7laKUdX2UKGgGR7/Hmq5sj3VTaAdLA2gIR0Cc/JAIY3vQdX2UKGgGR7/TevpyIYWMaAdLA2gIR0Cc+/3fyf+TdX2UKGgGR7/NUTcqOLiuaAdLA2gIR0Cc+tW2w3YMdX2UKGgGR7/aEFGG21D0aAdLBGgIR0Cc+3RYzSCwdX2UKGgGR7/FcGC7K7qZaAdLA2gIR0Cc/KHJtBOYdX2UKGgGR7/QglF+d9UkaAdLA2gIR0Cc/A+BH09RdX2UKGgGR7/UJZ4fOlfraAdLBGgIR0Cc+u+7lJYldX2UKGgGR7/HFuvUz9CNaAdLA2gIR0Cc/LWZ7XxwdX2UKGgGR7/PHZsbedkKaAdLA2gIR0Cc/CNWU8msdX2UKGgGR7/hH/95yEL6aAdLBmgIR0Cc+5mMwUQDdX2UKGgGR7/Z8xsVLzwuaAdLBGgIR0Cc+wZ1FH8TdX2UKGgGR7/I4ACGN70GaAdLA2gIR0Cc/Mm8/UvxdX2UKGgGR7/dX0XgtOEeaAdLBGgIR0Cc/Dzf779AdX2UKGgGR7/akvboKUmlaAdLBGgIR0Cc+x95yEL6dX2UKGgGR7/H4VRDTjNqaAdLA2gIR0Cc/E2LHdXUdX2UKGgGR7/erEtNBWxRaAdLBmgIR0Cc+75Fw1iwdX2UKGgGR7/SByjpLVWkaAdLBWgIR0Cc/OjENvwWdX2UKGgGR7/AUW2w3YL9aAdLAmgIR0Cc+8zO5avBdX2UKGgGR7/TkSVW0Z3taAdLA2gIR0Cc/GJqIrOJdX2UKGgGR7/Ye54GD+R6aAdLBGgIR0Cc+zpJPIn0dX2UKGgGR7/R6JqIrOJMaAdLBGgIR0Cc/QCHRCyAdX2UKGgGR7/MK64Ds+mnaAdLA2gIR0Cc+99U0elsdX2UKGgGR7+8hY/3WWhRaAdLAmgIR0Cc+0chTwUhdX2UKGgGR7+lrdnCfpUxaAdLAWgIR0Cc/Q3xnWaudX2UKGgGR7/Rs/6fra/RaAdLA2gIR0Cc/H2jO9nLdX2UKGgGR7+7JHRTjvNNaAdLAmgIR0Cc/SPfbblBdX2UKGgGR7+/AvcrRSgoaAdLAmgIR0Cc/JKuSwGGdX2UKGgGR7/KYgq3EyckaAdLA2gIR0Cc+2zNUwSKdX2UKGgGR7/RXsgMc6vJaAdLA2gIR0Cc/UmDUVi4dX2UKGgGR7/HGZNO/L1VaAdLA2gIR0Cc/Lhb4agmdX2UKGgGR7/UVtGd7OVxaAdLA2gIR0Cc+5H5rP+odX2UKGgGR7+/mgam4y44aAdLAmgIR0Cc+6SdvsJIdX2UKGgGR7/QKifxtpEhaAdLA2gIR0Cc/NTcqOLjdX2UKGgGR7/VZowmE5AAaAdLBGgIR0Cc/XATZg5SdX2UKGgGR7+7TtsvZh8ZaAdLAmgIR0Cc/Ye4kNWmdX2UKGgGR7/DhP0qYqoZaAdLA2gIR0Cc/Pa8Hv+gdX2UKGgGR7/aFUADJU5uaAdLBGgIR0Cc+9CjDbaidX2UKGgGR7/E7cO9WZJDaAdLAmgIR0Cc/QmyPdVOdX2UKGgGR7/CwFkhA4XGaAdLAmgIR0Cc++MvAXVLdX2UKGgGR7/0IFqzqrzYaAdLD2gIR0Cc/ISnLq2SdX2UKGgGR7/ZI6bONYKZaAdLBGgIR0Cc/bJyhi9adX2UKGgGR7/Gu2Zy+6AfaAdLA2gIR0Cc/AULUkOadX2UKGgGR7/LU6xPfsNUaAdLBGgIR0Cc/TWO6unudX2UKGgGR7/Qjvd/J/5MaAdLA2gIR0Cc/Kf29L6DdX2UKGgGR7/OVIqbz9S/aAdLA2gIR0Cc/dRoAXEZdX2UKGgGR7/CoH9m6GxmaAdLAmgIR0Cc/B3ztkWidX2UKGgGR7/CrKeTV2A5aAdLAmgIR0Cc/MBUaQ3hdX2UKGgGR7+23y7PIGQkaAdLAmgIR0Cc/e4uK4x2dX2UKGgGR7/TjENvwVj7aAdLA2gIR0Cc/VyoXKr8dX2UKGgGR7+3QgLZzxPPaAdLAmgIR0Cc/DXq7iAEdX2UKGgGR7/DsY2sJY1YaAdLAmgIR0Cc/NcKw6hhdX2UKGgGR7+V41P3ztkXaAdLAWgIR0Cc/D88s+V1dX2UKGgGR7/PAAQxvegtaAdLA2gIR0Cc/gzxgAp8dX2UKGgGR7/Pfv4M4LkTaAdLA2gIR0Cc/Xt78ejmdX2UKGgGR7/CFfzBhx5taAdLAmgIR0Cc/FT4cm0FdX2UKGgGR7+SCWeHzpX7aAdLAWgIR0Cc/hdXko4NdX2UKGgGR7/On5SFXaJzaAdLA2gIR0Cc/PdE9dNWdX2UKGgGR7/OU9IPK+zuaAdLA2gIR0Cc/aCF9KEndX2UKGgGR7+5yS3b212JaAdLAmgIR0Cc/RIomXw9dX2UKGgGR7/VygPEsJ6ZaAdLBGgIR0Cc/IP420iRdX2UKGgGR7/SHhS9/SYxaAdLA2gIR0Cc/b4+8oQWdX2UKGgGR7/eEFW4mTkiaAdLBmgIR0Cc/l2606YFdX2UKGgGR7+53OfNA1NyaAdLAmgIR0Cc/dRDkU9IdX2UKGgGR7/cdbxEv0yyaAdLBGgIR0Cc/K2RaHKwdX2UKGgGR7/GzlcQiA2AaAdLAmgIR0Cc/m9bX6IndX2UKGgGR7/L9MK1G9YfaAdLA2gIR0Cc/MfKZDzAdX2UKGgGR7/VMR6F/QSjaAdLA2gIR0Cc/ozvJA+qdX2UKGgGR7/YRtgrpaA4aAdLBGgIR0Cc/fv9cbBHdX2UKGgGR7/Q5gw482aVaAdLA2gIR0Cc/OXiBGx2dX2UKGgGR7/Gq//NqxkeaAdLA2gIR0Cc/qfpUxVRdX2UKGgGR7+7Ue+23KB/aAdLAmgIR0Cc/PepXIU8dX2UKGgGR7/0UfLcKw6iaAdLDmgIR0Cc/ZvoePq+dX2UKGgGR7/S0UoKD017aAdLA2gIR0Cc/sVQyhzvdX2UKGgGR7/Uafzz3AVPaAdLA2gIR0Cc/RTrVvuPdX2UKGgGR7/B+AmReTmoaAdLAmgIR0Cc/taQFLWadX2UKGgGR7/nBi1Aqur7aAdLCGgIR0Cc/kWWQfZFdX2UKGgGR7/L6zmfXf65aAdLA2gIR0Cc/bcIZ62OdX2UKGgGR7+y2LHdXT3JaAdLAmgIR0Cc/uxd6cAjdX2UKGgGR7/DbFjurp7kaAdLAmgIR0Cc/cwNLDhtdX2UKGgGR7/KNSZSeiBYaAdLA2gIR0Cc/TRArxy5dX2UKGgGR7/KtqYZ2pyZaAdLA2gIR0Cc/mRwZOzqdX2UKGgGR7/LcWTHKfWdaAdLA2gIR0Cc/U/LTx5LdX2UKGgGR7/YrFOwgTysaAdLBGgIR0Cc/xKMefZmdX2UKGgGR7/ToK2KEWZaaAdLBGgIR0Cc/fKzAvcrdX2UKGgGR7/dz6JqIrOJaAdLBGgIR0Cc/o8/lhgFdX2UKGgGR7/OxA0Kqn3taAdLA2gIR0Cc/XDK5kLAdX2UKGgGR7/UCwbEP1+RaAdLA2gIR0Cc/zK/mDDkdX2UKGgGR7/H8Jlar3j/aAdLA2gIR0Cc/hKYRdyDdX2UKGgGR7+mRT0g8r7PaAdLAWgIR0Cc/zxG2CumdX2UKGgGR7/LTvy9VWCFaAdLA2gIR0Cc/qrVe8f3dX2UKGgGR7/Bp9qk/KQraAdLAmgIR0Cc/YP8AJb/dX2UKGgGR7/BDG96C17ZaAdLAmgIR0Cc/iUfgaWHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (698 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.26255957074463365, "std_reward": 0.13051396004074203, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-20T10:37:45.967633"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef342943d903d530ac66f9311b5c501c0673459952a1d84ad2dc4fa9c7a20225
|
3 |
+
size 2636
|