Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 843.95 +/- 250.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be680b34b21c648bea4ac5fbeb9307a21fef45e3fa05cb1f5a4fbd622e240fc0
|
3 |
+
size 129189
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe00550d050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe00550d0e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe00550d170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe00550d200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe00550d290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe00550d320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe00550d3b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe00550d440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe00550d4d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe00550d560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe00550d5f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe00554fdb0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658612114.9679883,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAIwekPnvo7L6ZgYs+dvpZPvQn7L5bouu/twyPveZ1Xr+b0KY/mk8FPDjRjz5KLDY+Us/Zv2hu9z3dU4m9RrWRv2cU6b938hk+IYN6PydsU72mAia/hoT4P61iPD3VS/M/CG8mP4nTkD4mSgo/uFNvv2xwwD7cVyA/0tQ8P6yJU757SFE/UpWOPgwkFD+6ID2/0MgEPcrV6L/Rxmw9BkFzvxz/w7+mV3A+OutEv4tz4z2g8dm/HCjmPc6vdz/jGeA8v5uEv9BAGb/6Mzg/SWdYvRjixL+J05A+JkoKP9HqiD/nQVA/VRd7PxCELj953YI+U7ojvpjlMD0nhFQ+giaIv6T+cD5ueJg/kNyOPyEQsj8h2lS/N8dFP0dyNr4lPFc/ULmYP1/PBr0kqRC/1FaNvoQHhL9jJdE7+9cTQMyAy7wY4sS/idOQPiZKCj+4U2+/L6SHP6DCrD6+DDY/Cd+mvqAhOb/5aIE/aOGBv+/inL+JIDU/hGgjPz0Miz/oXN2+26DbvwmOHTwLX5Y+pum8P8OLLT4EDpi/3beTv9xihr6kD1a/SE4ZPqYsuj/SQdW/CG8mP4nTkD4mSgo/uFNvv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAGg36TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA6l+i9AAAAAF7e478AAAAAqGfXvQAAAADPhvo/AAAAAG2NQz0AAAAAX5D6PwAAAABzkU28AAAAAJT8AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACN/JQ0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+Um2PQAAAACNzfa/AAAAAH4TED4AAAAAHsviPwAAAACSQ7a9AAAAALzl3T8AAAAAnlc1vQAAAABFkN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYpirtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMrGJT0AAAAAjALbvwAAAABHPpu8AAAAAGv+8T8AAAAAgGGXvAAAAAAv1t8/AAAAALvmuLwAAAAAJWv7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM29uzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBiFn69AAAAACZm478AAAAAJuftvAAAAACkwOc/AAAAAKoLpz0AAAAAULrbPwAAAAC5Ywq+AAAAAICi378AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoxdRwZOzqMAWyUTegDjAF0lEdApocW7z06HXV9lChoBkdAmfIVPJq7AmgHTegDaAhHQKaIe5MlC1J1fZQoaAZHQJlMdhQWN3poB03oA2gIR0CmjYAkTpPidX2UKGgGR0CYxldgOSW7aAdN6ANoCEdApo5IXAM2FXV9lChoBkdAmov1HJ9y92gHTegDaAhHQKaS7MM7U5N1fZQoaAZHQJorOvaDf3xoB03oA2gIR0CmlE7JwKjSdX2UKGgGR0CYpfBrvb48aAdN6ANoCEdApplQt4A0bnV9lChoBkdAmskIKUmlZWgHTegDaAhHQKaaFwCKaXt1fZQoaAZHQJqv3gWJrL1oB03oA2gIR0Cmnrrl3hXKdX2UKGgGR0CbYAvAoG6gaAdN6ANoCEdApqAb6ciGFnV9lChoBkdAmqghZha1TmgHTegDaAhHQKalJV4oqkN1fZQoaAZHQJq8a16Vt41oB03oA2gIR0Cmpeer+5vtdX2UKGgGR0CWX5xnFo+OaAdN6ANoCEdApqqTXe3x4XV9lChoBkdAnI6DriVB2WgHTegDaAhHQKar9wUg0TF1fZQoaAZHQJf9KVxCIDZoB03oA2gIR0CmsQKlxffGdX2UKGgGR0CaX/XTmW+oaAdN6ANoCEdAprHDel9Br3V9lChoBkdAmFfVwcYIjWgHTegDaAhHQKa2m1k1/Dt1fZQoaAZHQJmqehRIjGFoB03oA2gIR0Cmt/47ihnKdX2UKGgGR0CZN2dbgTAWaAdN6ANoCEdAprz6+HrQgXV9lChoBkdAmYWZyQxN7GgHTegDaAhHQKa9u7tAs051fZQoaAZHQJ2EcHbAUL5oB03oA2gIR0CmwlZYgaFVdX2UKGgGR0Ca0PROk+HKaAdN6ANoCEdApsO0fvF3p3V9lChoBkdAmVeEauOjqWgHTegDaAhHQKbIuDyvs7d1fZQoaAZHQJqhBpAUtZpoB03oA2gIR0CmyXiZF5OadX2UKGgGR0CaTWrRjSXuaAdN6ANoCEdAps4TThHby3V9lChoBkdAmd2yliz9j2gHTegDaAhHQKbPdLZi/fx1fZQoaAZHQJo1RSflIVdoB03oA2gIR0Cm1HNgjQiSdX2UKGgGR0Caw5kauOjqaAdN6ANoCEdAptUyWom5UnV9lChoBkdAmK2Z6po9LmgHTegDaAhHQKbZ2sGxD9h1fZQoaAZHQJX+v0EovzxoB03oA2gIR0Cm20BC+lCUdX2UKGgGR0CUti74i5d4aAdN6ANoCEdApuBHc32mHnV9lChoBkdAlx5hzmwJPmgHTegDaAhHQKbhCMqjJuF1fZQoaAZHQJofeMm4RVZoB03oA2gIR0Cm5bAte2NOdX2UKGgGR0CcZY4lQdjoaAdN6ANoCEdApucVp0wJxHV9lChoBkdAl3R6OT7l72gHTegDaAhHQKbsED28IzF1fZQoaAZHQJ0f6RV6u4hoB03oA2gIR0Cm7M4pDu0DdX2UKGgGR0CbNnAvtdAxaAdN6ANoCEdApvGCPZIxxnV9lChoBkdAmygsu8K5TmgHTegDaAhHQKby36TGHYZ1fZQoaAZHQJscHaVUuL9oB03oA2gIR0Cm997jcVQAdX2UKGgGR0CadsCV8kUsaAdN6ANoCEdApvicwN9YwXV9lChoBkdAmMLdix3V1GgHTegDaAhHQKb9PRGc4HZ1fZQoaAZHQJwSwtsenydoB03oA2gIR0Cm/p/XXiBHdX2UKGgGR0CcSeH4GlhxaAdN6ANoCEdApwOW3pfQbHV9lChoBkdAnGNht1p0wWgHTegDaAhHQKcEVyPMjeN1fZQoaAZHQJyZcF3Y+StoB03oA2gIR0CnCQQkxASndX2UKGgGR0CdI4EwWWQfaAdN6ANoCEdApwpt4NZvDXV9lChoBkdAmqFQr+YMOWgHTegDaAhHQKcPefMfRu11fZQoaAZHQJopzt4RmK9oB03oA2gIR0CnED/hl18tdX2UKGgGR0CRNdFVT72taAdN6ANoCEdApxTxjhDPW3V9lChoBkdAlbVWoJiRXGgHTegDaAhHQKcWVdszl911fZQoaAZHQJoPIjKPn0VoB03oA2gIR0CnG2OZTho/dX2UKGgGR0CcKefdRBNVaAdN6ANoCEdApxwpC6YmcHV9lChoBkdAnUztweeWfWgHTegDaAhHQKcg1l/Yrax1fZQoaAZHQJmG3cDbJwNoB03oA2gIR0CnIjcTrVvudX2UKGgGR0CaadRyfcveaAdN6ANoCEdApyc7TQVsUXV9lChoBkdAljtzYNAkcGgHTegDaAhHQKcn+ejEehh1fZQoaAZHQJjpR+b3Gn5oB03oA2gIR0CnLJz5oGpudX2UKGgGR0CYh483uNPyaAdN6ANoCEdApy38NOM2nHV9lChoBkdAm9+AzguRLmgHTegDaAhHQKczBMHKOkt1fZQoaAZHQJoxMvwmVqxoB03oA2gIR0CnM8WGIsRQdX2UKGgGR0CcsItKZlWfaAdN6ANoCEdApzhoWBSUDHV9lChoBkdAm76W5QP7N2gHTegDaAhHQKc5x3bEgnt1fZQoaAZHQJbZWTPjXFtoB03oA2gIR0CnPssXSBsidX2UKGgGR0CSi00xM36zaAdN6ANoCEdApz+KAYpDu3V9lChoBkdAlAppNwiqyWgHTegDaAhHQKdENEzfrKN1fZQoaAZHQJaTzVPN3W5oB03oA2gIR0CnRZLVFx4qdX2UKGgGR0CUJd4eLehxaAdN6ANoCEdAp0qZ0Syt3nV9lChoBkdAk8wljI7vHGgHTegDaAhHQKdLYMAmzB11fZQoaAZHQJTtXRsuWbBoB03oA2gIR0CnUBnn+yZ8dX2UKGgGR0CDtS6unuRcaAdN6ANoCEdAp1F7guRLb3V9lChoBkdAlzHfWpZOi2gHTegDaAhHQKdWjEH+qBF1fZQoaAZHQJQ82MefZmJoB03oA2gIR0CnV1MAmzBzdX2UKGgGR0CUNBPluFYdaAdN6ANoCEdAp1wE0elsQHV9lChoBkdAl661BQemvWgHTegDaAhHQKddax33Ycx1fZQoaAZHQJZVdnctXgdoB03oA2gIR0CnYoRdyDIzdX2UKGgGR0CL4CQYk3S8aAdN6ANoCEdAp2NK1G9YfXV9lChoBkdAkmHt9hJAdGgHTegDaAhHQKdn+XgLqlh1fZQoaAZHQJaQB9qk/KRoB03oA2gIR0CnaVvq1PWQdX2UKGgGR0CUsO+FDfFaaAdN6ANoCEdAp25fgDRtxnV9lChoBkdAlcvTBEa2nmgHTegDaAhHQKdvH4cm0E51fZQoaAZHQI2oasCDEm9oB03oA2gIR0Cnc+AoXsPbdX2UKGgGR0CRcWW7voeQaAdN6ANoCEdAp3VCVII4VHV9lChoBkdAkk+ueOGTLWgHTegDaAhHQKd6RAGjbi91fZQoaAZHQJHzxuejEehoB03oA2gIR0CnewL1VYITdX2UKGgGR0CSzJszEaVEaAdN6ANoCEdAp3/bqbBoEnV9lChoBkdAjBXD4xk/bGgHTegDaAhHQKeBRN1yNn51fZQoaAZHQIGNwV2zOX5oB03oA2gIR0CnhmvYWcjJdX2UKGgGR0CPTZNRm9QGaAdN6ANoCEdAp4cyVB2OhnV9lChoBkdAhubArQPZqWgHTegDaAhHQKeMCtmtheB1fZQoaAZHQIlkS0QbuMNoB03oA2gIR0CnjXUUXYUWdX2UKGgGR0B3f1jDsMRZaAdN6ANoCEdAp5KbxCpm3HV9lChoBkdAkSbKQ7tAs2gHTegDaAhHQKeTXV3ljmV1fZQoaAZHQI+YDRUm2LJoB03oA2gIR0CnmAJAMUh3dX2UKGgGR0CRASDvmYBvaAdN6ANoCEdAp5lkhvBJqnV9lChoBkdAknUJhKDkEWgHTegDaAhHQKeeaQBgeBB1fZQoaAZHQJEFUEaESM9oB03oA2gIR0CnnzD7ALy+dX2UKGgGR0CG9hQdCE6DaAdN6ANoCEdAp6P6mZVn3HV9lChoBkdAgxcsTviLl2gHTegDaAhHQKelZag26091fZQoaAZHQJBZ+gnMMZxoB03oA2gIR0CnqmePRzBAdX2UKGgGR0CNX4jmjj7zaAdN6ANoCEdAp6soGbCrLnVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a92dcea3dd5bf67c1d6c47c82bc06a08bda168f2be1feb23b4ba09f9c171f885
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51ac8fc0775dd139091dc25117fe28feff20983e3be7944f011a1918992a799a
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe00550d050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe00550d0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe00550d170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe00550d200>", "_build": "<function ActorCriticPolicy._build at 0x7fe00550d290>", "forward": "<function ActorCriticPolicy.forward at 0x7fe00550d320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe00550d3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe00550d440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe00550d4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe00550d560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe00550d5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe00554fdb0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658612114.9679883, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAIwekPnvo7L6ZgYs+dvpZPvQn7L5bouu/twyPveZ1Xr+b0KY/mk8FPDjRjz5KLDY+Us/Zv2hu9z3dU4m9RrWRv2cU6b938hk+IYN6PydsU72mAia/hoT4P61iPD3VS/M/CG8mP4nTkD4mSgo/uFNvv2xwwD7cVyA/0tQ8P6yJU757SFE/UpWOPgwkFD+6ID2/0MgEPcrV6L/Rxmw9BkFzvxz/w7+mV3A+OutEv4tz4z2g8dm/HCjmPc6vdz/jGeA8v5uEv9BAGb/6Mzg/SWdYvRjixL+J05A+JkoKP9HqiD/nQVA/VRd7PxCELj953YI+U7ojvpjlMD0nhFQ+giaIv6T+cD5ueJg/kNyOPyEQsj8h2lS/N8dFP0dyNr4lPFc/ULmYP1/PBr0kqRC/1FaNvoQHhL9jJdE7+9cTQMyAy7wY4sS/idOQPiZKCj+4U2+/L6SHP6DCrD6+DDY/Cd+mvqAhOb/5aIE/aOGBv+/inL+JIDU/hGgjPz0Miz/oXN2+26DbvwmOHTwLX5Y+pum8P8OLLT4EDpi/3beTv9xihr6kD1a/SE4ZPqYsuj/SQdW/CG8mP4nTkD4mSgo/uFNvv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAGg36TUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA6l+i9AAAAAF7e478AAAAAqGfXvQAAAADPhvo/AAAAAG2NQz0AAAAAX5D6PwAAAABzkU28AAAAAJT8AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACN/JQ0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+Um2PQAAAACNzfa/AAAAAH4TED4AAAAAHsviPwAAAACSQ7a9AAAAALzl3T8AAAAAnlc1vQAAAABFkN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYpirtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMrGJT0AAAAAjALbvwAAAABHPpu8AAAAAGv+8T8AAAAAgGGXvAAAAAAv1t8/AAAAALvmuLwAAAAAJWv7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM29uzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBiFn69AAAAACZm478AAAAAJuftvAAAAACkwOc/AAAAAKoLpz0AAAAAULrbPwAAAAC5Ywq+AAAAAICi378AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJoxdRwZOzqMAWyUTegDjAF0lEdApocW7z06HXV9lChoBkdAmfIVPJq7AmgHTegDaAhHQKaIe5MlC1J1fZQoaAZHQJlMdhQWN3poB03oA2gIR0CmjYAkTpPidX2UKGgGR0CYxldgOSW7aAdN6ANoCEdApo5IXAM2FXV9lChoBkdAmov1HJ9y92gHTegDaAhHQKaS7MM7U5N1fZQoaAZHQJorOvaDf3xoB03oA2gIR0CmlE7JwKjSdX2UKGgGR0CYpfBrvb48aAdN6ANoCEdApplQt4A0bnV9lChoBkdAmskIKUmlZWgHTegDaAhHQKaaFwCKaXt1fZQoaAZHQJqv3gWJrL1oB03oA2gIR0Cmnrrl3hXKdX2UKGgGR0CbYAvAoG6gaAdN6ANoCEdApqAb6ciGFnV9lChoBkdAmqghZha1TmgHTegDaAhHQKalJV4oqkN1fZQoaAZHQJq8a16Vt41oB03oA2gIR0Cmpeer+5vtdX2UKGgGR0CWX5xnFo+OaAdN6ANoCEdApqqTXe3x4XV9lChoBkdAnI6DriVB2WgHTegDaAhHQKar9wUg0TF1fZQoaAZHQJf9KVxCIDZoB03oA2gIR0CmsQKlxffGdX2UKGgGR0CaX/XTmW+oaAdN6ANoCEdAprHDel9Br3V9lChoBkdAmFfVwcYIjWgHTegDaAhHQKa2m1k1/Dt1fZQoaAZHQJmqehRIjGFoB03oA2gIR0Cmt/47ihnKdX2UKGgGR0CZN2dbgTAWaAdN6ANoCEdAprz6+HrQgXV9lChoBkdAmYWZyQxN7GgHTegDaAhHQKa9u7tAs051fZQoaAZHQJ2EcHbAUL5oB03oA2gIR0CmwlZYgaFVdX2UKGgGR0Ca0PROk+HKaAdN6ANoCEdApsO0fvF3p3V9lChoBkdAmVeEauOjqWgHTegDaAhHQKbIuDyvs7d1fZQoaAZHQJqhBpAUtZpoB03oA2gIR0CmyXiZF5OadX2UKGgGR0CaTWrRjSXuaAdN6ANoCEdAps4TThHby3V9lChoBkdAmd2yliz9j2gHTegDaAhHQKbPdLZi/fx1fZQoaAZHQJo1RSflIVdoB03oA2gIR0Cm1HNgjQiSdX2UKGgGR0Caw5kauOjqaAdN6ANoCEdAptUyWom5UnV9lChoBkdAmK2Z6po9LmgHTegDaAhHQKbZ2sGxD9h1fZQoaAZHQJX+v0EovzxoB03oA2gIR0Cm20BC+lCUdX2UKGgGR0CUti74i5d4aAdN6ANoCEdApuBHc32mHnV9lChoBkdAlx5hzmwJPmgHTegDaAhHQKbhCMqjJuF1fZQoaAZHQJofeMm4RVZoB03oA2gIR0Cm5bAte2NOdX2UKGgGR0CcZY4lQdjoaAdN6ANoCEdApucVp0wJxHV9lChoBkdAl3R6OT7l72gHTegDaAhHQKbsED28IzF1fZQoaAZHQJ0f6RV6u4hoB03oA2gIR0Cm7M4pDu0DdX2UKGgGR0CbNnAvtdAxaAdN6ANoCEdApvGCPZIxxnV9lChoBkdAmygsu8K5TmgHTegDaAhHQKby36TGHYZ1fZQoaAZHQJscHaVUuL9oB03oA2gIR0Cm997jcVQAdX2UKGgGR0CadsCV8kUsaAdN6ANoCEdApvicwN9YwXV9lChoBkdAmMLdix3V1GgHTegDaAhHQKb9PRGc4HZ1fZQoaAZHQJwSwtsenydoB03oA2gIR0Cm/p/XXiBHdX2UKGgGR0CcSeH4GlhxaAdN6ANoCEdApwOW3pfQbHV9lChoBkdAnGNht1p0wWgHTegDaAhHQKcEVyPMjeN1fZQoaAZHQJyZcF3Y+StoB03oA2gIR0CnCQQkxASndX2UKGgGR0CdI4EwWWQfaAdN6ANoCEdApwpt4NZvDXV9lChoBkdAmqFQr+YMOWgHTegDaAhHQKcPefMfRu11fZQoaAZHQJopzt4RmK9oB03oA2gIR0CnED/hl18tdX2UKGgGR0CRNdFVT72taAdN6ANoCEdApxTxjhDPW3V9lChoBkdAlbVWoJiRXGgHTegDaAhHQKcWVdszl911fZQoaAZHQJoPIjKPn0VoB03oA2gIR0CnG2OZTho/dX2UKGgGR0CcKefdRBNVaAdN6ANoCEdApxwpC6YmcHV9lChoBkdAnUztweeWfWgHTegDaAhHQKcg1l/Yrax1fZQoaAZHQJmG3cDbJwNoB03oA2gIR0CnIjcTrVvudX2UKGgGR0CaadRyfcveaAdN6ANoCEdApyc7TQVsUXV9lChoBkdAljtzYNAkcGgHTegDaAhHQKcn+ejEehh1fZQoaAZHQJjpR+b3Gn5oB03oA2gIR0CnLJz5oGpudX2UKGgGR0CYh483uNPyaAdN6ANoCEdApy38NOM2nHV9lChoBkdAm9+AzguRLmgHTegDaAhHQKczBMHKOkt1fZQoaAZHQJoxMvwmVqxoB03oA2gIR0CnM8WGIsRQdX2UKGgGR0CcsItKZlWfaAdN6ANoCEdApzhoWBSUDHV9lChoBkdAm76W5QP7N2gHTegDaAhHQKc5x3bEgnt1fZQoaAZHQJbZWTPjXFtoB03oA2gIR0CnPssXSBsidX2UKGgGR0CSi00xM36zaAdN6ANoCEdApz+KAYpDu3V9lChoBkdAlAppNwiqyWgHTegDaAhHQKdENEzfrKN1fZQoaAZHQJaTzVPN3W5oB03oA2gIR0CnRZLVFx4qdX2UKGgGR0CUJd4eLehxaAdN6ANoCEdAp0qZ0Syt3nV9lChoBkdAk8wljI7vHGgHTegDaAhHQKdLYMAmzB11fZQoaAZHQJTtXRsuWbBoB03oA2gIR0CnUBnn+yZ8dX2UKGgGR0CDtS6unuRcaAdN6ANoCEdAp1F7guRLb3V9lChoBkdAlzHfWpZOi2gHTegDaAhHQKdWjEH+qBF1fZQoaAZHQJQ82MefZmJoB03oA2gIR0CnV1MAmzBzdX2UKGgGR0CUNBPluFYdaAdN6ANoCEdAp1wE0elsQHV9lChoBkdAl661BQemvWgHTegDaAhHQKddax33Ycx1fZQoaAZHQJZVdnctXgdoB03oA2gIR0CnYoRdyDIzdX2UKGgGR0CL4CQYk3S8aAdN6ANoCEdAp2NK1G9YfXV9lChoBkdAkmHt9hJAdGgHTegDaAhHQKdn+XgLqlh1fZQoaAZHQJaQB9qk/KRoB03oA2gIR0CnaVvq1PWQdX2UKGgGR0CUsO+FDfFaaAdN6ANoCEdAp25fgDRtxnV9lChoBkdAlcvTBEa2nmgHTegDaAhHQKdvH4cm0E51fZQoaAZHQI2oasCDEm9oB03oA2gIR0Cnc+AoXsPbdX2UKGgGR0CRcWW7voeQaAdN6ANoCEdAp3VCVII4VHV9lChoBkdAkk+ueOGTLWgHTegDaAhHQKd6RAGjbi91fZQoaAZHQJHzxuejEehoB03oA2gIR0CnewL1VYITdX2UKGgGR0CSzJszEaVEaAdN6ANoCEdAp3/bqbBoEnV9lChoBkdAjBXD4xk/bGgHTegDaAhHQKeBRN1yNn51fZQoaAZHQIGNwV2zOX5oB03oA2gIR0CnhmvYWcjJdX2UKGgGR0CPTZNRm9QGaAdN6ANoCEdAp4cyVB2OhnV9lChoBkdAhubArQPZqWgHTegDaAhHQKeMCtmtheB1fZQoaAZHQIlkS0QbuMNoB03oA2gIR0CnjXUUXYUWdX2UKGgGR0B3f1jDsMRZaAdN6ANoCEdAp5KbxCpm3HV9lChoBkdAkSbKQ7tAs2gHTegDaAhHQKeTXV3ljmV1fZQoaAZHQI+YDRUm2LJoB03oA2gIR0CnmAJAMUh3dX2UKGgGR0CRASDvmYBvaAdN6ANoCEdAp5lkhvBJqnV9lChoBkdAknUJhKDkEWgHTegDaAhHQKeeaQBgeBB1fZQoaAZHQJEFUEaESM9oB03oA2gIR0CnnzD7ALy+dX2UKGgGR0CG9hQdCE6DaAdN6ANoCEdAp6P6mZVn3HV9lChoBkdAgxcsTviLl2gHTegDaAhHQKelZag26091fZQoaAZHQJBZ+gnMMZxoB03oA2gIR0CnqmePRzBAdX2UKGgGR0CNX4jmjj7zaAdN6ANoCEdAp6soGbCrLnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d782bf5bfd983d5a41632b6fbcb36843aca441ac281dd9c8f1b825097810a33b
|
3 |
+
size 1031742
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 843.9526262433822, "std_reward": 250.8225314679787, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-23T22:50:07.348411"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe863cbf0f2ed67b602d00102037a0536a7d5a3c4f22c8bf55dc79a1223cc313
|
3 |
+
size 2763
|