run and generate model card
Browse files- README.md +89 -0
- image_0.png +0 -0
- image_1.png +0 -0
- image_2.png +0 -0
- test-model-card-template-dreambooth-sdxl-lora-adv.ipynb +305 -0
README.md
CHANGED
@@ -1,3 +1,92 @@
|
|
1 |
---
|
2 |
license: openrail++
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: openrail++
|
3 |
+
library_name: diffusers
|
4 |
+
tags:
|
5 |
+
- text-to-image
|
6 |
+
- stable-diffusion-xl
|
7 |
+
- stable-diffusion-xl-diffusers
|
8 |
+
- text-to-image
|
9 |
+
- diffusers
|
10 |
+
- lora
|
11 |
+
- template:sd-lora
|
12 |
+
base_model: runwayml/stable-diffusion-v1-5
|
13 |
+
instance_prompt: A mushroom in [V] style
|
14 |
+
widget:
|
15 |
+
- text: ' '
|
16 |
+
output:
|
17 |
+
url: image_0.png
|
18 |
+
- text: ' '
|
19 |
+
output:
|
20 |
+
url: image_1.png
|
21 |
+
- text: ' '
|
22 |
+
output:
|
23 |
+
url: image_2.png
|
24 |
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the training script had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
|
30 |
+
# SDXL LoRA DreamBooth - abby101/test
|
31 |
+
|
32 |
+
<Gallery />
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
### These are abby101/test LoRA adaption weights for runwayml/stable-diffusion-v1-5.
|
37 |
+
|
38 |
+
## Download model
|
39 |
+
|
40 |
+
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
|
41 |
+
|
42 |
+
- **LoRA**: download **[`..safetensors` here 💾](/abby101/test/blob/main/..safetensors)**.
|
43 |
+
- Place it on your `models/Lora` folder.
|
44 |
+
- On AUTOMATIC1111, load the LoRA by adding `<lora:.:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
|
45 |
+
|
46 |
+
|
47 |
+
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
|
48 |
+
|
49 |
+
```py
|
50 |
+
from diffusers import AutoPipelineForText2Image
|
51 |
+
import torch
|
52 |
+
|
53 |
+
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
|
54 |
+
pipeline.load_lora_weights('abby101/test', weight_name='pytorch_lora_weights.safetensors')
|
55 |
+
|
56 |
+
image = pipeline('A mushroom in [V] style').images[0]
|
57 |
+
```
|
58 |
+
|
59 |
+
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
60 |
+
|
61 |
+
## Trigger words
|
62 |
+
|
63 |
+
You should use A mushroom in [V] style to trigger the image generation.
|
64 |
+
|
65 |
+
## Details
|
66 |
+
All [Files & versions](/abby101/test/tree/main).
|
67 |
+
|
68 |
+
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
|
69 |
+
|
70 |
+
LoRA for the text encoder was enabled. False.
|
71 |
+
|
72 |
+
Pivotal tuning was enabled: False.
|
73 |
+
|
74 |
+
Special VAE used for training: None.
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
## Intended uses & limitations
|
79 |
+
|
80 |
+
#### How to use
|
81 |
+
|
82 |
+
```python
|
83 |
+
# TODO: add an example code snippet for running this diffusion pipeline
|
84 |
+
```
|
85 |
+
|
86 |
+
#### Limitations and bias
|
87 |
+
|
88 |
+
[TODO: provide examples of latent issues and potential remediations]
|
89 |
+
|
90 |
+
## Training details
|
91 |
+
|
92 |
+
[TODO: describe the data used to train the model]
|
image_0.png
ADDED
![]() |
image_1.png
ADDED
![]() |
image_2.png
ADDED
![]() |
test-model-card-template-dreambooth-sdxl-lora-adv.ipynb
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"!pip install git+https://github.com/chiral-carbon/diffusers@advdiff_sdxl -q"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 2,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import os, re\n",
|
19 |
+
"\n",
|
20 |
+
"from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card\n",
|
21 |
+
"\n",
|
22 |
+
"def save_model_card(\n",
|
23 |
+
" repo_id: str,\n",
|
24 |
+
" use_dora: bool,\n",
|
25 |
+
" images: list = None,\n",
|
26 |
+
" base_model: str = None,\n",
|
27 |
+
" train_text_encoder: bool = False,\n",
|
28 |
+
" train_text_encoder_ti: bool = False,\n",
|
29 |
+
" token_abstraction_dict=None,\n",
|
30 |
+
" instance_prompt: str = None,\n",
|
31 |
+
" validation_prompt:str = None,\n",
|
32 |
+
" repo_folder=None,\n",
|
33 |
+
" vae_path=None,\n",
|
34 |
+
"):\n",
|
35 |
+
" widget_dict = []\n",
|
36 |
+
" if images is not None:\n",
|
37 |
+
" for i, image in enumerate(images):\n",
|
38 |
+
" image.save(os.path.join(repo_folder, f\"image_{i}.png\"))\n",
|
39 |
+
" widget_dict.append(\n",
|
40 |
+
" {\"text\": validation_prompt if validation_prompt else \" \", \"output\": {\"url\": f\"image_{i}.png\"}}\n",
|
41 |
+
" )\n",
|
42 |
+
" else:\n",
|
43 |
+
" widget_dict.append(\n",
|
44 |
+
" {\"text\": instance_prompt}\n",
|
45 |
+
" )\n",
|
46 |
+
" embeddings_filename = f\"{repo_folder}_emb\"\n",
|
47 |
+
" instance_prompt_webui = re.sub(r\"<s\\d+>\", \"\", re.sub(r\"<s\\d+>\", embeddings_filename, instance_prompt, count=1))\n",
|
48 |
+
" ti_keys = \", \".join(f'\"{match}\"' for match in re.findall(r\"<s\\d+>\", instance_prompt))\n",
|
49 |
+
" if instance_prompt_webui != embeddings_filename:\n",
|
50 |
+
" instance_prompt_sentence = f\"For example, `{instance_prompt_webui}`\"\n",
|
51 |
+
" else:\n",
|
52 |
+
" instance_prompt_sentence = \"\"\n",
|
53 |
+
" trigger_str = f\"You should use {instance_prompt} to trigger the image generation.\"\n",
|
54 |
+
" diffusers_imports_pivotal = \"\"\n",
|
55 |
+
" diffusers_example_pivotal = \"\"\n",
|
56 |
+
" webui_example_pivotal = \"\"\n",
|
57 |
+
" if train_text_encoder_ti:\n",
|
58 |
+
" trigger_str = (\n",
|
59 |
+
" \"To trigger image generation of trained concept(or concepts) replace each concept identifier \"\n",
|
60 |
+
" \"in you prompt with the new inserted tokens:\\n\"\n",
|
61 |
+
" )\n",
|
62 |
+
" diffusers_imports_pivotal = \"\"\"from huggingface_hub import hf_hub_download\n",
|
63 |
+
"from safetensors.torch import load_file\n",
|
64 |
+
" \"\"\"\n",
|
65 |
+
" diffusers_example_pivotal = f\"\"\"embedding_path = hf_hub_download(repo_id='{repo_id}', filename='{embeddings_filename}.safetensors', repo_type=\"model\")\n",
|
66 |
+
"state_dict = load_file(embedding_path)\n",
|
67 |
+
"pipeline.load_textual_inversion(state_dict[\"clip_l\"], token=[{ti_keys}], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)\n",
|
68 |
+
"pipeline.load_textual_inversion(state_dict[\"clip_g\"], token=[{ti_keys}], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)\n",
|
69 |
+
" \"\"\"\n",
|
70 |
+
" webui_example_pivotal = f\"\"\"- *Embeddings*: download **[`{embeddings_filename}.safetensors` here 💾](/{repo_id}/blob/main/{embeddings_filename}.safetensors)**.\n",
|
71 |
+
" - Place it on it on your `embeddings` folder\n",
|
72 |
+
" - Use it by adding `{embeddings_filename}` to your prompt. {instance_prompt_sentence}\n",
|
73 |
+
" (you need both the LoRA and the embeddings as they were trained together for this LoRA)\n",
|
74 |
+
" \"\"\"\n",
|
75 |
+
" if token_abstraction_dict:\n",
|
76 |
+
" for key, value in token_abstraction_dict.items():\n",
|
77 |
+
" tokens = \"\".join(value)\n",
|
78 |
+
" trigger_str += f\"\"\"\n",
|
79 |
+
"to trigger concept `{key}` → use `{tokens}` in your prompt \\n\n",
|
80 |
+
"\"\"\"\n",
|
81 |
+
"\n",
|
82 |
+
" model_description = f\"\"\"\n",
|
83 |
+
"# SDXL LoRA DreamBooth - {repo_id}\n",
|
84 |
+
"\n",
|
85 |
+
"<Gallery />\n",
|
86 |
+
"\n",
|
87 |
+
"## Model description\n",
|
88 |
+
"\n",
|
89 |
+
"### These are {repo_id} LoRA adaption weights for {base_model}.\n",
|
90 |
+
"\n",
|
91 |
+
"## Download model\n",
|
92 |
+
"\n",
|
93 |
+
"### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke\n",
|
94 |
+
"\n",
|
95 |
+
"- **LoRA**: download **[`{repo_folder}.safetensors` here 💾](/{repo_id}/blob/main/{repo_folder}.safetensors)**.\n",
|
96 |
+
" - Place it on your `models/Lora` folder.\n",
|
97 |
+
" - On AUTOMATIC1111, load the LoRA by adding `<lora:{repo_folder}:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).\n",
|
98 |
+
"{webui_example_pivotal}\n",
|
99 |
+
"\n",
|
100 |
+
"## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)\n",
|
101 |
+
"\n",
|
102 |
+
"```py\n",
|
103 |
+
"from diffusers import AutoPipelineForText2Image\n",
|
104 |
+
"import torch\n",
|
105 |
+
"{diffusers_imports_pivotal}\n",
|
106 |
+
"pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')\n",
|
107 |
+
"pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors')\n",
|
108 |
+
"{diffusers_example_pivotal}\n",
|
109 |
+
"image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0]\n",
|
110 |
+
"```\n",
|
111 |
+
"\n",
|
112 |
+
"For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)\n",
|
113 |
+
"\n",
|
114 |
+
"## Trigger words\n",
|
115 |
+
"\n",
|
116 |
+
"{trigger_str}\n",
|
117 |
+
"\n",
|
118 |
+
"## Details\n",
|
119 |
+
"All [Files & versions](/{repo_id}/tree/main).\n",
|
120 |
+
"\n",
|
121 |
+
"The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).\n",
|
122 |
+
"\n",
|
123 |
+
"LoRA for the text encoder was enabled. {train_text_encoder}.\n",
|
124 |
+
"\n",
|
125 |
+
"Pivotal tuning was enabled: {train_text_encoder_ti}.\n",
|
126 |
+
"\n",
|
127 |
+
"Special VAE used for training: {vae_path}.\n",
|
128 |
+
"\n",
|
129 |
+
"\"\"\"\n",
|
130 |
+
" model_card = load_or_create_model_card(\n",
|
131 |
+
" repo_id_or_path=repo_id,\n",
|
132 |
+
" from_training=True,\n",
|
133 |
+
" license=\"openrail++\",\n",
|
134 |
+
" base_model=base_model,\n",
|
135 |
+
" prompt=instance_prompt,\n",
|
136 |
+
" model_description=model_description,\n",
|
137 |
+
" widget=widget_dict,\n",
|
138 |
+
" )\n",
|
139 |
+
" tags = [\n",
|
140 |
+
" \"text-to-image\",\n",
|
141 |
+
" \"stable-diffusion-xl\",\n",
|
142 |
+
" \"stable-diffusion-xl-diffusers\",\n",
|
143 |
+
" \"text-to-image\",\n",
|
144 |
+
" \"diffusers\",\n",
|
145 |
+
" \"lora\",\n",
|
146 |
+
" \"template:sd-lora\",\n",
|
147 |
+
" ]\n",
|
148 |
+
" model_card = populate_model_card(model_card, tags=tags)\n",
|
149 |
+
" "
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": 3,
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [],
|
157 |
+
"source": [
|
158 |
+
"from diffusers.utils import load_image\n",
|
159 |
+
"\n",
|
160 |
+
"images = [\n",
|
161 |
+
" load_image(\"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png\")\n",
|
162 |
+
" for _ in range(3)\n",
|
163 |
+
"]\n",
|
164 |
+
"\n",
|
165 |
+
"save_model_card(\n",
|
166 |
+
" use_dora=False,\n",
|
167 |
+
" repo_id=\"abby101/test\",\n",
|
168 |
+
" images=images,\n",
|
169 |
+
" base_model=\"runwayml/stable-diffusion-v1-5\",\n",
|
170 |
+
" repo_folder=\".\",\n",
|
171 |
+
" instance_prompt=\"A mushroom in [V] style\",\n",
|
172 |
+
")"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": 4,
|
178 |
+
"metadata": {},
|
179 |
+
"outputs": [
|
180 |
+
{
|
181 |
+
"name": "stdout",
|
182 |
+
"output_type": "stream",
|
183 |
+
"text": [
|
184 |
+
"---\n",
|
185 |
+
"license: openrail++\n",
|
186 |
+
"library_name: diffusers\n",
|
187 |
+
"tags:\n",
|
188 |
+
"- text-to-image\n",
|
189 |
+
"- stable-diffusion-xl\n",
|
190 |
+
"- stable-diffusion-xl-diffusers\n",
|
191 |
+
"- text-to-image\n",
|
192 |
+
"- diffusers\n",
|
193 |
+
"- lora\n",
|
194 |
+
"- template:sd-lora\n",
|
195 |
+
"base_model: runwayml/stable-diffusion-v1-5\n",
|
196 |
+
"instance_prompt: A mushroom in [V] style\n",
|
197 |
+
"widget:\n",
|
198 |
+
"- text: ' '\n",
|
199 |
+
" output:\n",
|
200 |
+
" url: image_0.png\n",
|
201 |
+
"- text: ' '\n",
|
202 |
+
" output:\n",
|
203 |
+
" url: image_1.png\n",
|
204 |
+
"- text: ' '\n",
|
205 |
+
" output:\n",
|
206 |
+
" url: image_2.png\n",
|
207 |
+
"---\n",
|
208 |
+
"\n",
|
209 |
+
"<!-- This model card has been generated automatically according to the information the training script had access to. You\n",
|
210 |
+
"should probably proofread and complete it, then remove this comment. -->\n",
|
211 |
+
"\n",
|
212 |
+
"\n",
|
213 |
+
"# SDXL LoRA DreamBooth - abby101/test\n",
|
214 |
+
"\n",
|
215 |
+
"<Gallery />\n",
|
216 |
+
"\n",
|
217 |
+
"## Model description\n",
|
218 |
+
"\n",
|
219 |
+
"### These are abby101/test LoRA adaption weights for runwayml/stable-diffusion-v1-5.\n",
|
220 |
+
"\n",
|
221 |
+
"## Download model\n",
|
222 |
+
"\n",
|
223 |
+
"### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke\n",
|
224 |
+
"\n",
|
225 |
+
"- **LoRA**: download **[`..safetensors` here 💾](/abby101/test/blob/main/..safetensors)**.\n",
|
226 |
+
" - Place it on your `models/Lora` folder.\n",
|
227 |
+
" - On AUTOMATIC1111, load the LoRA by adding `<lora:.:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).\n",
|
228 |
+
"\n",
|
229 |
+
"\n",
|
230 |
+
"## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)\n",
|
231 |
+
"\n",
|
232 |
+
"```py\n",
|
233 |
+
"from diffusers import AutoPipelineForText2Image\n",
|
234 |
+
"import torch\n",
|
235 |
+
"\n",
|
236 |
+
"pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')\n",
|
237 |
+
"pipeline.load_lora_weights('abby101/test', weight_name='pytorch_lora_weights.safetensors')\n",
|
238 |
+
"\n",
|
239 |
+
"image = pipeline('A mushroom in [V] style').images[0]\n",
|
240 |
+
"```\n",
|
241 |
+
"\n",
|
242 |
+
"For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)\n",
|
243 |
+
"\n",
|
244 |
+
"## Trigger words\n",
|
245 |
+
"\n",
|
246 |
+
"You should use A mushroom in [V] style to trigger the image generation.\n",
|
247 |
+
"\n",
|
248 |
+
"## Details\n",
|
249 |
+
"All [Files & versions](/abby101/test/tree/main).\n",
|
250 |
+
"\n",
|
251 |
+
"The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).\n",
|
252 |
+
"\n",
|
253 |
+
"LoRA for the text encoder was enabled. False.\n",
|
254 |
+
"\n",
|
255 |
+
"Pivotal tuning was enabled: False.\n",
|
256 |
+
"\n",
|
257 |
+
"Special VAE used for training: None.\n",
|
258 |
+
"\n",
|
259 |
+
"\n",
|
260 |
+
"\n",
|
261 |
+
"## Intended uses & limitations\n",
|
262 |
+
"\n",
|
263 |
+
"#### How to use\n",
|
264 |
+
"\n",
|
265 |
+
"```python\n",
|
266 |
+
"# TODO: add an example code snippet for running this diffusion pipeline\n",
|
267 |
+
"```\n",
|
268 |
+
"\n",
|
269 |
+
"#### Limitations and bias\n",
|
270 |
+
"\n",
|
271 |
+
"[TODO: provide examples of latent issues and potential remediations]\n",
|
272 |
+
"\n",
|
273 |
+
"## Training details\n",
|
274 |
+
"\n",
|
275 |
+
"[TODO: describe the data used to train the model]"
|
276 |
+
]
|
277 |
+
}
|
278 |
+
],
|
279 |
+
"source": [
|
280 |
+
"!cat README.md"
|
281 |
+
]
|
282 |
+
}
|
283 |
+
],
|
284 |
+
"metadata": {
|
285 |
+
"kernelspec": {
|
286 |
+
"display_name": "pydl",
|
287 |
+
"language": "python",
|
288 |
+
"name": "python3"
|
289 |
+
},
|
290 |
+
"language_info": {
|
291 |
+
"codemirror_mode": {
|
292 |
+
"name": "ipython",
|
293 |
+
"version": 3
|
294 |
+
},
|
295 |
+
"file_extension": ".py",
|
296 |
+
"mimetype": "text/x-python",
|
297 |
+
"name": "python",
|
298 |
+
"nbconvert_exporter": "python",
|
299 |
+
"pygments_lexer": "ipython3",
|
300 |
+
"version": "3.10.9"
|
301 |
+
}
|
302 |
+
},
|
303 |
+
"nbformat": 4,
|
304 |
+
"nbformat_minor": 2
|
305 |
+
}
|