abbiekeats
commited on
Commit
•
1a59435
1
Parent(s):
855378f
Push LunarLander-v2 model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 300.19 +/- 12.74
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c1cbb08b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c1cbb0940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c1cbb09d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c1cbb0a60>", "_build": "<function ActorCriticPolicy._build at 0x7f7c1cbb0af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7c1cbb0b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7c1cbb0c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c1cbb0ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7c1cbb0d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c1cbb0dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c1cbb0e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c1cbb0ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7c1cbae840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1000960, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678275882395271299, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKYh871MV9E+ATWXPb9hC78W58a9a3QZvQAAAAAAAAAAM5eDPdeeCrtqsXO84+saPfHAEDxYWwK+AACAPwAAgD+atfI7KZItvB5/OryjkoQ8stGVPeh1XL0AAIA/AACAP800zDvDDXO6DFsoOGRdGjNNxe+6qE9FtwAAgD8AAIA/zVsgvslzNT/e54k8UzMKvw8MOr6HAUw9AAAAAAAAAABmt3+9FBCRugpr6TeVhs4ywhe7uoJiB7cAAIA/AACAPwAQ9Tsv27E//9MWPj85eb5E5oS74rxvuwAAAAAAAAAAs68EvvnTID/fzQC8IJvmvli4G77lLlI9AAAAAAAAAAC1aYK+ySdFP5CNwz0HWhS/HL5JvpxHpD0AAAAAAAAAAJqRxbspOEu6I6DRMs6TCDGmt647kw+wswAAgD8AAIA/zYglPM1Buz9iZVE9vftfvbwbijrgtkk9AAAAAAAAAAA9qFq+NsqlPx4job4kseS+kniQvj2E9L0AAAAAAAAAAM0Vi7zhHIO6mHt1NlObQzH/v6U6eSiUtQAAgD8AAIA/DVriPTQVsj7TFIa+ja+2vvZE1r1++8C9AAAAAAAAAAAaz5y9DY6fPjTNhj2HNtK+JalwvrZn1TwAAAAAAAAAAFopL75L4aU+GN6BPlLS8b59j0i9NKSZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0009600000000000719, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKLfte1RfbkCUhpRSlIwBbJRLt4wBdJRHQKxcLaqS5iF1fZQoaAZoCWgPQwhGPxpOmQ5xQJSGlFKUaBVLx2gWR0CsXE67VawEdX2UKGgGaAloD0MI2A5G7FMgc0CUhpRSlGgVTYkBaBZHQKxckzMzMzN1fZQoaAZoCWgPQwgPYJFfv4VvQJSGlFKUaBVLvmgWR0CsXMchC+lCdX2UKGgGaAloD0MIKPIk6ZqHckCUhpRSlGgVS89oFkdArFznnuAqeHV9lChoBmgJaA9DCGqkpfK2GHNAlIaUUpRoFUu/aBZHQKxdNMLWqcV1fZQoaAZoCWgPQwjJdyl1iYVyQJSGlFKUaBVNIQJoFkdArF04o1DSgHV9lChoBmgJaA9DCMxjzciggW9AlIaUUpRoFUvLaBZHQKxdYMWGh251fZQoaAZoCWgPQwh3Z+22Cx9yQJSGlFKUaBVL4GgWR0CsXXAhje9BdX2UKGgGaAloD0MI5Eo9C0Koc0CUhpRSlGgVS+JoFkdArF1zDAJswnV9lChoBmgJaA9DCCttcY3PCk9AlIaUUpRoFUunaBZHQKxdmKKpDNR1fZQoaAZoCWgPQwgi+rX1k+twQJSGlFKUaBVL0WgWR0CsXa+u3c59dX2UKGgGaAloD0MI8gnZeVusc0CUhpRSlGgVTX0BaBZHQKxeGGrS3LF1fZQoaAZoCWgPQwjYKyy4n31xQJSGlFKUaBVLsmgWR0CsXifag261dX2UKGgGaAloD0MIjNgngGIocECUhpRSlGgVS79oFkdArF5pfx+a0HV9lChoBmgJaA9DCKGDLuEQyHNAlIaUUpRoFUvqaBZHQKxeo+7Dl5p1fZQoaAZoCWgPQwj6Cz1iNKJxQJSGlFKUaBVLyWgWR0CsXsbC79Q5dX2UKGgGaAloD0MIRIXq5mIscUCUhpRSlGgVS8VoFkdArF8L0pVjqnV9lChoBmgJaA9DCLBXWHD/GHNAlIaUUpRoFUvAaBZHQKxfSygwoLJ1fZQoaAZoCWgPQwiAu+zXnTpzQJSGlFKUaBVL9mgWR0CsX3w6QvHtdX2UKGgGaAloD0MIkNlZ9A7jcECUhpRSlGgVS7xoFkdArF9+6qbSZ3V9lChoBmgJaA9DCNS7eD8uOXJAlIaUUpRoFUvHaBZHQKxfjxiG34N1fZQoaAZoCWgPQwicps8O+GJwQJSGlFKUaBVLxGgWR0CsX8SIP9UCdX2UKGgGaAloD0MI9UiD29pzckCUhpRSlGgVS+poFkdArF/G3KB/Z3V9lChoBmgJaA9DCE9bI4Kx0XNAlIaUUpRoFUvOaBZHQKxf9AMUh3d1fZQoaAZoCWgPQwjIJvkRPxtyQJSGlFKUaBVLvWgWR0CsYDsQEpy7dX2UKGgGaAloD0MIIcms3mHSckCUhpRSlGgVTQkBaBZHQKxgaFpwjt51fZQoaAZoCWgPQwh2bW+3JChyQJSGlFKUaBVNmQFoFkdArGB5HqeK9HV9lChoBmgJaA9DCN2WyAWnIHNAlIaUUpRoFUvnaBZHQKxgwBU70Wd1fZQoaAZoCWgPQwjrVzofXjdzQJSGlFKUaBVL2WgWR0CsYNtOEdvLdX2UKGgGaAloD0MIu3uA7ssOckCUhpRSlGgVS+VoFkdArJEAEZBLPHV9lChoBmgJaA9DCPhrska9p3NAlIaUUpRoFUvMaBZHQKyRHzf779B1fZQoaAZoCWgPQwjXZ876lIJvQJSGlFKUaBVLwGgWR0CskTtVR1oydX2UKGgGaAloD0MIsMivH2JEb0CUhpRSlGgVS7loFkdArJFlanrIHXV9lChoBmgJaA9DCIc2ABtQEXRAlIaUUpRoFU0AAWgWR0CskW1PN3W4dX2UKGgGaAloD0MIoyO5/EchcUCUhpRSlGgVS8loFkdArJGBJ7LMcXV9lChoBmgJaA9DCPxTqkRZXXNAlIaUUpRoFUvLaBZHQKyRiOG0u151fZQoaAZoCWgPQwh0JJf/EBhyQJSGlFKUaBVLxGgWR0CskbMlTm4idX2UKGgGaAloD0MI5+CZ0GSXcECUhpRSlGgVS9FoFkdArJHV2cJ+lXV9lChoBmgJaA9DCIy61t4nv3BAlIaUUpRoFUvBaBZHQKyR2H9m6Gx1fZQoaAZoCWgPQwi5UzpYv+9yQJSGlFKUaBVL3WgWR0CskoNq59VndX2UKGgGaAloD0MIY7X5f9Wnc0CUhpRSlGgVS9loFkdArJKI8SwnpnV9lChoBmgJaA9DCGyVYHF4E3NAlIaUUpRoFUvtaBZHQKySiEV32VV1fZQoaAZoCWgPQwiuKZDZ2WNzQJSGlFKUaBVL02gWR0CsksCxNZeSdX2UKGgGaAloD0MIxxFr8WmfcECUhpRSlGgVS7BoFkdArJLV9v0h/3V9lChoBmgJaA9DCFq5F5jV/nFAlIaUUpRoFUvbaBZHQKyS9Hvttyh1fZQoaAZoCWgPQwhA3xYsFUZxQJSGlFKUaBVLnGgWR0CskyTKkl/pdX2UKGgGaAloD0MIETgSaDCMcUCUhpRSlGgVS8loFkdArJM7uF6Av3V9lChoBmgJaA9DCG40gLcAtXJAlIaUUpRoFUvRaBZHQKyTlyPMjeN1fZQoaAZoCWgPQwiFJoklpRZxQJSGlFKUaBVL6GgWR0Csk673Gn4xdX2UKGgGaAloD0MI0UGXcOibckCUhpRSlGgVS9ZoFkdArJOu63AmA3V9lChoBmgJaA9DCFT+tbyy4XBAlIaUUpRoFUvTaBZHQKyTudkrf+F1fZQoaAZoCWgPQwg+k/3z9I1xQJSGlFKUaBVLvmgWR0Csk9jwH7gsdX2UKGgGaAloD0MIAOFDiZZ0TECUhpRSlGgVS5FoFkdArJQVRekYXXV9lChoBmgJaA9DCDklICah5HJAlIaUUpRoFUv6aBZHQKyUV/SYw7F1fZQoaAZoCWgPQwjJy5pYYE9kQJSGlFKUaBVN6ANoFkdArJRqgM+eOHV9lChoBmgJaA9DCAjpKXKIsXJAlIaUUpRoFUvyaBZHQKyUa+FlCkZ1fZQoaAZoCWgPQwipZ0Eo7/1vQJSGlFKUaBVLtmgWR0CslHxUFSsKdX2UKGgGaAloD0MIngjiPFxNcUCUhpRSlGgVS7NoFkdArJSlKK5083V9lChoBmgJaA9DCF6fOetTs3FAlIaUUpRoFUvaaBZHQKyVHZyMkyF1fZQoaAZoCWgPQwiySumZHqByQJSGlFKUaBVLwmgWR0CslSyvC/GmdX2UKGgGaAloD0MIvTWwVcKrcUCUhpRSlGgVTQUBaBZHQKyVQTufEn91fZQoaAZoCWgPQwgmUwWjUvhyQJSGlFKUaBVLz2gWR0CslWN9H+ZPdX2UKGgGaAloD0MIHuIftjRcckCUhpRSlGgVS8ZoFkdArJWhuGbkO3V9lChoBmgJaA9DCF2mJsHbNHFAlIaUUpRoFU0CAWgWR0CslaUFbFCLdX2UKGgGaAloD0MITpmbb8QgcUCUhpRSlGgVS8toFkdArJXCi0v4/XV9lChoBmgJaA9DCNe+gF64PHBAlIaUUpRoFUvAaBZHQKyV0GATZg51fZQoaAZoCWgPQwhoHyv4LYBxQJSGlFKUaBVL02gWR0Csldmkep4sdX2UKGgGaAloD0MInMO12kMBcUCUhpRSlGgVS9RoFkdArJXmjua4MHV9lChoBmgJaA9DCObJNQWyI3FAlIaUUpRoFUupaBZHQKyWDUDMeOp1fZQoaAZoCWgPQwgs1Jrm3VxzQJSGlFKUaBVLx2gWR0CslhwY+B6KdX2UKGgGaAloD0MIoz808+QWcECUhpRSlGgVS8NoFkdArJZf4REncHV9lChoBmgJaA9DCPEr1nCRRHNAlIaUUpRoFUvNaBZHQKyWefV7QcB1fZQoaAZoCWgPQwh24nK8wmtyQJSGlFKUaBVL3WgWR0Cslrcan753dX2UKGgGaAloD0MI1Xsqp72BbkCUhpRSlGgVS7xoFkdArJcgAMlTnHV9lChoBmgJaA9DCDIiUWjZQ3JAlIaUUpRoFUvHaBZHQKyXMad+Xqt1fZQoaAZoCWgPQwgbvoV144hzQJSGlFKUaBVNAgFoFkdArJdWSntOVXV9lChoBmgJaA9DCP/PYb68bXFAlIaUUpRoFUvGaBZHQKyXU99tuUF1fZQoaAZoCWgPQwjJIHcRJuRxQJSGlFKUaBVL12gWR0Csl6c6mwaBdX2UKGgGaAloD0MIyVUsftM4ckCUhpRSlGgVS7loFkdArJfPied073V9lChoBmgJaA9DCJ8+An84ZHBAlIaUUpRoFUvOaBZHQKyXz8rqdH51fZQoaAZoCWgPQwici7/tSVJyQJSGlFKUaBVL2WgWR0Csl+8Z9/jLdX2UKGgGaAloD0MII2sNpTZpcECUhpRSlGgVS9FoFkdArJf5HqeK9HV9lChoBmgJaA9DCMH+69z0iHFAlIaUUpRoFUvRaBZHQKyYBM23rlh1fZQoaAZoCWgPQwjaxp+oLGhzQJSGlFKUaBVLzGgWR0CsmAxm9QGfdX2UKGgGaAloD0MIoWRyaic1ckCUhpRSlGgVS9VoFkdArJg/jCHh0nV9lChoBmgJaA9DCB6n6Eiu13FAlIaUUpRoFUvcaBZHQKyYXZUT+Nt1fZQoaAZoCWgPQwgX9N4YghFyQJSGlFKUaBVLtmgWR0CsmJFBIFvAdX2UKGgGaAloD0MItvRoqqdpcUCUhpRSlGgVS+NoFkdArJivz+WGAXV9lChoBmgJaA9DCDTz5JrCnnBAlIaUUpRoFUvjaBZHQKyYx3u/k/91fZQoaAZoCWgPQwhsXtVZLUVxQJSGlFKUaBVLx2gWR0CsmRYOUdJbdX2UKGgGaAloD0MIqDrkZnhGcUCUhpRSlGgVS81oFkdArJk0ihWYGHV9lChoBmgJaA9DCHh+UYL+LXNAlIaUUpRoFUvPaBZHQKyZWoqCpWF1fZQoaAZoCWgPQwiRYRVv5I5vQJSGlFKUaBVLtmgWR0CsmWW/rSmZdX2UKGgGaAloD0MI0m2JXLBFcUCUhpRSlGgVS6hoFkdArJln6MzdlHV9lChoBmgJaA9DCA+cM6K0KXBAlIaUUpRoFUvVaBZHQKyZZyauwHJ1fZQoaAZoCWgPQwjFc7aAUE9vQJSGlFKUaBVLvmgWR0CsmZoH9m6HdX2UKGgGaAloD0MI5IQJo9lVcUCUhpRSlGgVS7hoFkdArJm8spXp4nV9lChoBmgJaA9DCOVDUDV6knJAlIaUUpRoFUvfaBZHQKyaFLeQ+2V1fZQoaAZoCWgPQwigpSvYhrdxQJSGlFKUaBVL7mgWR0CsmjH4O+ZgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1360, "n_steps": 920, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce748664c0ac6e97aa9ed6481e289db793150251a9e649d292c1cb71d6217e9f
|
3 |
+
size 147306
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7c1cbb08b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7c1cbb0940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7c1cbb09d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7c1cbb0a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7c1cbb0af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7c1cbb0b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7c1cbb0c10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7c1cbb0ca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7c1cbb0d30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7c1cbb0dc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7c1cbb0e50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7c1cbb0ee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7c1cbae840>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1000960,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678275882395271299,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKYh871MV9E+ATWXPb9hC78W58a9a3QZvQAAAAAAAAAAM5eDPdeeCrtqsXO84+saPfHAEDxYWwK+AACAPwAAgD+atfI7KZItvB5/OryjkoQ8stGVPeh1XL0AAIA/AACAP800zDvDDXO6DFsoOGRdGjNNxe+6qE9FtwAAgD8AAIA/zVsgvslzNT/e54k8UzMKvw8MOr6HAUw9AAAAAAAAAABmt3+9FBCRugpr6TeVhs4ywhe7uoJiB7cAAIA/AACAPwAQ9Tsv27E//9MWPj85eb5E5oS74rxvuwAAAAAAAAAAs68EvvnTID/fzQC8IJvmvli4G77lLlI9AAAAAAAAAAC1aYK+ySdFP5CNwz0HWhS/HL5JvpxHpD0AAAAAAAAAAJqRxbspOEu6I6DRMs6TCDGmt647kw+wswAAgD8AAIA/zYglPM1Buz9iZVE9vftfvbwbijrgtkk9AAAAAAAAAAA9qFq+NsqlPx4job4kseS+kniQvj2E9L0AAAAAAAAAAM0Vi7zhHIO6mHt1NlObQzH/v6U6eSiUtQAAgD8AAIA/DVriPTQVsj7TFIa+ja+2vvZE1r1++8C9AAAAAAAAAAAaz5y9DY6fPjTNhj2HNtK+JalwvrZn1TwAAAAAAAAAAFopL75L4aU+GN6BPlLS8b59j0i9NKSZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0009600000000000719,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKLfte1RfbkCUhpRSlIwBbJRLt4wBdJRHQKxcLaqS5iF1fZQoaAZoCWgPQwhGPxpOmQ5xQJSGlFKUaBVLx2gWR0CsXE67VawEdX2UKGgGaAloD0MI2A5G7FMgc0CUhpRSlGgVTYkBaBZHQKxckzMzMzN1fZQoaAZoCWgPQwgPYJFfv4VvQJSGlFKUaBVLvmgWR0CsXMchC+lCdX2UKGgGaAloD0MIKPIk6ZqHckCUhpRSlGgVS89oFkdArFznnuAqeHV9lChoBmgJaA9DCGqkpfK2GHNAlIaUUpRoFUu/aBZHQKxdNMLWqcV1fZQoaAZoCWgPQwjJdyl1iYVyQJSGlFKUaBVNIQJoFkdArF04o1DSgHV9lChoBmgJaA9DCMxjzciggW9AlIaUUpRoFUvLaBZHQKxdYMWGh251fZQoaAZoCWgPQwh3Z+22Cx9yQJSGlFKUaBVL4GgWR0CsXXAhje9BdX2UKGgGaAloD0MI5Eo9C0Koc0CUhpRSlGgVS+JoFkdArF1zDAJswnV9lChoBmgJaA9DCCttcY3PCk9AlIaUUpRoFUunaBZHQKxdmKKpDNR1fZQoaAZoCWgPQwgi+rX1k+twQJSGlFKUaBVL0WgWR0CsXa+u3c59dX2UKGgGaAloD0MI8gnZeVusc0CUhpRSlGgVTX0BaBZHQKxeGGrS3LF1fZQoaAZoCWgPQwjYKyy4n31xQJSGlFKUaBVLsmgWR0CsXifag261dX2UKGgGaAloD0MIjNgngGIocECUhpRSlGgVS79oFkdArF5pfx+a0HV9lChoBmgJaA9DCKGDLuEQyHNAlIaUUpRoFUvqaBZHQKxeo+7Dl5p1fZQoaAZoCWgPQwj6Cz1iNKJxQJSGlFKUaBVLyWgWR0CsXsbC79Q5dX2UKGgGaAloD0MIRIXq5mIscUCUhpRSlGgVS8VoFkdArF8L0pVjqnV9lChoBmgJaA9DCLBXWHD/GHNAlIaUUpRoFUvAaBZHQKxfSygwoLJ1fZQoaAZoCWgPQwiAu+zXnTpzQJSGlFKUaBVL9mgWR0CsX3w6QvHtdX2UKGgGaAloD0MIkNlZ9A7jcECUhpRSlGgVS7xoFkdArF9+6qbSZ3V9lChoBmgJaA9DCNS7eD8uOXJAlIaUUpRoFUvHaBZHQKxfjxiG34N1fZQoaAZoCWgPQwicps8O+GJwQJSGlFKUaBVLxGgWR0CsX8SIP9UCdX2UKGgGaAloD0MI9UiD29pzckCUhpRSlGgVS+poFkdArF/G3KB/Z3V9lChoBmgJaA9DCE9bI4Kx0XNAlIaUUpRoFUvOaBZHQKxf9AMUh3d1fZQoaAZoCWgPQwjIJvkRPxtyQJSGlFKUaBVLvWgWR0CsYDsQEpy7dX2UKGgGaAloD0MIIcms3mHSckCUhpRSlGgVTQkBaBZHQKxgaFpwjt51fZQoaAZoCWgPQwh2bW+3JChyQJSGlFKUaBVNmQFoFkdArGB5HqeK9HV9lChoBmgJaA9DCN2WyAWnIHNAlIaUUpRoFUvnaBZHQKxgwBU70Wd1fZQoaAZoCWgPQwjrVzofXjdzQJSGlFKUaBVL2WgWR0CsYNtOEdvLdX2UKGgGaAloD0MIu3uA7ssOckCUhpRSlGgVS+VoFkdArJEAEZBLPHV9lChoBmgJaA9DCPhrska9p3NAlIaUUpRoFUvMaBZHQKyRHzf779B1fZQoaAZoCWgPQwjXZ876lIJvQJSGlFKUaBVLwGgWR0CskTtVR1oydX2UKGgGaAloD0MIsMivH2JEb0CUhpRSlGgVS7loFkdArJFlanrIHXV9lChoBmgJaA9DCIc2ABtQEXRAlIaUUpRoFU0AAWgWR0CskW1PN3W4dX2UKGgGaAloD0MIoyO5/EchcUCUhpRSlGgVS8loFkdArJGBJ7LMcXV9lChoBmgJaA9DCPxTqkRZXXNAlIaUUpRoFUvLaBZHQKyRiOG0u151fZQoaAZoCWgPQwh0JJf/EBhyQJSGlFKUaBVLxGgWR0CskbMlTm4idX2UKGgGaAloD0MI5+CZ0GSXcECUhpRSlGgVS9FoFkdArJHV2cJ+lXV9lChoBmgJaA9DCIy61t4nv3BAlIaUUpRoFUvBaBZHQKyR2H9m6Gx1fZQoaAZoCWgPQwi5UzpYv+9yQJSGlFKUaBVL3WgWR0CskoNq59VndX2UKGgGaAloD0MIY7X5f9Wnc0CUhpRSlGgVS9loFkdArJKI8SwnpnV9lChoBmgJaA9DCGyVYHF4E3NAlIaUUpRoFUvtaBZHQKySiEV32VV1fZQoaAZoCWgPQwiuKZDZ2WNzQJSGlFKUaBVL02gWR0CsksCxNZeSdX2UKGgGaAloD0MIxxFr8WmfcECUhpRSlGgVS7BoFkdArJLV9v0h/3V9lChoBmgJaA9DCFq5F5jV/nFAlIaUUpRoFUvbaBZHQKyS9Hvttyh1fZQoaAZoCWgPQwhA3xYsFUZxQJSGlFKUaBVLnGgWR0CskyTKkl/pdX2UKGgGaAloD0MIETgSaDCMcUCUhpRSlGgVS8loFkdArJM7uF6Av3V9lChoBmgJaA9DCG40gLcAtXJAlIaUUpRoFUvRaBZHQKyTlyPMjeN1fZQoaAZoCWgPQwiFJoklpRZxQJSGlFKUaBVL6GgWR0Csk673Gn4xdX2UKGgGaAloD0MI0UGXcOibckCUhpRSlGgVS9ZoFkdArJOu63AmA3V9lChoBmgJaA9DCFT+tbyy4XBAlIaUUpRoFUvTaBZHQKyTudkrf+F1fZQoaAZoCWgPQwg+k/3z9I1xQJSGlFKUaBVLvmgWR0Csk9jwH7gsdX2UKGgGaAloD0MIAOFDiZZ0TECUhpRSlGgVS5FoFkdArJQVRekYXXV9lChoBmgJaA9DCDklICah5HJAlIaUUpRoFUv6aBZHQKyUV/SYw7F1fZQoaAZoCWgPQwjJy5pYYE9kQJSGlFKUaBVN6ANoFkdArJRqgM+eOHV9lChoBmgJaA9DCAjpKXKIsXJAlIaUUpRoFUvyaBZHQKyUa+FlCkZ1fZQoaAZoCWgPQwipZ0Eo7/1vQJSGlFKUaBVLtmgWR0CslHxUFSsKdX2UKGgGaAloD0MIngjiPFxNcUCUhpRSlGgVS7NoFkdArJSlKK5083V9lChoBmgJaA9DCF6fOetTs3FAlIaUUpRoFUvaaBZHQKyVHZyMkyF1fZQoaAZoCWgPQwiySumZHqByQJSGlFKUaBVLwmgWR0CslSyvC/GmdX2UKGgGaAloD0MIvTWwVcKrcUCUhpRSlGgVTQUBaBZHQKyVQTufEn91fZQoaAZoCWgPQwgmUwWjUvhyQJSGlFKUaBVLz2gWR0CslWN9H+ZPdX2UKGgGaAloD0MIHuIftjRcckCUhpRSlGgVS8ZoFkdArJWhuGbkO3V9lChoBmgJaA9DCF2mJsHbNHFAlIaUUpRoFU0CAWgWR0CslaUFbFCLdX2UKGgGaAloD0MITpmbb8QgcUCUhpRSlGgVS8toFkdArJXCi0v4/XV9lChoBmgJaA9DCNe+gF64PHBAlIaUUpRoFUvAaBZHQKyV0GATZg51fZQoaAZoCWgPQwhoHyv4LYBxQJSGlFKUaBVL02gWR0Csldmkep4sdX2UKGgGaAloD0MInMO12kMBcUCUhpRSlGgVS9RoFkdArJXmjua4MHV9lChoBmgJaA9DCObJNQWyI3FAlIaUUpRoFUupaBZHQKyWDUDMeOp1fZQoaAZoCWgPQwgs1Jrm3VxzQJSGlFKUaBVLx2gWR0CslhwY+B6KdX2UKGgGaAloD0MIoz808+QWcECUhpRSlGgVS8NoFkdArJZf4REncHV9lChoBmgJaA9DCPEr1nCRRHNAlIaUUpRoFUvNaBZHQKyWefV7QcB1fZQoaAZoCWgPQwh24nK8wmtyQJSGlFKUaBVL3WgWR0Cslrcan753dX2UKGgGaAloD0MI1Xsqp72BbkCUhpRSlGgVS7xoFkdArJcgAMlTnHV9lChoBmgJaA9DCDIiUWjZQ3JAlIaUUpRoFUvHaBZHQKyXMad+Xqt1fZQoaAZoCWgPQwgbvoV144hzQJSGlFKUaBVNAgFoFkdArJdWSntOVXV9lChoBmgJaA9DCP/PYb68bXFAlIaUUpRoFUvGaBZHQKyXU99tuUF1fZQoaAZoCWgPQwjJIHcRJuRxQJSGlFKUaBVL12gWR0Csl6c6mwaBdX2UKGgGaAloD0MIyVUsftM4ckCUhpRSlGgVS7loFkdArJfPied073V9lChoBmgJaA9DCJ8+An84ZHBAlIaUUpRoFUvOaBZHQKyXz8rqdH51fZQoaAZoCWgPQwici7/tSVJyQJSGlFKUaBVL2WgWR0Csl+8Z9/jLdX2UKGgGaAloD0MII2sNpTZpcECUhpRSlGgVS9FoFkdArJf5HqeK9HV9lChoBmgJaA9DCMH+69z0iHFAlIaUUpRoFUvRaBZHQKyYBM23rlh1fZQoaAZoCWgPQwjaxp+oLGhzQJSGlFKUaBVLzGgWR0CsmAxm9QGfdX2UKGgGaAloD0MIoWRyaic1ckCUhpRSlGgVS9VoFkdArJg/jCHh0nV9lChoBmgJaA9DCB6n6Eiu13FAlIaUUpRoFUvcaBZHQKyYXZUT+Nt1fZQoaAZoCWgPQwgX9N4YghFyQJSGlFKUaBVLtmgWR0CsmJFBIFvAdX2UKGgGaAloD0MItvRoqqdpcUCUhpRSlGgVS+NoFkdArJivz+WGAXV9lChoBmgJaA9DCDTz5JrCnnBAlIaUUpRoFUvjaBZHQKyYx3u/k/91fZQoaAZoCWgPQwhsXtVZLUVxQJSGlFKUaBVLx2gWR0CsmRYOUdJbdX2UKGgGaAloD0MIqDrkZnhGcUCUhpRSlGgVS81oFkdArJk0ihWYGHV9lChoBmgJaA9DCHh+UYL+LXNAlIaUUpRoFUvPaBZHQKyZWoqCpWF1fZQoaAZoCWgPQwiRYRVv5I5vQJSGlFKUaBVLtmgWR0CsmWW/rSmZdX2UKGgGaAloD0MI0m2JXLBFcUCUhpRSlGgVS6hoFkdArJln6MzdlHV9lChoBmgJaA9DCA+cM6K0KXBAlIaUUpRoFUvVaBZHQKyZZyauwHJ1fZQoaAZoCWgPQwjFc7aAUE9vQJSGlFKUaBVLvmgWR0CsmZoH9m6HdX2UKGgGaAloD0MI5IQJo9lVcUCUhpRSlGgVS7hoFkdArJm8spXp4nV9lChoBmgJaA9DCOVDUDV6knJAlIaUUpRoFUvfaBZHQKyaFLeQ+2V1fZQoaAZoCWgPQwigpSvYhrdxQJSGlFKUaBVL7mgWR0CsmjH4O+ZgdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 1360,
|
80 |
+
"n_steps": 920,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 20,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da0484e56c6c7395459e519d83a5a77e6083bff781014c2e646419d54f57a93b
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fce83210dd9876a36bdf8ae022eae4b5b55b85259be3e3570743aace0cded519
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (218 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 300.194444294615, "std_reward": 12.741725299213353, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T13:16:04.686580"}
|