|
model: |
|
base_learning_rate: 4.5e-6 |
|
target: ldm.models.autoencoder.AutoencoderKL |
|
params: |
|
monitor: "val/rec_loss" |
|
embed_dim: 16 |
|
lossconfig: |
|
target: ldm.modules.losses.LPIPSWithDiscriminator |
|
params: |
|
disc_start: 50001 |
|
kl_weight: 0.000001 |
|
disc_weight: 0.5 |
|
|
|
ddconfig: |
|
double_z: True |
|
z_channels: 16 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: [ 1,1,2,2,4] |
|
num_res_blocks: 2 |
|
attn_resolutions: [16] |
|
dropout: 0.0 |
|
|
|
|
|
data: |
|
target: main.DataModuleFromConfig |
|
params: |
|
batch_size: 12 |
|
wrap: True |
|
train: |
|
target: ldm.data.imagenet.ImageNetSRTrain |
|
params: |
|
size: 256 |
|
degradation: pil_nearest |
|
validation: |
|
target: ldm.data.imagenet.ImageNetSRValidation |
|
params: |
|
size: 256 |
|
degradation: pil_nearest |
|
|
|
lightning: |
|
callbacks: |
|
image_logger: |
|
target: main.ImageLogger |
|
params: |
|
batch_frequency: 1000 |
|
max_images: 8 |
|
increase_log_steps: True |
|
|
|
trainer: |
|
benchmark: True |
|
accumulate_grad_batches: 2 |
|
|