Safetensors
leaderboard-pr-bot commited on
Commit
22c4e69
1 Parent(s): 5fc7d7b

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +118 -2
README.md CHANGED
@@ -1,10 +1,113 @@
1
  ---
2
  license: apache-2.0
3
- base_model: mistralai/Mistral-7B-v0.1
4
  datasets:
5
  - abacusai/MetaMathFewshot
6
  - shahules786/orca-chat
7
  - anon8231489123/ShareGPT_Vicuna_unfiltered
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  ```json
@@ -55,4 +158,17 @@ Orca, ShareGPT). Here are the results:
55
 
56
  This ablation compares the base model (Mistral 7B), expansion using the layer map described here and fine tunes of a lora `r=12`
57
  on the base model and `r=8` (to match trainable params). The ablation demonstrates quite clearly that fine tuning the expanded
58
- model leads to a significant improvement in metrics even with the same number of trainable parameters (and training steps).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
 
3
  datasets:
4
  - abacusai/MetaMathFewshot
5
  - shahules786/orca-chat
6
  - anon8231489123/ShareGPT_Vicuna_unfiltered
7
+ base_model: mistralai/Mistral-7B-v0.1
8
+ model-index:
9
+ - name: Fewshot-Metamath-OrcaVicuna-Mistral-10B
10
+ results:
11
+ - task:
12
+ type: text-generation
13
+ name: Text Generation
14
+ dataset:
15
+ name: AI2 Reasoning Challenge (25-Shot)
16
+ type: ai2_arc
17
+ config: ARC-Challenge
18
+ split: test
19
+ args:
20
+ num_few_shot: 25
21
+ metrics:
22
+ - type: acc_norm
23
+ value: 56.4
24
+ name: normalized accuracy
25
+ source:
26
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B
27
+ name: Open LLM Leaderboard
28
+ - task:
29
+ type: text-generation
30
+ name: Text Generation
31
+ dataset:
32
+ name: HellaSwag (10-Shot)
33
+ type: hellaswag
34
+ split: validation
35
+ args:
36
+ num_few_shot: 10
37
+ metrics:
38
+ - type: acc_norm
39
+ value: 78.12
40
+ name: normalized accuracy
41
+ source:
42
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B
43
+ name: Open LLM Leaderboard
44
+ - task:
45
+ type: text-generation
46
+ name: Text Generation
47
+ dataset:
48
+ name: MMLU (5-Shot)
49
+ type: cais/mmlu
50
+ config: all
51
+ split: test
52
+ args:
53
+ num_few_shot: 5
54
+ metrics:
55
+ - type: acc
56
+ value: 59.52
57
+ name: accuracy
58
+ source:
59
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B
60
+ name: Open LLM Leaderboard
61
+ - task:
62
+ type: text-generation
63
+ name: Text Generation
64
+ dataset:
65
+ name: TruthfulQA (0-shot)
66
+ type: truthful_qa
67
+ config: multiple_choice
68
+ split: validation
69
+ args:
70
+ num_few_shot: 0
71
+ metrics:
72
+ - type: mc2
73
+ value: 50.98
74
+ source:
75
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B
76
+ name: Open LLM Leaderboard
77
+ - task:
78
+ type: text-generation
79
+ name: Text Generation
80
+ dataset:
81
+ name: Winogrande (5-shot)
82
+ type: winogrande
83
+ config: winogrande_xl
84
+ split: validation
85
+ args:
86
+ num_few_shot: 5
87
+ metrics:
88
+ - type: acc
89
+ value: 76.48
90
+ name: accuracy
91
+ source:
92
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B
93
+ name: Open LLM Leaderboard
94
+ - task:
95
+ type: text-generation
96
+ name: Text Generation
97
+ dataset:
98
+ name: GSM8k (5-shot)
99
+ type: gsm8k
100
+ config: main
101
+ split: test
102
+ args:
103
+ num_few_shot: 5
104
+ metrics:
105
+ - type: acc
106
+ value: 13.27
107
+ name: accuracy
108
+ source:
109
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abacusai/Fewshot-Metamath-OrcaVicuna-Mistral-10B
110
+ name: Open LLM Leaderboard
111
  ---
112
 
113
  ```json
 
158
 
159
  This ablation compares the base model (Mistral 7B), expansion using the layer map described here and fine tunes of a lora `r=12`
160
  on the base model and `r=8` (to match trainable params). The ablation demonstrates quite clearly that fine tuning the expanded
161
+ model leads to a significant improvement in metrics even with the same number of trainable parameters (and training steps).
162
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
163
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__Fewshot-Metamath-OrcaVicuna-Mistral-10B)
164
+
165
+ | Metric |Value|
166
+ |---------------------------------|----:|
167
+ |Avg. |55.79|
168
+ |AI2 Reasoning Challenge (25-Shot)|56.40|
169
+ |HellaSwag (10-Shot) |78.12|
170
+ |MMLU (5-Shot) |59.52|
171
+ |TruthfulQA (0-shot) |50.98|
172
+ |Winogrande (5-shot) |76.48|
173
+ |GSM8k (5-shot) |13.27|
174
+