aashay96 commited on
Commit
fa35087
1 Parent(s): 57ba08f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -172.12 +/- 61.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f758baffa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f758baffb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f758baffb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f758baffc20>", "_build": "<function ActorCriticPolicy._build at 0x7f758baffcb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f758baffd40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f758baffdd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f758baffe60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f758baffef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f758bafff80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f758bb05050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f758bb4d870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669798188550363667, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIbHKj8OVec9ZWpvP7fImr/qmfu846DnPgAAAAAAAAAA2tzpPRs2Xj+9Bou7qXNev35Dbb4Od0a+AAAAAAAAAABapsq98eSpP08AOb/Mg5e+hwWMPdJDVD0AAAAAAAAAAGYd6byEo4o/RDu0vXZXFb9ZQku91kbfPQAAAAAAAAAArf0OPteoZTy80Zg+juqsvyYWhL4vSLK+AACAPwAAAAAaPeg9vK6PP9QeCD+qNzS/9yvmvGpefbsAAAAAAAAAADMEtT2ueOg+1pC+vQ/sg7+G8sw+LaBnPgAAAAAAAAAANRDHvilOMT0/mY+9ewSjv+Gfyr61EVA+AACAPwAAAACaKXa7Ki20P67Mwr5s1RW+ateOO+9/sD0AAAAAAAAAAHNY872Mmoc/XRM0Pi7bFb8iAB2/OvqivgAAAAAAAAAAjRf4PacOlz9/MA8/HpkJv5HtQr0mOxO9AAAAAAAAAAAg+ja/QSsJvbi7bbsiqCY5OqcYPioI3joAAIA/AACAP2awFD15xa0/Uj4DP2bBy77ELCu9mMWgvQAAAAAAAAAAs1yNvZKotD9MSD6+YkuwvvZNHz5rpUa9AAAAAAAAAABzXx4+KeItPShn0T2+zrW/F7WePp4ZpzwAAAAAAAAAAGaX1LwRiUc/TibPvdx1hL/qAxc+uTKLvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0v4HWKsIXsCUhpRSlIwBbJRLRIwBdJRHQIMVIHRkVet1fZQoaAZoCWgPQwhwzR39L1JVwJSGlFKUaBVLQWgWR0CDFVD8+A3DdX2UKGgGaAloD0MISzs1lxvbasCUhpRSlGgVS3ZoFkdAgxVh/RVp9XV9lChoBmgJaA9DCIj2sYJfdGvAlIaUUpRoFUt2aBZHQIMVoKc/dIp1fZQoaAZoCWgPQwi5Nem2RBdUwJSGlFKUaBVLUGgWR0CDFb9OymhudX2UKGgGaAloD0MI1bDfE+s+YMCUhpRSlGgVS0NoFkdAgxYLDAJswnV9lChoBmgJaA9DCDhLyXKS3m7AlIaUUpRoFUtgaBZHQIMWI2Ifr8l1fZQoaAZoCWgPQwindoaprfxjwJSGlFKUaBVLXmgWR0CDFkWpIczZdX2UKGgGaAloD0MIEM8SZAR0UcCUhpRSlGgVS01oFkdAgxZdGy5ZsHV9lChoBmgJaA9DCBXEQNe+5mXAlIaUUpRoFUtaaBZHQIMWt36hxo91fZQoaAZoCWgPQwjmdFlMbJNWwJSGlFKUaBVLTWgWR0CDFzqHoHLSdX2UKGgGaAloD0MIKuPfZ1xdXMCUhpRSlGgVS4JoFkdAgxebmdRR/HV9lChoBmgJaA9DCN7IPPIHW1jAlIaUUpRoFUtAaBZHQIMXsSM98qp1fZQoaAZoCWgPQwiPb+8a9AVNwJSGlFKUaBVLRWgWR0CDF/PUKArhdX2UKGgGaAloD0MIOJ86VinUVcCUhpRSlGgVSz5oFkdAgxhhxHXmNnV9lChoBmgJaA9DCMgljjwQj1/AlIaUUpRoFUtkaBZHQIMYlGLDQ7d1fZQoaAZoCWgPQwhq39xfvftpwJSGlFKUaBVLb2gWR0CDGK/3WWhRdX2UKGgGaAloD0MIs5YC0n53YsCUhpRSlGgVS1BoFkdAgxitZFG5MHV9lChoBmgJaA9DCN4DdF/Op1fAlIaUUpRoFUs/aBZHQIMYy7VawEB1fZQoaAZoCWgPQwj99+C1S2ZfwJSGlFKUaBVLV2gWR0CDGQ/yoXKsdX2UKGgGaAloD0MI8x5nmrBmYcCUhpRSlGgVS2doFkdAgxkMPatcOnV9lChoBmgJaA9DCHWuKCWEnWrAlIaUUpRoFUt4aBZHQIMZOykbgj11fZQoaAZoCWgPQwhat0HttwdfwJSGlFKUaBVLVWgWR0CDGWrsjVx0dX2UKGgGaAloD0MIyqfHtgwfVMCUhpRSlGgVS2doFkdAgxo71RLsbHV9lChoBmgJaA9DCCridJIt/GHAlIaUUpRoFUtKaBZHQIMar26ClJp1fZQoaAZoCWgPQwj5vrhUpXpswJSGlFKUaBVLZ2gWR0CDGt0PpY9xdX2UKGgGaAloD0MIVOQQcXM+S8CUhpRSlGgVS01oFkdAgxsTVDrquHV9lChoBmgJaA9DCFJF8SprRlvAlIaUUpRoFUtmaBZHQIMbXy3CsOp1fZQoaAZoCWgPQwh5Wn7gKnNWwJSGlFKUaBVLS2gWR0CDG7cxj8UFdX2UKGgGaAloD0MIMEj6tIoEUMCUhpRSlGgVSz9oFkdAgxvJ4KQaJnV9lChoBmgJaA9DCA0Zj1IJPWHAlIaUUpRoFUtgaBZHQIMcUelsP8R1fZQoaAZoCWgPQwiq1OyBVvFSwJSGlFKUaBVLUGgWR0CDHFdu5z5odX2UKGgGaAloD0MIHcnlPySRYMCUhpRSlGgVS11oFkdAgxyFnRLK3nV9lChoBmgJaA9DCFnfwORGIFPAlIaUUpRoFUtTaBZHQIMcgdCE6DJ1fZQoaAZoCWgPQwg3/dmPFHdnwJSGlFKUaBVLeGgWR0CDHIiC8OCodX2UKGgGaAloD0MIgSBAho4eWcCUhpRSlGgVS05oFkdAgxyq4x1xKnV9lChoBmgJaA9DCHocBvNXdVbAlIaUUpRoFUteaBZHQIMcsUM5OrR1fZQoaAZoCWgPQwh0CvKzEb5iwJSGlFKUaBVLbWgWR0CDHScI7eVLdX2UKGgGaAloD0MIKxVUVP2QXMCUhpRSlGgVS1JoFkdAgx5SYoiLVHV9lChoBmgJaA9DCDZ39L9cVlfAlIaUUpRoFUthaBZHQIMeZl8PWhB1fZQoaAZoCWgPQwhITiZuFcRUwJSGlFKUaBVLWGgWR0CDHmpc5bQkdX2UKGgGaAloD0MIYocx6e/xXMCUhpRSlGgVS0FoFkdAgx6eHrQgLnV9lChoBmgJaA9DCORqZFdalV3AlIaUUpRoFUtTaBZHQIMfYCCBf8d1fZQoaAZoCWgPQwhn0TsV8O92wJSGlFKUaBVLY2gWR0CDH7Fb3XZodX2UKGgGaAloD0MIGsHG9e8MYcCUhpRSlGgVS0hoFkdAgx+6MR6F/XV9lChoBmgJaA9DCExr09hezVzAlIaUUpRoFUtFaBZHQIMfxzNliBp1fZQoaAZoCWgPQwisqpffaWNWwJSGlFKUaBVLa2gWR0CDH8c0cfeUdX2UKGgGaAloD0MIQgjIl1BhRMCUhpRSlGgVSz1oFkdAgx/dE1EVnHV9lChoBmgJaA9DCKclVkYjxFjAlIaUUpRoFUtTaBZHQIMgDO7g88t1fZQoaAZoCWgPQwjequtQTStYwJSGlFKUaBVLWmgWR0CDIFNEgGKRdX2UKGgGaAloD0MIcJUnEHbmW8CUhpRSlGgVS1hoFkdAgyBs4ku6E3V9lChoBmgJaA9DCCwtI/WeUVvAlIaUUpRoFUtZaBZHQIMgm2VmjCZ1fZQoaAZoCWgPQwgHXi13ZshMwJSGlFKUaBVLfGgWR0CDIg57w8W9dX2UKGgGaAloD0MIoE/kSVJ9YsCUhpRSlGgVS15oFkdAgyLQ8W9DhXV9lChoBmgJaA9DCOG3IcZrK1DAlIaUUpRoFUtpaBZHQIMjSk9ECvJ1fZQoaAZoCWgPQwikGYums8xbwJSGlFKUaBVLbWgWR0CDI5EUj9n9dX2UKGgGaAloD0MIOe//44RqXcCUhpRSlGgVS0poFkdAgyObD2rXDnV9lChoBmgJaA9DCERssHCSzkrAlIaUUpRoFUttaBZHQIMj1To+wC91fZQoaAZoCWgPQwi+Sj52F4VcwJSGlFKUaBVLTGgWR0CDJAhNdqtYdX2UKGgGaAloD0MIuDtrtx2Hc8CUhpRSlGgVS3RoFkdAgyVv1DjR2XV9lChoBmgJaA9DCEm9p3Lax2HAlIaUUpRoFUt1aBZHQIMlf/aQFLZ1fZQoaAZoCWgPQwgg7upVJO1zwJSGlFKUaBVLfGgWR0CDJckFfReDdX2UKGgGaAloD0MIkV8/xAb4WsCUhpRSlGgVS4NoFkdAgyXPwd8zAXV9lChoBmgJaA9DCABWR450Uj/AlIaUUpRoFUuAaBZHQIMmCkIomXx1fZQoaAZoCWgPQwiTHoZWJylYwJSGlFKUaBVLTmgWR0CDJh99c8kldX2UKGgGaAloD0MIYY4ev7d5WsCUhpRSlGgVS4BoFkdAgyYvRRdhRnV9lChoBmgJaA9DCEZ9kjtsej3AlIaUUpRoFUtvaBZHQIMmONHYpUh1fZQoaAZoCWgPQwh8tg4O9iVUwJSGlFKUaBVLfGgWR0CDJpjZL7GedX2UKGgGaAloD0MInBpoPud5WcCUhpRSlGgVS0loFkdAgyc6ij+Jg3V9lChoBmgJaA9DCI9tGXCW+VPAlIaUUpRoFUtLaBZHQIMnUH+qBEt1fZQoaAZoCWgPQwixMa8jDslQwJSGlFKUaBVLTGgWR0CDJ5Ev0yxidX2UKGgGaAloD0MIZmg8EUT8YcCUhpRSlGgVS2loFkdAgyh3S8an8HV9lChoBmgJaA9DCGsOEMzRrVrAlIaUUpRoFUtBaBZHQIMoj2pQ1rJ1fZQoaAZoCWgPQwip2m6CbzJZwJSGlFKUaBVLeWgWR0CDKMzQ/oq1dX2UKGgGaAloD0MI5BQdyeXRVsCUhpRSlGgVS3ZoFkdAgynSquKXOXV9lChoBmgJaA9DCAuz0M5pCFrAlIaUUpRoFUtUaBZHQIMp2Q6p5u91fZQoaAZoCWgPQwgrUIvBwyRZwJSGlFKUaBVLUWgWR0CDKfmwJPZadX2UKGgGaAloD0MIbO19qorIYMCUhpRSlGgVS2JoFkdAgypFDOTq0XV9lChoBmgJaA9DCAcoDTUKUFzAlIaUUpRoFUtlaBZHQIMq9VtGd7R1fZQoaAZoCWgPQwi1w1+TNcZawJSGlFKUaBVLTWgWR0CDKxfw7T2GdX2UKGgGaAloD0MIym/RyVJlUsCUhpRSlGgVS2ZoFkdAgysrrX18LXV9lChoBmgJaA9DCGSuDKoNm1nAlIaUUpRoFUt2aBZHQIMsAqG1x851fZQoaAZoCWgPQwiZ8iGoGhJVwJSGlFKUaBVLdGgWR0CDLFyGSIP9dX2UKGgGaAloD0MIVKnZA61GWcCUhpRSlGgVS2RoFkdAgyxcM3IdVHV9lChoBmgJaA9DCFu21hcJ53XAlIaUUpRoFUuOaBZHQIMs4LThHb11fZQoaAZoCWgPQwjl0CLb+XdfwJSGlFKUaBVLU2gWR0CDLRqynk1edX2UKGgGaAloD0MIxxNBnIfCUcCUhpRSlGgVS0FoFkdAgy1jVx0dR3V9lChoBmgJaA9DCJc6yOvBFVvAlIaUUpRoFUtgaBZHQIMtbnq3VkN1fZQoaAZoCWgPQwjZ7h6g+zxVwJSGlFKUaBVLYWgWR0CDLZKwIMScdX2UKGgGaAloD0MIaOvgYG9QXsCUhpRSlGgVS3hoFkdAgy2yCvovBnV9lChoBmgJaA9DCKuX32kyyl/AlIaUUpRoFUtRaBZHQIMuD8R+SbJ1fZQoaAZoCWgPQwh8J2a9GM9XwJSGlFKUaBVLQ2gWR0CDLpNwiqyXdX2UKGgGaAloD0MIjqz8MhgtWMCUhpRSlGgVS0ZoFkdAgy6O/1xsEnV9lChoBmgJaA9DCF2HakqyllnAlIaUUpRoFUthaBZHQIMvQkZ75VR1fZQoaAZoCWgPQwheDrvvGORXwJSGlFKUaBVLdGgWR0CDL8z6ab4KdX2UKGgGaAloD0MIKSDtf4C+WMCUhpRSlGgVS0loFkdAgzDPkJa7mXV9lChoBmgJaA9DCMn/5O/eI1XAlIaUUpRoFUtGaBZHQIMw8rkKeCl1fZQoaAZoCWgPQwj6sx8pIn5ZwJSGlFKUaBVLYGgWR0CDMU1ndweedX2UKGgGaAloD0MIoRNCB13yWcCUhpRSlGgVS39oFkdAgzGlDv3JxXV9lChoBmgJaA9DCI7nM6DeDVPAlIaUUpRoFUtYaBZHQIMx8/r0J4V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
deep-rl-1-lunarlanderv2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b9819046a4cb3a0049aef4a2a7aecf93516c3d16f3dfaa72e77493348ee10bf
3
+ size 146570
deep-rl-1-lunarlanderv2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
deep-rl-1-lunarlanderv2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f758baffa70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f758baffb00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f758baffb90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f758baffc20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f758baffcb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f758baffd40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f758baffdd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f758baffe60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f758baffef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f758bafff80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f758bb05050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f758bb4d870>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 65536,
46
+ "_total_timesteps": 50000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1669798188550363667,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIbHKj8OVec9ZWpvP7fImr/qmfu846DnPgAAAAAAAAAA2tzpPRs2Xj+9Bou7qXNev35Dbb4Od0a+AAAAAAAAAABapsq98eSpP08AOb/Mg5e+hwWMPdJDVD0AAAAAAAAAAGYd6byEo4o/RDu0vXZXFb9ZQku91kbfPQAAAAAAAAAArf0OPteoZTy80Zg+juqsvyYWhL4vSLK+AACAPwAAAAAaPeg9vK6PP9QeCD+qNzS/9yvmvGpefbsAAAAAAAAAADMEtT2ueOg+1pC+vQ/sg7+G8sw+LaBnPgAAAAAAAAAANRDHvilOMT0/mY+9ewSjv+Gfyr61EVA+AACAPwAAAACaKXa7Ki20P67Mwr5s1RW+ateOO+9/sD0AAAAAAAAAAHNY872Mmoc/XRM0Pi7bFb8iAB2/OvqivgAAAAAAAAAAjRf4PacOlz9/MA8/HpkJv5HtQr0mOxO9AAAAAAAAAAAg+ja/QSsJvbi7bbsiqCY5OqcYPioI3joAAIA/AACAP2awFD15xa0/Uj4DP2bBy77ELCu9mMWgvQAAAAAAAAAAs1yNvZKotD9MSD6+YkuwvvZNHz5rpUa9AAAAAAAAAABzXx4+KeItPShn0T2+zrW/F7WePp4ZpzwAAAAAAAAAAGaX1LwRiUc/TibPvdx1hL/qAxc+uTKLvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.3107200000000001,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0v4HWKsIXsCUhpRSlIwBbJRLRIwBdJRHQIMVIHRkVet1fZQoaAZoCWgPQwhwzR39L1JVwJSGlFKUaBVLQWgWR0CDFVD8+A3DdX2UKGgGaAloD0MISzs1lxvbasCUhpRSlGgVS3ZoFkdAgxVh/RVp9XV9lChoBmgJaA9DCIj2sYJfdGvAlIaUUpRoFUt2aBZHQIMVoKc/dIp1fZQoaAZoCWgPQwi5Nem2RBdUwJSGlFKUaBVLUGgWR0CDFb9OymhudX2UKGgGaAloD0MI1bDfE+s+YMCUhpRSlGgVS0NoFkdAgxYLDAJswnV9lChoBmgJaA9DCDhLyXKS3m7AlIaUUpRoFUtgaBZHQIMWI2Ifr8l1fZQoaAZoCWgPQwindoaprfxjwJSGlFKUaBVLXmgWR0CDFkWpIczZdX2UKGgGaAloD0MIEM8SZAR0UcCUhpRSlGgVS01oFkdAgxZdGy5ZsHV9lChoBmgJaA9DCBXEQNe+5mXAlIaUUpRoFUtaaBZHQIMWt36hxo91fZQoaAZoCWgPQwjmdFlMbJNWwJSGlFKUaBVLTWgWR0CDFzqHoHLSdX2UKGgGaAloD0MIKuPfZ1xdXMCUhpRSlGgVS4JoFkdAgxebmdRR/HV9lChoBmgJaA9DCN7IPPIHW1jAlIaUUpRoFUtAaBZHQIMXsSM98qp1fZQoaAZoCWgPQwiPb+8a9AVNwJSGlFKUaBVLRWgWR0CDF/PUKArhdX2UKGgGaAloD0MIOJ86VinUVcCUhpRSlGgVSz5oFkdAgxhhxHXmNnV9lChoBmgJaA9DCMgljjwQj1/AlIaUUpRoFUtkaBZHQIMYlGLDQ7d1fZQoaAZoCWgPQwhq39xfvftpwJSGlFKUaBVLb2gWR0CDGK/3WWhRdX2UKGgGaAloD0MIs5YC0n53YsCUhpRSlGgVS1BoFkdAgxitZFG5MHV9lChoBmgJaA9DCN4DdF/Op1fAlIaUUpRoFUs/aBZHQIMYy7VawEB1fZQoaAZoCWgPQwj99+C1S2ZfwJSGlFKUaBVLV2gWR0CDGQ/yoXKsdX2UKGgGaAloD0MI8x5nmrBmYcCUhpRSlGgVS2doFkdAgxkMPatcOnV9lChoBmgJaA9DCHWuKCWEnWrAlIaUUpRoFUt4aBZHQIMZOykbgj11fZQoaAZoCWgPQwhat0HttwdfwJSGlFKUaBVLVWgWR0CDGWrsjVx0dX2UKGgGaAloD0MIyqfHtgwfVMCUhpRSlGgVS2doFkdAgxo71RLsbHV9lChoBmgJaA9DCCridJIt/GHAlIaUUpRoFUtKaBZHQIMar26ClJp1fZQoaAZoCWgPQwj5vrhUpXpswJSGlFKUaBVLZ2gWR0CDGt0PpY9xdX2UKGgGaAloD0MIVOQQcXM+S8CUhpRSlGgVS01oFkdAgxsTVDrquHV9lChoBmgJaA9DCFJF8SprRlvAlIaUUpRoFUtmaBZHQIMbXy3CsOp1fZQoaAZoCWgPQwh5Wn7gKnNWwJSGlFKUaBVLS2gWR0CDG7cxj8UFdX2UKGgGaAloD0MIMEj6tIoEUMCUhpRSlGgVSz9oFkdAgxvJ4KQaJnV9lChoBmgJaA9DCA0Zj1IJPWHAlIaUUpRoFUtgaBZHQIMcUelsP8R1fZQoaAZoCWgPQwiq1OyBVvFSwJSGlFKUaBVLUGgWR0CDHFdu5z5odX2UKGgGaAloD0MIHcnlPySRYMCUhpRSlGgVS11oFkdAgxyFnRLK3nV9lChoBmgJaA9DCFnfwORGIFPAlIaUUpRoFUtTaBZHQIMcgdCE6DJ1fZQoaAZoCWgPQwg3/dmPFHdnwJSGlFKUaBVLeGgWR0CDHIiC8OCodX2UKGgGaAloD0MIgSBAho4eWcCUhpRSlGgVS05oFkdAgxyq4x1xKnV9lChoBmgJaA9DCHocBvNXdVbAlIaUUpRoFUteaBZHQIMcsUM5OrR1fZQoaAZoCWgPQwh0CvKzEb5iwJSGlFKUaBVLbWgWR0CDHScI7eVLdX2UKGgGaAloD0MIKxVUVP2QXMCUhpRSlGgVS1JoFkdAgx5SYoiLVHV9lChoBmgJaA9DCDZ39L9cVlfAlIaUUpRoFUthaBZHQIMeZl8PWhB1fZQoaAZoCWgPQwhITiZuFcRUwJSGlFKUaBVLWGgWR0CDHmpc5bQkdX2UKGgGaAloD0MIYocx6e/xXMCUhpRSlGgVS0FoFkdAgx6eHrQgLnV9lChoBmgJaA9DCORqZFdalV3AlIaUUpRoFUtTaBZHQIMfYCCBf8d1fZQoaAZoCWgPQwhn0TsV8O92wJSGlFKUaBVLY2gWR0CDH7Fb3XZodX2UKGgGaAloD0MIGsHG9e8MYcCUhpRSlGgVS0hoFkdAgx+6MR6F/XV9lChoBmgJaA9DCExr09hezVzAlIaUUpRoFUtFaBZHQIMfxzNliBp1fZQoaAZoCWgPQwisqpffaWNWwJSGlFKUaBVLa2gWR0CDH8c0cfeUdX2UKGgGaAloD0MIQgjIl1BhRMCUhpRSlGgVSz1oFkdAgx/dE1EVnHV9lChoBmgJaA9DCKclVkYjxFjAlIaUUpRoFUtTaBZHQIMgDO7g88t1fZQoaAZoCWgPQwjequtQTStYwJSGlFKUaBVLWmgWR0CDIFNEgGKRdX2UKGgGaAloD0MIcJUnEHbmW8CUhpRSlGgVS1hoFkdAgyBs4ku6E3V9lChoBmgJaA9DCCwtI/WeUVvAlIaUUpRoFUtZaBZHQIMgm2VmjCZ1fZQoaAZoCWgPQwgHXi13ZshMwJSGlFKUaBVLfGgWR0CDIg57w8W9dX2UKGgGaAloD0MIoE/kSVJ9YsCUhpRSlGgVS15oFkdAgyLQ8W9DhXV9lChoBmgJaA9DCOG3IcZrK1DAlIaUUpRoFUtpaBZHQIMjSk9ECvJ1fZQoaAZoCWgPQwikGYums8xbwJSGlFKUaBVLbWgWR0CDI5EUj9n9dX2UKGgGaAloD0MIOe//44RqXcCUhpRSlGgVS0poFkdAgyObD2rXDnV9lChoBmgJaA9DCERssHCSzkrAlIaUUpRoFUttaBZHQIMj1To+wC91fZQoaAZoCWgPQwi+Sj52F4VcwJSGlFKUaBVLTGgWR0CDJAhNdqtYdX2UKGgGaAloD0MIuDtrtx2Hc8CUhpRSlGgVS3RoFkdAgyVv1DjR2XV9lChoBmgJaA9DCEm9p3Lax2HAlIaUUpRoFUt1aBZHQIMlf/aQFLZ1fZQoaAZoCWgPQwgg7upVJO1zwJSGlFKUaBVLfGgWR0CDJckFfReDdX2UKGgGaAloD0MIkV8/xAb4WsCUhpRSlGgVS4NoFkdAgyXPwd8zAXV9lChoBmgJaA9DCABWR450Uj/AlIaUUpRoFUuAaBZHQIMmCkIomXx1fZQoaAZoCWgPQwiTHoZWJylYwJSGlFKUaBVLTmgWR0CDJh99c8kldX2UKGgGaAloD0MIYY4ev7d5WsCUhpRSlGgVS4BoFkdAgyYvRRdhRnV9lChoBmgJaA9DCEZ9kjtsej3AlIaUUpRoFUtvaBZHQIMmONHYpUh1fZQoaAZoCWgPQwh8tg4O9iVUwJSGlFKUaBVLfGgWR0CDJpjZL7GedX2UKGgGaAloD0MInBpoPud5WcCUhpRSlGgVS0loFkdAgyc6ij+Jg3V9lChoBmgJaA9DCI9tGXCW+VPAlIaUUpRoFUtLaBZHQIMnUH+qBEt1fZQoaAZoCWgPQwixMa8jDslQwJSGlFKUaBVLTGgWR0CDJ5Ev0yxidX2UKGgGaAloD0MIZmg8EUT8YcCUhpRSlGgVS2loFkdAgyh3S8an8HV9lChoBmgJaA9DCGsOEMzRrVrAlIaUUpRoFUtBaBZHQIMoj2pQ1rJ1fZQoaAZoCWgPQwip2m6CbzJZwJSGlFKUaBVLeWgWR0CDKMzQ/oq1dX2UKGgGaAloD0MI5BQdyeXRVsCUhpRSlGgVS3ZoFkdAgynSquKXOXV9lChoBmgJaA9DCAuz0M5pCFrAlIaUUpRoFUtUaBZHQIMp2Q6p5u91fZQoaAZoCWgPQwgrUIvBwyRZwJSGlFKUaBVLUWgWR0CDKfmwJPZadX2UKGgGaAloD0MIbO19qorIYMCUhpRSlGgVS2JoFkdAgypFDOTq0XV9lChoBmgJaA9DCAcoDTUKUFzAlIaUUpRoFUtlaBZHQIMq9VtGd7R1fZQoaAZoCWgPQwi1w1+TNcZawJSGlFKUaBVLTWgWR0CDKxfw7T2GdX2UKGgGaAloD0MIym/RyVJlUsCUhpRSlGgVS2ZoFkdAgysrrX18LXV9lChoBmgJaA9DCGSuDKoNm1nAlIaUUpRoFUt2aBZHQIMsAqG1x851fZQoaAZoCWgPQwiZ8iGoGhJVwJSGlFKUaBVLdGgWR0CDLFyGSIP9dX2UKGgGaAloD0MIVKnZA61GWcCUhpRSlGgVS2RoFkdAgyxcM3IdVHV9lChoBmgJaA9DCFu21hcJ53XAlIaUUpRoFUuOaBZHQIMs4LThHb11fZQoaAZoCWgPQwjl0CLb+XdfwJSGlFKUaBVLU2gWR0CDLRqynk1edX2UKGgGaAloD0MIxxNBnIfCUcCUhpRSlGgVS0FoFkdAgy1jVx0dR3V9lChoBmgJaA9DCJc6yOvBFVvAlIaUUpRoFUtgaBZHQIMtbnq3VkN1fZQoaAZoCWgPQwjZ7h6g+zxVwJSGlFKUaBVLYWgWR0CDLZKwIMScdX2UKGgGaAloD0MIaOvgYG9QXsCUhpRSlGgVS3hoFkdAgy2yCvovBnV9lChoBmgJaA9DCKuX32kyyl/AlIaUUpRoFUtRaBZHQIMuD8R+SbJ1fZQoaAZoCWgPQwh8J2a9GM9XwJSGlFKUaBVLQ2gWR0CDLpNwiqyXdX2UKGgGaAloD0MIjqz8MhgtWMCUhpRSlGgVS0ZoFkdAgy6O/1xsEnV9lChoBmgJaA9DCF2HakqyllnAlIaUUpRoFUthaBZHQIMvQkZ75VR1fZQoaAZoCWgPQwheDrvvGORXwJSGlFKUaBVLdGgWR0CDL8z6ab4KdX2UKGgGaAloD0MIKSDtf4C+WMCUhpRSlGgVS0loFkdAgzDPkJa7mXV9lChoBmgJaA9DCMn/5O/eI1XAlIaUUpRoFUtGaBZHQIMw8rkKeCl1fZQoaAZoCWgPQwj6sx8pIn5ZwJSGlFKUaBVLYGgWR0CDMU1ndweedX2UKGgGaAloD0MIoRNCB13yWcCUhpRSlGgVS39oFkdAgzGlDv3JxXV9lChoBmgJaA9DCI7nM6DeDVPAlIaUUpRoFUtYaBZHQIMx8/r0J4V1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 16,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
deep-rl-1-lunarlanderv2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ff26eb71264eaf31c70a5720cbadc9e232b4dd4d729b8a8489d546347109128
3
+ size 87545
deep-rl-1-lunarlanderv2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e424620a4fbfd6ee916cc0b10c67ecb3add2c5478d91b7a4d35b4de144dae9ad
3
+ size 43073
deep-rl-1-lunarlanderv2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
deep-rl-1-lunarlanderv2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (271 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -172.11868328527416, "std_reward": 61.9615057080823, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-30T09:05:41.834126"}