aaronrmm commited on
Commit
5bb1348
1 Parent(s): a78f5e6

initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MLPPolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.72 +/- 45.37
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **MLPPolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **MLPPolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66294b2790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66294b2820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66294b28b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66294b2940>", "_build": "<function ActorCriticPolicy._build at 0x7f66294b29d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f66294b2a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f66294b2af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66294b2b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f66294b2c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66294b2ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66294b2d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66294b2dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f66294d02c0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678654759813949715, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKb+yj3TlS8/KICEO7PWsL7ab7c8HpOEPAAAAAAAAAAAbWoTvjSD7D3wnXU+bpRUvrfyxz0Orio9AAAAAAAAAAAze6O9SfuJPtFrPj4L0W2+ybSUPHtNUT0AAAAAAAAAAM1GMT6IVJW8HaD+OsmKjLm1Jge+aEpZugAAgD8AAIA/5kA8PZbW9j7Ubqu9fw2hvkMKiTv9s2O9AAAAAAAAAABNPlw9jjGcPx4KoD7VARW/89uePWIu/T0AAAAAAAAAAE0N3L1jg0c9tpM4PhWiHL7c9zs98ewFOwAAAAAAAAAAhrdFvsP+gz/VJOa+hwfHvrEim74oo5y+AAAAAAAAAACa/Sk+JGODP4bi2j5qiPy+PPd5PlUuWD4AAAAAAAAAAPNL3j3XQ3q5ZeRJM/GyAbAZKes77mLNswAAAAAAAIA/pnn1PWXNDz/Upay9aprjvhyJKT1CpH+9AAAAAAAAAABN1Hu9hTOcudGTMD2OqCWzziPdu84zZbMAAIA/AACAPxpWzb2PTgG6SvFHtUyNhLAg4pS6cqdKNAAAgD8AAIA/swQjPleIaTyJDYe+R2cbvlagV73jOqa9AAAAAAAAAADAA9O92n+7P3OTGL9fo0m9sVm8vX3bkL4AAAAAAAAAADMX7b0o65w/FlrPvtff8b6ptRe+QD5zvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFeKReDk2ckCUhpRSlIwBbJRNEQGMAXSUR0Cj+K7gbZOBdX2UKGgGaAloD0MIJoqQup36cECUhpRSlGgVTZQBaBZHQKP5Bsv7FbV1fZQoaAZoCWgPQwi5Us+CUK1sQJSGlFKUaBVNAgFoFkdAo/kOafBeonV9lChoBmgJaA9DCG8PQkB+THBAlIaUUpRoFUvwaBZHQKP5ajUNKAd1fZQoaAZoCWgPQwgO3IE65WhwQJSGlFKUaBVL4mgWR0Cj+gzeXRgJdX2UKGgGaAloD0MI2EY82U1RZUCUhpRSlGgVTegDaBZHQKP6f0/W1+l1fZQoaAZoCWgPQwielh+4ipNxQJSGlFKUaBVL02gWR0Cj+9c9nscAdX2UKGgGaAloD0MIrW2Kx8UAYkCUhpRSlGgVTegDaBZHQKP8QqJ/G2l1fZQoaAZoCWgPQwhFEr2MYmZxQJSGlFKUaBVNCwFoFkdAo/yiwUxmCnV9lChoBmgJaA9DCDFBDd/CT3BAlIaUUpRoFUvgaBZHQKP9WqEvkBF1fZQoaAZoCWgPQwjOjH40XIVyQJSGlFKUaBVNEwFoFkdAo/3TYf4h2XV9lChoBmgJaA9DCAnFVtA04G1AlIaUUpRoFUvQaBZHQKP9+ewLVnV1fZQoaAZoCWgPQwgV4/xNKPxtQJSGlFKUaBVL1mgWR0Cj/kfdZaFFdX2UKGgGaAloD0MIrcCQ1a0+bkCUhpRSlGgVS+9oFkdAo/6Intv4unV9lChoBmgJaA9DCPj8MEK49nJAlIaUUpRoFUvlaBZHQKP+8iiZfD11fZQoaAZoCWgPQwhG0m70seNxQJSGlFKUaBVL82gWR0Cj/0VxsEaEdX2UKGgGaAloD0MIKQZINIFhbkCUhpRSlGgVS+poFkdAo/9pdUsFuHV9lChoBmgJaA9DCN8xPPYzGXJAlIaUUpRoFU0IAWgWR0CkANdc0LtvdX2UKGgGaAloD0MIHGFREScLckCUhpRSlGgVTRsBaBZHQKQBy9B8hLZ1fZQoaAZoCWgPQwjZQSWuYxNzQJSGlFKUaBVL+2gWR0CkAis4cWCVdX2UKGgGaAloD0MIMgOV8e/9cUCUhpRSlGgVS/1oFkdApAJu89Oh03V9lChoBmgJaA9DCN82UyGeh25AlIaUUpRoFU0fAmgWR0CkAn4PXkHVdX2UKGgGaAloD0MIDVUxlf7xcUCUhpRSlGgVTQcBaBZHQKQCzzbvgFZ1fZQoaAZoCWgPQwi9APvoFLZwQJSGlFKUaBVL9mgWR0CkA1GSyMUAdX2UKGgGaAloD0MIbRtGQXC4cECUhpRSlGgVS/VoFkdApANjnied1HV9lChoBmgJaA9DCN3rpL5sr3BAlIaUUpRoFU0OAWgWR0CkA2dvCMxXdX2UKGgGaAloD0MIoUrNHujRcUCUhpRSlGgVS+FoFkdApANu/gzguXV9lChoBmgJaA9DCCRh304iBXBAlIaUUpRoFUvdaBZHQKQDzPxhDw91fZQoaAZoCWgPQwgBTYQNz8NwQJSGlFKUaBVL3mgWR0CkA+Xm/336dX2UKGgGaAloD0MIUTBjClY3ckCUhpRSlGgVS/5oFkdApAQSya/h2nV9lChoBmgJaA9DCLa+SGiLnnFAlIaUUpRoFUv/aBZHQKQFL33YcvN1fZQoaAZoCWgPQwhKe4MvDKtwQJSGlFKUaBVL5mgWR0CkBhTc6/7BdX2UKGgGaAloD0MIDhKifMEgcECUhpRSlGgVS/toFkdApAYfuLJjlXV9lChoBmgJaA9DCPinVIkyxGxAlIaUUpRoFUvdaBZHQKQGUFX7tRh1fZQoaAZoCWgPQwh4mPbNfdxsQJSGlFKUaBVL9mgWR0CkBlGb9ZRsdX2UKGgGaAloD0MI5SX/k3/6cECUhpRSlGgVS+poFkdApAccL4N7SnV9lChoBmgJaA9DCGrZWl/kpHJAlIaUUpRoFUvxaBZHQKQHIgi/wiJ1fZQoaAZoCWgPQwjNVl7yP1twQJSGlFKUaBVL72gWR0CkByy0KJEZdX2UKGgGaAloD0MIpg9dUJ9TcECUhpRSlGgVS+xoFkdApAcsPczqKXV9lChoBmgJaA9DCOhLb39uoHFAlIaUUpRoFUv6aBZHQKQH86nzg/F1fZQoaAZoCWgPQwghj+BGCphxQJSGlFKUaBVNDwFoFkdApAgsMd92HXV9lChoBmgJaA9DCPtZLEVyLXFAlIaUUpRoFUvjaBZHQKQI/HKfWc11fZQoaAZoCWgPQwiUhETaRjBgQJSGlFKUaBVN6ANoFkdApAlxcmjTKHV9lChoBmgJaA9DCO4KfbCMrHFAlIaUUpRoFUvXaBZHQKQJruhK15V1fZQoaAZoCWgPQwh47dKGQ2FuQJSGlFKUaBVL2mgWR0CkCbLZi/fwdX2UKGgGaAloD0MINCxGXatgcUCUhpRSlGgVTQMBaBZHQKQKktoSL611fZQoaAZoCWgPQwjSqSufpVVwQJSGlFKUaBVNBgFoFkdApAql8Z1mrnV9lChoBmgJaA9DCBU8hVzpJHBAlIaUUpRoFUvbaBZHQKQKt8ohIOJ1fZQoaAZoCWgPQwhbC7PQzqpkQJSGlFKUaBVN6ANoFkdApArMbiqABnV9lChoBmgJaA9DCDfCoiJOfHBAlIaUUpRoFUviaBZHQKQK2QQtjCp1fZQoaAZoCWgPQwhMGM3K9lhxQJSGlFKUaBVNAAFoFkdApAtR4QjD9HV9lChoBmgJaA9DCHwPlxx3qHBAlIaUUpRoFUv/aBZHQKQMERmseXB1fZQoaAZoCWgPQwi6awn5oFNwQJSGlFKUaBVL/mgWR0CkDEYfGMn7dX2UKGgGaAloD0MIFqOutfeObkCUhpRSlGgVS99oFkdApAyYVwgkknV9lChoBmgJaA9DCP2FHjF6YG5AlIaUUpRoFUvhaBZHQKQNV9cbBGh1fZQoaAZoCWgPQwgxe9l22s9vQJSGlFKUaBVL9mgWR0CkDXKhUR4AdX2UKGgGaAloD0MI+IxEaMQmcUCUhpRSlGgVTQUBaBZHQKQN+it7rs11fZQoaAZoCWgPQwjyJyobVsxwQJSGlFKUaBVL22gWR0CkDi7lzU7TdX2UKGgGaAloD0MIbk26LREhcUCUhpRSlGgVS9BoFkdApA5DcGkeqHV9lChoBmgJaA9DCNPAj2pYUXBAlIaUUpRoFUvgaBZHQKQOWrzXjEN1fZQoaAZoCWgPQwgVH5+QnadxQJSGlFKUaBVL0mgWR0CkDtyhSLqEdX2UKGgGaAloD0MIOEiI8oXdcUCUhpRSlGgVTQoBaBZHQKQPXWPtD2J1fZQoaAZoCWgPQwjGvmTjwXByQJSGlFKUaBVLz2gWR0CkD7cXWOIZdX2UKGgGaAloD0MIesiUD0HNXkCUhpRSlGgVTegDaBZHQKQQEKtxMnJ1fZQoaAZoCWgPQwhcyCO4kXNxQJSGlFKUaBVL6WgWR0CkEGOfukULdX2UKGgGaAloD0MIl1eut810bkCUhpRSlGgVS9toFkdApBF/7BO58XV9lChoBmgJaA9DCOULWkjAZW9AlIaUUpRoFU0UAWgWR0CkEbF6qsEJdX2UKGgGaAloD0MImbfqOpRscECUhpRSlGgVS/ZoFkdApBIbfixVyXV9lChoBmgJaA9DCGBzDp6JSG5AlIaUUpRoFUveaBZHQKQSzSVnmJZ1fZQoaAZoCWgPQwjSHFn55StyQJSGlFKUaBVL52gWR0CkEyRBu4wzdX2UKGgGaAloD0MI+OP2y6daZUCUhpRSlGgVTegDaBZHQKQTLH4Glhx1fZQoaAZoCWgPQwhTIR6Jly5xQJSGlFKUaBVNBAFoFkdApBNV43WFvnV9lChoBmgJaA9DCGNi83HtEW9AlIaUUpRoFUveaBZHQKQTn28qWkd1fZQoaAZoCWgPQwh6HXHIxh1yQJSGlFKUaBVNEAFoFkdApBPW5vtMPHV9lChoBmgJaA9DCAGIu3oVPW5AlIaUUpRoFUveaBZHQKQUJQ3xWkt1fZQoaAZoCWgPQwhrmnecIm5uQJSGlFKUaBVL3mgWR0CkFPSRB/qgdX2UKGgGaAloD0MIz77yIL11cUCUhpRSlGgVS/xoFkdApBVADoyKvXV9lChoBmgJaA9DCLRZ9bnaV3FAlIaUUpRoFUvfaBZHQKQVc+fRNRF1fZQoaAZoCWgPQwjJVwIpMeBiQJSGlFKUaBVN6ANoFkdApBZcGZ/kNnV9lChoBmgJaA9DCA+1bRhFOHFAlIaUUpRoFUvhaBZHQKQWy46Oo5x1fZQoaAZoCWgPQwiLjXkdcU9RQJSGlFKUaBVLrGgWR0CkF8+t8uzydX2UKGgGaAloD0MI3gIJil9icECUhpRSlGgVS9hoFkdApBgbVQQ+U3V9lChoBmgJaA9DCDSBIhaxrHFAlIaUUpRoFUvaaBZHQKQYLzp5eJJ1fZQoaAZoCWgPQwgDBkmf1h5xQJSGlFKUaBVL1mgWR0CkGEV/2Cd0dX2UKGgGaAloD0MIF9NM9/r2cECUhpRSlGgVS8toFkdApBhWP91loXV9lChoBmgJaA9DCA6+MJnqjHBAlIaUUpRoFU0mAWgWR0CkGJqRuCPIdX2UKGgGaAloD0MI0Xe3skRKcUCUhpRSlGgVTRgBaBZHQKQZQXsPatd1fZQoaAZoCWgPQwhPV3cstuttQJSGlFKUaBVL72gWR0CkGbx7AtWddX2UKGgGaAloD0MIhel7DcGecECUhpRSlGgVTc8DaBZHQKQaU0VrRBx1fZQoaAZoCWgPQwgTnWUWoThuQJSGlFKUaBVL3GgWR0CkGnItcv/SdX2UKGgGaAloD0MIQ6z+CMORckCUhpRSlGgVS+FoFkdApBrEgB91EHV9lChoBmgJaA9DCG3mkNQCS3BAlIaUUpRoFU0tA2gWR0CkG3gXVLBbdX2UKGgGaAloD0MIELIsmDjOckCUhpRSlGgVTS8BaBZHQKQcEYwZflZ1fZQoaAZoCWgPQwjFymjk86BxQJSGlFKUaBVNBwFoFkdApByJhScbznV9lChoBmgJaA9DCC1eLAwRxXBAlIaUUpRoFUv3aBZHQKQclOZb6gx1fZQoaAZoCWgPQwjwGYnQSGJwQJSGlFKUaBVL7mgWR0CkHXjr7fpEdX2UKGgGaAloD0MIOQ1Rhf+PcECUhpRSlGgVS/5oFkdApB1812q1gHV9lChoBmgJaA9DCDbJj/iVKXBAlIaUUpRoFUv4aBZHQKQdl1SOzY51fZQoaAZoCWgPQwjjb3uChANxQJSGlFKUaBVL/GgWR0CkHbo9cKPXdX2UKGgGaAloD0MIfLYODvazcECUhpRSlGgVS9BoFkdApB23r2QGOnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
my_lunar_lander_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d13f8173a6d88cf02b097b3d0a7e02f0fe1f7015e4632fc57b940faaa5c0d65
3
+ size 147468
my_lunar_lander_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
my_lunar_lander_model/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66294b2790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66294b2820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66294b28b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66294b2940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f66294b29d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f66294b2a60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f66294b2af0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66294b2b80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f66294b2c10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66294b2ca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66294b2d30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66294b2dc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f66294d02c0>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678654759813949715,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKb+yj3TlS8/KICEO7PWsL7ab7c8HpOEPAAAAAAAAAAAbWoTvjSD7D3wnXU+bpRUvrfyxz0Orio9AAAAAAAAAAAze6O9SfuJPtFrPj4L0W2+ybSUPHtNUT0AAAAAAAAAAM1GMT6IVJW8HaD+OsmKjLm1Jge+aEpZugAAgD8AAIA/5kA8PZbW9j7Ubqu9fw2hvkMKiTv9s2O9AAAAAAAAAABNPlw9jjGcPx4KoD7VARW/89uePWIu/T0AAAAAAAAAAE0N3L1jg0c9tpM4PhWiHL7c9zs98ewFOwAAAAAAAAAAhrdFvsP+gz/VJOa+hwfHvrEim74oo5y+AAAAAAAAAACa/Sk+JGODP4bi2j5qiPy+PPd5PlUuWD4AAAAAAAAAAPNL3j3XQ3q5ZeRJM/GyAbAZKes77mLNswAAAAAAAIA/pnn1PWXNDz/Upay9aprjvhyJKT1CpH+9AAAAAAAAAABN1Hu9hTOcudGTMD2OqCWzziPdu84zZbMAAIA/AACAPxpWzb2PTgG6SvFHtUyNhLAg4pS6cqdKNAAAgD8AAIA/swQjPleIaTyJDYe+R2cbvlagV73jOqa9AAAAAAAAAADAA9O92n+7P3OTGL9fo0m9sVm8vX3bkL4AAAAAAAAAADMX7b0o65w/FlrPvtff8b6ptRe+QD5zvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFeKReDk2ckCUhpRSlIwBbJRNEQGMAXSUR0Cj+K7gbZOBdX2UKGgGaAloD0MIJoqQup36cECUhpRSlGgVTZQBaBZHQKP5Bsv7FbV1fZQoaAZoCWgPQwi5Us+CUK1sQJSGlFKUaBVNAgFoFkdAo/kOafBeonV9lChoBmgJaA9DCG8PQkB+THBAlIaUUpRoFUvwaBZHQKP5ajUNKAd1fZQoaAZoCWgPQwgO3IE65WhwQJSGlFKUaBVL4mgWR0Cj+gzeXRgJdX2UKGgGaAloD0MI2EY82U1RZUCUhpRSlGgVTegDaBZHQKP6f0/W1+l1fZQoaAZoCWgPQwielh+4ipNxQJSGlFKUaBVL02gWR0Cj+9c9nscAdX2UKGgGaAloD0MIrW2Kx8UAYkCUhpRSlGgVTegDaBZHQKP8QqJ/G2l1fZQoaAZoCWgPQwhFEr2MYmZxQJSGlFKUaBVNCwFoFkdAo/yiwUxmCnV9lChoBmgJaA9DCDFBDd/CT3BAlIaUUpRoFUvgaBZHQKP9WqEvkBF1fZQoaAZoCWgPQwjOjH40XIVyQJSGlFKUaBVNEwFoFkdAo/3TYf4h2XV9lChoBmgJaA9DCAnFVtA04G1AlIaUUpRoFUvQaBZHQKP9+ewLVnV1fZQoaAZoCWgPQwgV4/xNKPxtQJSGlFKUaBVL1mgWR0Cj/kfdZaFFdX2UKGgGaAloD0MIrcCQ1a0+bkCUhpRSlGgVS+9oFkdAo/6Intv4unV9lChoBmgJaA9DCPj8MEK49nJAlIaUUpRoFUvlaBZHQKP+8iiZfD11fZQoaAZoCWgPQwhG0m70seNxQJSGlFKUaBVL82gWR0Cj/0VxsEaEdX2UKGgGaAloD0MIKQZINIFhbkCUhpRSlGgVS+poFkdAo/9pdUsFuHV9lChoBmgJaA9DCN8xPPYzGXJAlIaUUpRoFU0IAWgWR0CkANdc0LtvdX2UKGgGaAloD0MIHGFREScLckCUhpRSlGgVTRsBaBZHQKQBy9B8hLZ1fZQoaAZoCWgPQwjZQSWuYxNzQJSGlFKUaBVL+2gWR0CkAis4cWCVdX2UKGgGaAloD0MIMgOV8e/9cUCUhpRSlGgVS/1oFkdApAJu89Oh03V9lChoBmgJaA9DCN82UyGeh25AlIaUUpRoFU0fAmgWR0CkAn4PXkHVdX2UKGgGaAloD0MIDVUxlf7xcUCUhpRSlGgVTQcBaBZHQKQCzzbvgFZ1fZQoaAZoCWgPQwi9APvoFLZwQJSGlFKUaBVL9mgWR0CkA1GSyMUAdX2UKGgGaAloD0MIbRtGQXC4cECUhpRSlGgVS/VoFkdApANjnied1HV9lChoBmgJaA9DCN3rpL5sr3BAlIaUUpRoFU0OAWgWR0CkA2dvCMxXdX2UKGgGaAloD0MIoUrNHujRcUCUhpRSlGgVS+FoFkdApANu/gzguXV9lChoBmgJaA9DCCRh304iBXBAlIaUUpRoFUvdaBZHQKQDzPxhDw91fZQoaAZoCWgPQwgBTYQNz8NwQJSGlFKUaBVL3mgWR0CkA+Xm/336dX2UKGgGaAloD0MIUTBjClY3ckCUhpRSlGgVS/5oFkdApAQSya/h2nV9lChoBmgJaA9DCLa+SGiLnnFAlIaUUpRoFUv/aBZHQKQFL33YcvN1fZQoaAZoCWgPQwhKe4MvDKtwQJSGlFKUaBVL5mgWR0CkBhTc6/7BdX2UKGgGaAloD0MIDhKifMEgcECUhpRSlGgVS/toFkdApAYfuLJjlXV9lChoBmgJaA9DCPinVIkyxGxAlIaUUpRoFUvdaBZHQKQGUFX7tRh1fZQoaAZoCWgPQwh4mPbNfdxsQJSGlFKUaBVL9mgWR0CkBlGb9ZRsdX2UKGgGaAloD0MI5SX/k3/6cECUhpRSlGgVS+poFkdApAccL4N7SnV9lChoBmgJaA9DCGrZWl/kpHJAlIaUUpRoFUvxaBZHQKQHIgi/wiJ1fZQoaAZoCWgPQwjNVl7yP1twQJSGlFKUaBVL72gWR0CkByy0KJEZdX2UKGgGaAloD0MIpg9dUJ9TcECUhpRSlGgVS+xoFkdApAcsPczqKXV9lChoBmgJaA9DCOhLb39uoHFAlIaUUpRoFUv6aBZHQKQH86nzg/F1fZQoaAZoCWgPQwghj+BGCphxQJSGlFKUaBVNDwFoFkdApAgsMd92HXV9lChoBmgJaA9DCPtZLEVyLXFAlIaUUpRoFUvjaBZHQKQI/HKfWc11fZQoaAZoCWgPQwiUhETaRjBgQJSGlFKUaBVN6ANoFkdApAlxcmjTKHV9lChoBmgJaA9DCO4KfbCMrHFAlIaUUpRoFUvXaBZHQKQJruhK15V1fZQoaAZoCWgPQwh47dKGQ2FuQJSGlFKUaBVL2mgWR0CkCbLZi/fwdX2UKGgGaAloD0MINCxGXatgcUCUhpRSlGgVTQMBaBZHQKQKktoSL611fZQoaAZoCWgPQwjSqSufpVVwQJSGlFKUaBVNBgFoFkdApAql8Z1mrnV9lChoBmgJaA9DCBU8hVzpJHBAlIaUUpRoFUvbaBZHQKQKt8ohIOJ1fZQoaAZoCWgPQwhbC7PQzqpkQJSGlFKUaBVN6ANoFkdApArMbiqABnV9lChoBmgJaA9DCDfCoiJOfHBAlIaUUpRoFUviaBZHQKQK2QQtjCp1fZQoaAZoCWgPQwhMGM3K9lhxQJSGlFKUaBVNAAFoFkdApAtR4QjD9HV9lChoBmgJaA9DCHwPlxx3qHBAlIaUUpRoFUv/aBZHQKQMERmseXB1fZQoaAZoCWgPQwi6awn5oFNwQJSGlFKUaBVL/mgWR0CkDEYfGMn7dX2UKGgGaAloD0MIFqOutfeObkCUhpRSlGgVS99oFkdApAyYVwgkknV9lChoBmgJaA9DCP2FHjF6YG5AlIaUUpRoFUvhaBZHQKQNV9cbBGh1fZQoaAZoCWgPQwgxe9l22s9vQJSGlFKUaBVL9mgWR0CkDXKhUR4AdX2UKGgGaAloD0MI+IxEaMQmcUCUhpRSlGgVTQUBaBZHQKQN+it7rs11fZQoaAZoCWgPQwjyJyobVsxwQJSGlFKUaBVL22gWR0CkDi7lzU7TdX2UKGgGaAloD0MIbk26LREhcUCUhpRSlGgVS9BoFkdApA5DcGkeqHV9lChoBmgJaA9DCNPAj2pYUXBAlIaUUpRoFUvgaBZHQKQOWrzXjEN1fZQoaAZoCWgPQwgVH5+QnadxQJSGlFKUaBVL0mgWR0CkDtyhSLqEdX2UKGgGaAloD0MIOEiI8oXdcUCUhpRSlGgVTQoBaBZHQKQPXWPtD2J1fZQoaAZoCWgPQwjGvmTjwXByQJSGlFKUaBVLz2gWR0CkD7cXWOIZdX2UKGgGaAloD0MIesiUD0HNXkCUhpRSlGgVTegDaBZHQKQQEKtxMnJ1fZQoaAZoCWgPQwhcyCO4kXNxQJSGlFKUaBVL6WgWR0CkEGOfukULdX2UKGgGaAloD0MIl1eut810bkCUhpRSlGgVS9toFkdApBF/7BO58XV9lChoBmgJaA9DCOULWkjAZW9AlIaUUpRoFU0UAWgWR0CkEbF6qsEJdX2UKGgGaAloD0MImbfqOpRscECUhpRSlGgVS/ZoFkdApBIbfixVyXV9lChoBmgJaA9DCGBzDp6JSG5AlIaUUpRoFUveaBZHQKQSzSVnmJZ1fZQoaAZoCWgPQwjSHFn55StyQJSGlFKUaBVL52gWR0CkEyRBu4wzdX2UKGgGaAloD0MI+OP2y6daZUCUhpRSlGgVTegDaBZHQKQTLH4Glhx1fZQoaAZoCWgPQwhTIR6Jly5xQJSGlFKUaBVNBAFoFkdApBNV43WFvnV9lChoBmgJaA9DCGNi83HtEW9AlIaUUpRoFUveaBZHQKQTn28qWkd1fZQoaAZoCWgPQwh6HXHIxh1yQJSGlFKUaBVNEAFoFkdApBPW5vtMPHV9lChoBmgJaA9DCAGIu3oVPW5AlIaUUpRoFUveaBZHQKQUJQ3xWkt1fZQoaAZoCWgPQwhrmnecIm5uQJSGlFKUaBVL3mgWR0CkFPSRB/qgdX2UKGgGaAloD0MIz77yIL11cUCUhpRSlGgVS/xoFkdApBVADoyKvXV9lChoBmgJaA9DCLRZ9bnaV3FAlIaUUpRoFUvfaBZHQKQVc+fRNRF1fZQoaAZoCWgPQwjJVwIpMeBiQJSGlFKUaBVN6ANoFkdApBZcGZ/kNnV9lChoBmgJaA9DCA+1bRhFOHFAlIaUUpRoFUvhaBZHQKQWy46Oo5x1fZQoaAZoCWgPQwiLjXkdcU9RQJSGlFKUaBVLrGgWR0CkF8+t8uzydX2UKGgGaAloD0MI3gIJil9icECUhpRSlGgVS9hoFkdApBgbVQQ+U3V9lChoBmgJaA9DCDSBIhaxrHFAlIaUUpRoFUvaaBZHQKQYLzp5eJJ1fZQoaAZoCWgPQwgDBkmf1h5xQJSGlFKUaBVL1mgWR0CkGEV/2Cd0dX2UKGgGaAloD0MIF9NM9/r2cECUhpRSlGgVS8toFkdApBhWP91loXV9lChoBmgJaA9DCA6+MJnqjHBAlIaUUpRoFU0mAWgWR0CkGJqRuCPIdX2UKGgGaAloD0MI0Xe3skRKcUCUhpRSlGgVTRgBaBZHQKQZQXsPatd1fZQoaAZoCWgPQwhPV3cstuttQJSGlFKUaBVL72gWR0CkGbx7AtWddX2UKGgGaAloD0MIhel7DcGecECUhpRSlGgVTc8DaBZHQKQaU0VrRBx1fZQoaAZoCWgPQwgTnWUWoThuQJSGlFKUaBVL3GgWR0CkGnItcv/SdX2UKGgGaAloD0MIQ6z+CMORckCUhpRSlGgVS+FoFkdApBrEgB91EHV9lChoBmgJaA9DCG3mkNQCS3BAlIaUUpRoFU0tA2gWR0CkG3gXVLBbdX2UKGgGaAloD0MIELIsmDjOckCUhpRSlGgVTS8BaBZHQKQcEYwZflZ1fZQoaAZoCWgPQwjFymjk86BxQJSGlFKUaBVNBwFoFkdApByJhScbznV9lChoBmgJaA9DCC1eLAwRxXBAlIaUUpRoFUv3aBZHQKQclOZb6gx1fZQoaAZoCWgPQwjwGYnQSGJwQJSGlFKUaBVL7mgWR0CkHXjr7fpEdX2UKGgGaAloD0MIOQ1Rhf+PcECUhpRSlGgVS/5oFkdApB1812q1gHV9lChoBmgJaA9DCDbJj/iVKXBAlIaUUpRoFUv4aBZHQKQdl1SOzY51fZQoaAZoCWgPQwjjb3uChANxQJSGlFKUaBVL/GgWR0CkHbo9cKPXdX2UKGgGaAloD0MIfLYODvazcECUhpRSlGgVS9BoFkdApB23r2QGOnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 320,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
my_lunar_lander_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b0a4a684331774443283578c058134c4bb7ac89f03ef531f2cf331fffd5b06b
3
+ size 88057
my_lunar_lander_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6580487b3e06689b9f1ea2106f1174b884ed0b6c284eae5c68aac74dba9fe214
3
+ size 43393
my_lunar_lander_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
my_lunar_lander_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (198 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.71625851356816, "std_reward": 45.36535304186107, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T22:10:12.538807"}