aapot commited on
Commit
3f254c2
·
1 Parent(s): 7e7ce52

Add language model

Browse files
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 33, "</s>": 34}
config.json ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-300m",
3
+ "activation_dropout": 0.055,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.094,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.04,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "gradient_checkpointing": false,
56
+ "hidden_act": "gelu",
57
+ "hidden_dropout": 0.047,
58
+ "hidden_size": 1024,
59
+ "initializer_range": 0.02,
60
+ "intermediate_size": 4096,
61
+ "layer_norm_eps": 1e-05,
62
+ "layerdrop": 0.041,
63
+ "mask_feature_length": 10,
64
+ "mask_feature_min_masks": 0,
65
+ "mask_feature_prob": 0.0,
66
+ "mask_time_length": 10,
67
+ "mask_time_min_masks": 2,
68
+ "mask_time_prob": 0.082,
69
+ "model_type": "wav2vec2",
70
+ "num_adapter_layers": 3,
71
+ "num_attention_heads": 16,
72
+ "num_codevector_groups": 2,
73
+ "num_codevectors_per_group": 320,
74
+ "num_conv_pos_embedding_groups": 16,
75
+ "num_conv_pos_embeddings": 128,
76
+ "num_feat_extract_layers": 7,
77
+ "num_hidden_layers": 24,
78
+ "num_negatives": 100,
79
+ "output_hidden_size": 1024,
80
+ "pad_token_id": 32,
81
+ "proj_codevector_dim": 768,
82
+ "tdnn_dilation": [
83
+ 1,
84
+ 2,
85
+ 3,
86
+ 1,
87
+ 1
88
+ ],
89
+ "tdnn_dim": [
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 512,
94
+ 1500
95
+ ],
96
+ "tdnn_kernel": [
97
+ 5,
98
+ 3,
99
+ 3,
100
+ 1,
101
+ 1
102
+ ],
103
+ "torch_dtype": "float32",
104
+ "transformers_version": "4.17.0.dev0",
105
+ "use_weighted_layer_sum": false,
106
+ "vocab_size": 35,
107
+ "xvector_output_dim": 512
108
+ }
eval.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import re
4
+ from typing import Dict
5
+
6
+ import torch
7
+ from datasets import Audio, Dataset, load_dataset, load_metric
8
+
9
+ from transformers import AutoFeatureExtractor, pipeline
10
+
11
+
12
+ def log_results(result: Dataset, args: Dict[str, str]):
13
+ """DO NOT CHANGE. This function computes and logs the result metrics."""
14
+
15
+ log_outputs = args.log_outputs
16
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
17
+
18
+ # load metric
19
+ wer = load_metric("wer")
20
+ cer = load_metric("cer")
21
+
22
+ # compute metrics
23
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
24
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
25
+
26
+ # print & log results
27
+ result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
28
+ print(result_str)
29
+
30
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
31
+ f.write(result_str)
32
+
33
+ # log all results in text file. Possibly interesting for analysis
34
+ if log_outputs is not None:
35
+ pred_file = f"log_{dataset_id}_predictions.txt"
36
+ target_file = f"log_{dataset_id}_targets.txt"
37
+
38
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
39
+
40
+ # mapping function to write output
41
+ def write_to_file(batch, i):
42
+ p.write(f"{i}" + "\n")
43
+ p.write(batch["prediction"] + "\n")
44
+ t.write(f"{i}" + "\n")
45
+ t.write(batch["target"] + "\n")
46
+
47
+ result.map(write_to_file, with_indices=True)
48
+
49
+
50
+ def normalize_text(text: str) -> str:
51
+ """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
52
+
53
+ CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
54
+ "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
55
+ "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
56
+ "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
57
+ "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
58
+
59
+ chars_to_remove_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
60
+
61
+ text = re.sub(chars_to_remove_regex, "", text.lower())
62
+ text = re.sub("[-]", " ", text)
63
+
64
+ # In addition, we can normalize the target text, e.g. removing new lines characters etc...
65
+ # note that order is important here!
66
+ token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
67
+
68
+ for t in token_sequences_to_ignore:
69
+ text = " ".join(text.split(t))
70
+
71
+ return text
72
+
73
+
74
+ def main(args):
75
+ # load dataset
76
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
77
+
78
+ # for testing: only process the first two examples as a test
79
+ # dataset = dataset.select(range(10))
80
+
81
+ # load processor
82
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
83
+ sampling_rate = feature_extractor.sampling_rate
84
+
85
+ # resample audio
86
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
87
+
88
+ # load eval pipeline
89
+ if args.device is None:
90
+ args.device = 0 if torch.cuda.is_available() else -1
91
+ asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
92
+
93
+ # map function to decode audio
94
+ def map_to_pred(batch):
95
+ prediction = asr(
96
+ batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
97
+ )
98
+
99
+ batch["prediction"] = prediction["text"]
100
+ batch["target"] = normalize_text(batch["sentence"])
101
+ return batch
102
+
103
+ # run inference on all examples
104
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
105
+
106
+ # compute and log_results
107
+ # do not change function below
108
+ log_results(result, args)
109
+
110
+
111
+ if __name__ == "__main__":
112
+ parser = argparse.ArgumentParser()
113
+
114
+ parser.add_argument(
115
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
116
+ )
117
+ parser.add_argument(
118
+ "--dataset",
119
+ type=str,
120
+ required=True,
121
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
122
+ )
123
+ parser.add_argument(
124
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
125
+ )
126
+ parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
127
+ parser.add_argument(
128
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
129
+ )
130
+ parser.add_argument(
131
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
132
+ )
133
+ parser.add_argument(
134
+ "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
135
+ )
136
+ parser.add_argument(
137
+ "--device",
138
+ type=int,
139
+ default=None,
140
+ help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
141
+ )
142
+ args = parser.parse_args()
143
+
144
+ main(args)
language_model/attrs.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
language_model/kenlm_finnish.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45e82be92cfe0ce2e74b0d31ea0e7949b7b185a95730c39ab012f599cf4d8d75
3
+ size 20686116
language_model/unigrams.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "processor_class": "Wav2Vec2ProcessorWithLM",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc7db976575d8276744c7bdd3cd361aab506598c6f5c26bbe8fc9f9aa7a13280
3
+ size 1262067185
run_eval.sh ADDED
@@ -0,0 +1 @@
 
 
1
+ python3 eval.py --dataset mozilla-foundation/common_voice_7_0 --config fi --model_id aapot/wav2vec2-xlsr-300m-finnish --split test --log_outputs
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3679515bef78e4705eeaf80229d1c4e0c8a3f9f31e8fa37fa93b9351ec520d7f
3
+ size 3055
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"'": 1, "a": 2, "b": 3, "c": 4, "d": 5, "e": 6, "f": 7, "g": 8, "h": 9, "i": 10, "j": 11, "k": 12, "l": 13, "m": 14, "n": 15, "o": 16, "p": 17, "q": 18, "r": 19, "s": 20, "t": 21, "u": 22, "v": 23, "w": 24, "x": 25, "y": 26, "z": 27, "ä": 28, "å": 29, "ö": 30, "|": 0, "[UNK]": 31, "[PAD]": 32}