Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: openai/whisper-medium-en
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: automatic-speech-recognition
|
12 |
+
name: Automatic Speech Recognition
|
13 |
+
dataset:
|
14 |
+
name: myst-test
|
15 |
+
type: asr
|
16 |
+
config: en
|
17 |
+
split: test
|
18 |
+
metrics:
|
19 |
+
- type: wer
|
20 |
+
value: 8.91
|
21 |
+
name: WER
|
22 |
+
- task:
|
23 |
+
type: automatic-speech-recognition
|
24 |
+
name: Automatic Speech Recognition
|
25 |
+
dataset:
|
26 |
+
name: cslu_scripted
|
27 |
+
type: asr
|
28 |
+
config: en
|
29 |
+
split: test
|
30 |
+
metrics:
|
31 |
+
- type: wer
|
32 |
+
value: 47.94
|
33 |
+
name: WER
|
34 |
+
- task:
|
35 |
+
type: automatic-speech-recognition
|
36 |
+
name: Automatic Speech Recognition
|
37 |
+
dataset:
|
38 |
+
name: cslu_spontaneous
|
39 |
+
type: asr
|
40 |
+
config: en
|
41 |
+
split: test
|
42 |
+
metrics:
|
43 |
+
- type: wer
|
44 |
+
value: 25.56
|
45 |
+
name: WER
|
46 |
+
- task:
|
47 |
+
type: automatic-speech-recognition
|
48 |
+
name: Automatic Speech Recognition
|
49 |
+
dataset:
|
50 |
+
name: librispeech
|
51 |
+
type: asr
|
52 |
+
config: en
|
53 |
+
split: testclean
|
54 |
+
metrics:
|
55 |
+
- type: wer
|
56 |
+
value: 3.95
|
57 |
+
name: WER
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
|
62 |
+
# openai/whisper-medium-en
|
63 |
+
|
64 |
+
This model is a fine-tuned version of [openai/whisper-medium-en](https://huggingface.co/openai/whisper-medium-en) on the None dataset.
|
65 |
+
It achieves the following results on the evaluation set:
|
66 |
+
- Loss: 0.26971688866615295
|
67 |
+
- Wer: 8.508066331024994
|
68 |
+
|
69 |
+
|
70 |
+
## Training and evaluation data
|
71 |
+
|
72 |
+
Training data: Myst Train (125 hours)
|
73 |
+
Evaluation data: Myst Dev (20.9 hours)
|
74 |
+
|
75 |
+
|
76 |
+
### Training hyperparameters
|
77 |
+
|
78 |
+
The following hyperparameters were used during training:
|
79 |
+
- learning_rate: 1e-05
|
80 |
+
- train_batch_size: 64
|
81 |
+
- eval_batch_size: 32
|
82 |
+
- seed: 42
|
83 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
84 |
+
- lr_scheduler_type: linear
|
85 |
+
- lr_scheduler_warmup_steps: 500
|
86 |
+
- training_steps: 10000
|
87 |
+
|