aabayomi's picture
ppo trained agent version-1
a84bfd8
raw
history blame
14.6 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff7f22c8820>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff7f22c88b0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff7f22c8940>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff7f22c89d0>",
"_build": "<function ActorCriticPolicy._build at 0x7ff7f22c8a60>",
"forward": "<function ActorCriticPolicy.forward at 0x7ff7f22c8af0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff7f22c8b80>",
"_predict": "<function ActorCriticPolicy._predict at 0x7ff7f22c8c10>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff7f22c8ca0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff7f22c8d30>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff7f22c8dc0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7ff7f22c1ea0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1670896340417738525,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrbhbzgIrQ/Gt1gvTsup749kZq87lRcvQAAAAAAAAAA7XYoPqqZRT7jqH6+4YWCvgTcQbuXuqS8AAAAAAAAAADaLSs+Q7ayP2tlHD81Ori+WB8gPuCrXD4AAAAAAAAAAAB48bz0WbQ/XmVkvinPHL7qiSO8qKjUvQAAAAAAAAAAZnn/vaM9RD0huMI9JhhEvpfon7tN3948AAAAAAAAAABmTpQ8RWmqPMju1r2kpB++yZF9vRJOlzwAAAAAAAAAAPrVOL5Osqy82G7RvPrQbDzSzB8+lA+cuwAAgD8AAIA/rdcwvptumbyuYjq6Wd29uCRsCj5+M4A5AACAPwAAgD9WTk++wkHqPoWdvT0xOcu+yQaIvRKlCj4AAAAAAAAAAJoVtrvZebQ/htcmvceOQr7hAV+8SnykOQAAAAAAAAAAs8gJvfwkeD6k9CW9s5eNvnapuLxueR87AAAAAAAAAADNyKc9pJS3PjzOrr3WD7K+zj5cPYAYx7sAAAAAAAAAAM30YLs63rk/Y4ljvKGal76/Llm8CRGdugAAAAAAAAAATZwkvpvCnT+BCBu/rOjbvsjVZr7q/aG+AAAAAAAAAABaVzq+9m5/vCjIh7tRMhm6FUfoPYn+uzoAAIA/AACAP5qF37uiYkU+kAf8uxWBj75cFFQ4R563OgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyTuHMpRAc0CUhpRSlIwBbJRNAwGMAXSUR0CX5GhIOH32dX2UKGgGaAloD0MIqdpugq9ycUCUhpRSlGgVS+xoFkdAl+SyTY/Vy3V9lChoBmgJaA9DCOs7vyhBXnFAlIaUUpRoFUvwaBZHQJflGDvmYBx1fZQoaAZoCWgPQwhn1edqK7xuQJSGlFKUaBVNAAFoFkdAl+UvEOy3TnV9lChoBmgJaA9DCHmwxW5faHFAlIaUUpRoFUv1aBZHQJflRV2icoZ1fZQoaAZoCWgPQwh0QX3L3MByQJSGlFKUaBVL62gWR0CX5U5MlC1JdX2UKGgGaAloD0MIZrtCHyxtckCUhpRSlGgVS/JoFkdAl+V5kbxVhnV9lChoBmgJaA9DCJyGqMKfImFAlIaUUpRoFU3oA2gWR0CX5aA0bcXWdX2UKGgGaAloD0MIdhcoKbB1XkCUhpRSlGgVTegDaBZHQJfmL3AVO9F1fZQoaAZoCWgPQwidDmQ99UlwQJSGlFKUaBVL2WgWR0CX5zVsk6cRdX2UKGgGaAloD0MIHeT1YNJgY0CUhpRSlGgVTegDaBZHQJfnrk4m1IB1fZQoaAZoCWgPQwgoRwGiYH9zQJSGlFKUaBVL6mgWR0CX6C5P/JeWdX2UKGgGaAloD0MIADrMl1dUcUCUhpRSlGgVS+doFkdAl+lmYWtU43V9lChoBmgJaA9DCPSpY5WSSXBAlIaUUpRoFUv9aBZHQJfpcNc4YJp1fZQoaAZoCWgPQwgJxOv6BehwQJSGlFKUaBVL42gWR0CX6Y+Jxeb/dX2UKGgGaAloD0MI/kRlw1oXcECUhpRSlGgVS8VoFkdAl+nmJzkp7XV9lChoBmgJaA9DCNKsbB/yRXFAlIaUUpRoFUvmaBZHQJfqjVEuxr11fZQoaAZoCWgPQwjmkT8YOJNwQJSGlFKUaBVL3mgWR0CX6upqREF4dX2UKGgGaAloD0MIE38UdeYobkCUhpRSlGgVS95oFkdAl+tUlu3tr3V9lChoBmgJaA9DCI4FhUFZrXFAlIaUUpRoFUv6aBZHQJfrqMm4RVZ1fZQoaAZoCWgPQwjturcicVZyQJSGlFKUaBVL2WgWR0CX69OKwY+CdX2UKGgGaAloD0MI4UbKFol1cUCUhpRSlGgVS/ZoFkdAl+vjVMEidXV9lChoBmgJaA9DCI9v7xo0pHJAlIaUUpRoFU0IAWgWR0CX7DGAkLQYdX2UKGgGaAloD0MIrizRWabZcUCUhpRSlGgVS+JoFkdAl+0reEZiu3V9lChoBmgJaA9DCGH/dW6aMHBAlIaUUpRoFU1eAWgWR0CX7boh6jWTdX2UKGgGaAloD0MI+S6lLpmDckCUhpRSlGgVS+loFkdAl+3aB/Zuh3V9lChoBmgJaA9DCP9eCg+al3BAlIaUUpRoFUvDaBZHQJfuuhysCDF1fZQoaAZoCWgPQwgQdR+A1GVvQJSGlFKUaBVLu2gWR0CX7v7IT4+KdX2UKGgGaAloD0MIBqG8j6MYb0CUhpRSlGgVS9VoFkdAl+81zU7SzHV9lChoBmgJaA9DCOlEgqnmqnBAlIaUUpRoFU0jAWgWR0CX8BFdcB2fdX2UKGgGaAloD0MI5zV2iSrtcECUhpRSlGgVS8doFkdAl/B4MfA9FHV9lChoBmgJaA9DCDtxOV4BIXFAlIaUUpRoFUuraBZHQJfwnot+TeR1fZQoaAZoCWgPQwjjqrLvypNyQJSGlFKUaBVL3GgWR0CX8K0Yj0L/dX2UKGgGaAloD0MIylLr/QaqckCUhpRSlGgVS8toFkdAl/FG1c+qznV9lChoBmgJaA9DCK8hOC5jzG9AlIaUUpRoFUvYaBZHQJfxyD7Ikqt1fZQoaAZoCWgPQwizX3e6c2xtQJSGlFKUaBVL2GgWR0CX8jG2TgVHdX2UKGgGaAloD0MINDDysqZZcUCUhpRSlGgVS9hoFkdAl/PWITGo73V9lChoBmgJaA9DCASsVbumbXFAlIaUUpRoFU09AWgWR0CX9Eg4ffXPdX2UKGgGaAloD0MIEkpfCDmzcUCUhpRSlGgVS/toFkdAl/RNhJAdGXV9lChoBmgJaA9DCJ6VtOLbrHFAlIaUUpRoFUvIaBZHQJf0erFOwgV1fZQoaAZoCWgPQwivIqMDUlhxQJSGlFKUaBVL1GgWR0CX9UQe3hGZdX2UKGgGaAloD0MI+IkD6LfacUCUhpRSlGgVS9JoFkdAl/YbLEDQq3V9lChoBmgJaA9DCGEYsORq7XBAlIaUUpRoFU0JAWgWR0CX9qz90ihWdX2UKGgGaAloD0MIgjtQp7wbc0CUhpRSlGgVS9doFkdAl/a0Zm7J4nV9lChoBmgJaA9DCJPlJJT+WHBAlIaUUpRoFU05AWgWR0CX9tjbSJCTdX2UKGgGaAloD0MIHaz/cxgRcUCUhpRSlGgVS+FoFkdAl/cgzYVZcXV9lChoBmgJaA9DCHh+UYI+NnFAlIaUUpRoFUvhaBZHQJf3LrzGxUx1fZQoaAZoCWgPQwiySumZXg5zQJSGlFKUaBVL62gWR0CX+PmyPdVOdX2UKGgGaAloD0MIisdFtQjfcECUhpRSlGgVS8xoFkdAl/o7DAJswnV9lChoBmgJaA9DCEEpWrkXvnBAlIaUUpRoFUvOaBZHQJf6VMAWBSV1fZQoaAZoCWgPQwgeqFMe3U1xQJSGlFKUaBVNOAFoFkdAl/ppDNQj2XV9lChoBmgJaA9DCNWUZB2OOHBAlIaUUpRoFUveaBZHQJf6+fAbhm51fZQoaAZoCWgPQwjHSzeJQVhzQJSGlFKUaBVNAwFoFkdAl/t00iyIHnV9lChoBmgJaA9DCEmGHFsPsHBAlIaUUpRoFUvXaBZHQJf7nvPTodN1fZQoaAZoCWgPQwjdfCO6p99xQJSGlFKUaBVLvmgWR0CX/EcjZ+QVdX2UKGgGaAloD0MIlnhA2ZQqc0CUhpRSlGgVS8doFkdAl/0g8r7O3XV9lChoBmgJaA9DCM2xvKueJ3FAlIaUUpRoFUvcaBZHQJf9PujRD1J1fZQoaAZoCWgPQwgEG9e/q9lwQJSGlFKUaBVL6WgWR0CX/cKR+z+ndX2UKGgGaAloD0MI0Vj7OxsJcUCUhpRSlGgVS+RoFkdAl/3pyuIRAnV9lChoBmgJaA9DCFfMCG/PXnJAlIaUUpRoFUvaaBZHQJf/nS1E3Kl1fZQoaAZoCWgPQwhXCoFc4idyQJSGlFKUaBVLy2gWR0CYAG+MqBmPdX2UKGgGaAloD0MIJlZGI9+tcECUhpRSlGgVS9poFkdAmAEqNEPUa3V9lChoBmgJaA9DCI1g4/r333FAlIaUUpRoFUu6aBZHQJgBScf/3nJ1fZQoaAZoCWgPQwijzXFuE29gQJSGlFKUaBVN6ANoFkdAmAHpTho/RnV9lChoBmgJaA9DCIQOuoSD8HFAlIaUUpRoFUv7aBZHQJgCJghKUV11fZQoaAZoCWgPQwijrN9MTBlzQJSGlFKUaBVL2mgWR0CYAn0aqCHzdX2UKGgGaAloD0MIbQA2IEIEb0CUhpRSlGgVS8doFkdAmAOBJEpiJHV9lChoBmgJaA9DCGLZzCEp7G9AlIaUUpRoFUvZaBZHQJgD7vfCQ911fZQoaAZoCWgPQwghlPdxNP9yQJSGlFKUaBVNAQFoFkdAmARSBTXJ5nV9lChoBmgJaA9DCGyU9ZsJLW9AlIaUUpRoFUvbaBZHQJgEzOpsGgV1fZQoaAZoCWgPQwgMVwdAXItyQJSGlFKUaBVL72gWR0CYBTkPMB6sdX2UKGgGaAloD0MIldIzvQSEcUCUhpRSlGgVS+doFkdAmAbmw3YL9nV9lChoBmgJaA9DCHAKKxXUSWJAlIaUUpRoFU3oA2gWR0CYBwTFERapdX2UKGgGaAloD0MIWrdB7bfYbkCUhpRSlGgVS8loFkdAmAdb7j1f3XV9lChoBmgJaA9DCLH4TWGlz3FAlIaUUpRoFUvgaBZHQJgHdJlJ6IF1fZQoaAZoCWgPQwhA+5Eisp9uQJSGlFKUaBVL4GgWR0CYCLg+hXbNdX2UKGgGaAloD0MIT1q4rAKmcECUhpRSlGgVS95oFkdAmAjhzBAOa3V9lChoBmgJaA9DCCxF8pVAJnNAlIaUUpRoFUvcaBZHQJgJILE1l5J1fZQoaAZoCWgPQwjshm2LMqhxQJSGlFKUaBVLyWgWR0CYCfyRB/qgdX2UKGgGaAloD0MIP6cgP9v7cUCUhpRSlGgVTScBaBZHQJgKQIY3vQZ1fZQoaAZoCWgPQwgr2hzn9opzQJSGlFKUaBVL4GgWR0CYCj/giu+zdX2UKGgGaAloD0MIXfksz4OlcECUhpRSlGgVS9VoFkdAmAsqIJqqO3V9lChoBmgJaA9DCFdgyOoW5XBAlIaUUpRoFUvLaBZHQJgLTNke6qd1fZQoaAZoCWgPQwj9aDhlrthxQJSGlFKUaBVL/2gWR0CYC+NyHVPOdX2UKGgGaAloD0MIIF9CBYfYcUCUhpRSlGgVS79oFkdAmAyTzErGznV9lChoBmgJaA9DCPm9TX92lm9AlIaUUpRoFUvOaBZHQJgM5n+Q2dd1fZQoaAZoCWgPQwjd6c4TT45tQJSGlFKUaBVLw2gWR0CYDQM23rledX2UKGgGaAloD0MIUd7H0ZwXckCUhpRSlGgVS+NoFkdAmA32HYYixHV9lChoBmgJaA9DCBhbCHIQAXBAlIaUUpRoFUvVaBZHQJgO2vzOHFh1fZQoaAZoCWgPQwiWQiCXuD9jQJSGlFKUaBVN6ANoFkdAmA/NZJTVD3V9lChoBmgJaA9DCEN0CBxJT3FAlIaUUpRoFUvAaBZHQJgP3YAbQ1J1fZQoaAZoCWgPQwhH5pE/2J1yQJSGlFKUaBVL6mgWR0CYEAJTER8MdX2UKGgGaAloD0MIdjOjHw2+bkCUhpRSlGgVS9RoFkdAmBAy/j81oHV9lChoBmgJaA9DCNXo1QDl+nBAlIaUUpRoFUvPaBZHQJgQUN9YwIt1fZQoaAZoCWgPQwgeGED40EtxQJSGlFKUaBVL5WgWR0CYEtUsFt9AdX2UKGgGaAloD0MIZmzoZn/0b0CUhpRSlGgVS8BoFkdAmBLryUcGT3V9lChoBmgJaA9DCO3yrQ/rBnJAlIaUUpRoFUv+aBZHQJgS9npSrHV1fZQoaAZoCWgPQwiHokCfiIFwQJSGlFKUaBVL0mgWR0CYEwGVRk3CdX2UKGgGaAloD0MInBa86GumcECUhpRSlGgVTQwBaBZHQJgTQ9Pk7wN1fZQoaAZoCWgPQwiZ8Ev9/LxzQJSGlFKUaBVL0mgWR0CYE15+pfhNdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}