Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 251.55 +/- 38.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9840e9ecb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9840e9ed40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9840e9edd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9840e9ee60>", "_build": "<function ActorCriticPolicy._build at 0x7f9840e9eef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9840e9ef80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9840e9f010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9840e9f0a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9840e9f130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9840e9f1c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9840e9f250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9840e9f2e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9840e92e80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684367457681537609, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoXwj17DIu6rj/vO4HTajWfMQK7xmNiNAAAgD8AAIA/QKenPfbQa7r2mQG5Ip8bM4kyJrtk1xQ4AACAPwAAgD8zpvo9yTkzP62wTzyuwZq+721bPdFPmL0AAAAAAAAAAGY2AzvDcUu6RfLWO6CyVDfo0sk5sAYsNgAAgD8AAIA/mplcvR+tyLktF2k7nvu5Nt0BSTuDWLU1AACAPwAAgD+a4bg7XDtqutucxTvU13g1t5pGuRMAbzQAAIA/AACAPwBK8jz2JDa6JiQbOjz0mDTSd6C6a0U2uQAAgD8AAIA/ANuJvBTwpLpzpXu7eiuNOJRcJTrOEQg6AACAPwAAgD9m3Gq8hRO8uYQHwrpv0be23zfNOogz5TkAAIA/AACAP2ZKfzzc4Bq8dh7ovCpjCr3TLnW8CtjRvQAAgD8AAIA/ZqY/uylsdLo77d+4vr+9s2bkNbu49gI4AACAPwAAgD8A36i8XMtqulGOgTtruGa2vJRSuxanlLoAAIA/AACAP4CucD0UtoS6YfOcO6tcBDfFiAU74E20ugAAgD8AAIA/zcRVvVzbM7p69b03sc6rMqYmnjoeKeC2AACAPwAAgD8a5dm9ro2MujrHdzn1eG00lauouuTlj7gAAIA/AACAPwDDvz09ekC5dcX9ua+q7LT8t0C7lkYWOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC/FUS7GvOiMAWyUS8CMAXSUR0CSGqECNjsldX2UKGgGR0BjHOjGkvboaAdN6ANoCEdAkhq8t9QXRHV9lChoBkdAYH8ZWq94/2gHTegDaAhHQJIbpMPBi1B1fZQoaAZHQG3nOZCv5gxoB00RAWgIR0CSI3VQQ+UydX2UKGgGR0AgDdJrcj7iaAdL0GgIR0CSI9QRPGhmdX2UKGgGR0BB1KJ/G2kSaAdL5mgIR0CSJ7ZiuuA7dX2UKGgGR0BhwPerMkhSaAdN6ANoCEdAkihuJHiFTXV9lChoBkdAYK99n9NvfmgHTegDaAhHQJIuIBsANod1fZQoaAZHQGPQEFnqVyFoB03oA2gIR0CSMBokRjBmdX2UKGgGR0AySm1YyO7yaAdL22gIR0CSRqPszEaVdX2UKGgGR0AXWjSG8EmqaAdNRAFoCEdAkklALNOdoXV9lChoBkdAY1iSg5BC2WgHTegDaAhHQJJP1XDFZPl1fZQoaAZHQFylulXRw61oB03oA2gIR0CSU940Mw10dX2UKGgGR0A7RoSL61staAdNXAFoCEdAkliMTJyQxXV9lChoBkdAZSEIMSbpeWgHTegDaAhHQJJZe7ROUMZ1fZQoaAZHQGNfi3ocJdBoB03oA2gIR0CSX6EBbOeKdX2UKGgGR0BhwcT8HfMwaAdN6ANoCEdAkmBQQL/jsHV9lChoBkdAXRJAu7HyVmgHTegDaAhHQJJiqtjkMkR1fZQoaAZHQGJB2C/XXiBoB03oA2gIR0CSZOZFG5MDdX2UKGgGR0BgLKc/dIoWaAdN6ANoCEdAkmZfGQ0XQHV9lChoBkdARiTbYbsF+2gHS95oCEdAkmfWs7uDz3V9lChoBkdAPGoIF/x2CGgHTTsBaAhHQJJojQhOgxt1fZQoaAZHQGOQuiWVu79oB03oA2gIR0CSazwx33YddX2UKGgGR0BaZaaXrt3OaAdN6ANoCEdAkmxSZF5OanV9lChoBkdAZXWQDmr8zmgHTegDaAhHQJJ1swfyPMl1fZQoaAZHQFxnA4GUwBZoB03oA2gIR0CSey2sJY1YdX2UKGgGR0BauVHBk7OnaAdN6ANoCEdAkoIJDRc/uHV9lChoBkdAXNlF5OafBmgHTegDaAhHQJKLsF1SwW51fZQoaAZHQBM6AWi1y/9oB005AWgIR0CSn1A7PppwdX2UKGgGR0BaoKpo9LYgaAdN6ANoCEdAkp+01AJLNHV9lChoBkdAYrM9dNWU8mgHTegDaAhHQJKmritJWeZ1fZQoaAZHQBKwkLQXyiFoB0vEaAhHQJKt6uA7Ppp1fZQoaAZHQFz6rFfiPyVoB03oA2gIR0CSr8mReTmodX2UKGgGR0BB0L5ZbILgaAdLxmgIR0CStQlrdnCgdX2UKGgGR0BhmSWzF+/haAdN6ANoCEdAkrdRq9GqgnV9lChoBkdAXpuXkYGdJGgHTegDaAhHQJK3/itJWeZ1fZQoaAZHQGHlYHHFPzpoB03oA2gIR0CSulkeZG8VdX2UKGgGR0BhmoZOzposaAdN6ANoCEdAkryHWattAXV9lChoBkdAXGF/G2kSEmgHTegDaAhHQJK99/kNnXd1fZQoaAZHQGN2uoHcDbJoB03oA2gIR0CSv28TzunddX2UKGgGR0BkOaDmKZUlaAdN6ANoCEdAksAe6unuRnV9lChoBkdAZIx/smfGuWgHTegDaAhHQJLCjIZIg/11fZQoaAZHQGC0eXqqwQloB03oA2gIR0CSw6D0lJHzdX2UKGgGR0BoMK2a2F37aAdN6ANoCEdAktHCBwuM/HV9lChoBkdAXnxJ17pmmWgHTegDaAhHQJLY3YJ3PiV1fZQoaAZHQGETDZ13dKxoB03oA2gIR0CS4t55Z8rqdX2UKGgGR0BjldLSNOuaaAdN6ANoCEdAkuW91dPcjHV9lChoBkdAYPk2phnanWgHTegDaAhHQJMHvQHAymB1fZQoaAZHQDkXUwztTk1oB0vyaAhHQJMITSJCSid1fZQoaAZHQGJ1VVYISlFoB03oA2gIR0CTCcH+6y0KdX2UKGgGR0Bjkwm5UcXFaAdN6ANoCEdAkw9Tn7pFC3V9lChoBkdAX8m6f8MuvmgHTegDaAhHQJMRcaDPGAF1fZQoaAZHQGDVqCpWFOBoB03oA2gIR0CTEheFL39KdX2UKGgGR0BiU95fMOf/aAdN6ANoCEdAkxRJnctXgnV9lChoBkdAYPIUpNKywGgHTegDaAhHQJMWTIDHOr11fZQoaAZHQGKg/ATIvJ1oB03oA2gIR0CTF59hZyMldX2UKGgGR0BiYaf4AS39aAdN6ANoCEdAkxjqB7NSqHV9lChoBkdAYymGQjlgdGgHTegDaAhHQJMZhVrAP/d1fZQoaAZHQGGqbJnxri5oB03oA2gIR0CTG8hlDneSdX2UKGgGR0BuehgE2YOUaAdNLAFoCEdAkxwhnBciW3V9lChoBkdAZGC078vVVmgHTegDaAhHQJMcsjeKsMl1fZQoaAZHQENX/5LytmtoB0vmaAhHQJMeIy0rsjV1fZQoaAZHQDhUW/JvHcVoB0uoaAhHQJMh6NaQmu11fZQoaAZHQGOGn6Mzdk9oB03oA2gIR0CTKaTaTOgQdX2UKGgGR0BiEVnZkCmuaAdN6ANoCEdAkzAr5M10knV9lChoBkdAYcfUMG5c1WgHTegDaAhHQJM7npIMBp51fZQoaAZHQGBweoUBXCFoB03oA2gIR0CTXCCJGe+VdX2UKGgGR0Bm1bOu7pV0aAdN6ANoCEdAk1ymLgn+h3V9lChoBkdAY105H3Dej2gHTegDaAhHQJNjUSBbwBp1fZQoaAZHQGBwDASFoL5oB03oA2gIR0CTZXUr08NhdX2UKGgGR0Bg3B2r4nF6aAdN6ANoCEdAk2igjD8+A3V9lChoBkdAYupyCnP3SWgHTegDaAhHQJNq9eAuqWF1fZQoaAZHQGRpfs3Q2MtoB03oA2gIR0CTbHbVSXMRdX2UKGgGR0BhT2dkJ8fFaAdN6ANoCEdAk2347A+IM3V9lChoBkdAYjKOz6ab4WgHTegDaAhHQJNxZYlpoK51fZQoaAZHQGNT1NxlxwRoB03oA2gIR0CTcdEn9ehPdX2UKGgGR0BkC/OKO1fFaAdN6ANoCEdAk3J9MfzSTnV9lChoBkdAYq46mwaBJGgHTegDaAhHQJN08zAN5MV1fZQoaAZHQGV5jWkJrtVoB03oA2gIR0CTePHbAUL2dX2UKGgGR0BhAvTTfBN3aAdN6ANoCEdAk4DBSYPXkHV9lChoBkdAXz1DlYEGJWgHTegDaAhHQJOHa20AtFt1fZQoaAZHQGSG9kauOjtoB03oA2gIR0CTk8JbMX7+dX2UKGgGR0Bh0u65Gz8haAdN6ANoCEdAk7Wp+lTFVHV9lChoBkdAZTBcnmaH9GgHTegDaAhHQJO2NdHDrJN1fZQoaAZHQGQ2mZE2HcloB03oA2gIR0CTvRO4XoC/dX2UKGgGR0BelLq6e5FxaAdN6ANoCEdAk79VAZ88cXV9lChoBkdAY+DC9h7VrmgHTegDaAhHQJPCgQQL/jt1fZQoaAZHQGUUCOvMbFVoB03oA2gIR0CTxOXZoPCmdX2UKGgGR0BiNA95hSccaAdN6ANoCEdAk8ZgR9PUKHV9lChoBkdAY0xXXAdn02gHTegDaAhHQJPH41O0svt1fZQoaAZHQE4UvHtF8XxoB00iAWgIR0CTyhfNA1NydX2UKGgGR0BinI0Q9RrKaAdN6ANoCEdAk8taPsAvMHV9lChoBkdAY1QsRxtHhGgHTegDaAhHQJPLw5YHPeJ1fZQoaAZHQGGotqxkd3loB03oA2gIR0CTzG0G/vfCdX2UKGgGR0Bj9Bk9U0emaAdN6ANoCEdAk83zwH7gsXV9lChoBkdAYkmJvYODrmgHTegDaAhHQJPRkWk8A7x1fZQoaAZHQDYCb/ffoA5oB0vcaAhHQJPYRib2Dg91fZQoaAZHQGNkAOSW7e5oB03oA2gIR0CT2Ee5Fw1jdX2UKGgGR0BiiSfzz3AVaAdN6ANoCEdAk94bDuSfUXV9lChoBkdAYXj15jYqXmgHTegDaAhHQJPosiA2AG11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cd1f9f0e7858e681c36009a5f86229009849a273ad957a1c4068e78b9603160
|
3 |
+
size 146743
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9840e9ecb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9840e9ed40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9840e9edd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9840e9ee60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9840e9eef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9840e9ef80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9840e9f010>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9840e9f0a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9840e9f130>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9840e9f1c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9840e9f250>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9840e9f2e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9840e92e80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1684367457681537609,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoXwj17DIu6rj/vO4HTajWfMQK7xmNiNAAAgD8AAIA/QKenPfbQa7r2mQG5Ip8bM4kyJrtk1xQ4AACAPwAAgD8zpvo9yTkzP62wTzyuwZq+721bPdFPmL0AAAAAAAAAAGY2AzvDcUu6RfLWO6CyVDfo0sk5sAYsNgAAgD8AAIA/mplcvR+tyLktF2k7nvu5Nt0BSTuDWLU1AACAPwAAgD+a4bg7XDtqutucxTvU13g1t5pGuRMAbzQAAIA/AACAPwBK8jz2JDa6JiQbOjz0mDTSd6C6a0U2uQAAgD8AAIA/ANuJvBTwpLpzpXu7eiuNOJRcJTrOEQg6AACAPwAAgD9m3Gq8hRO8uYQHwrpv0be23zfNOogz5TkAAIA/AACAP2ZKfzzc4Bq8dh7ovCpjCr3TLnW8CtjRvQAAgD8AAIA/ZqY/uylsdLo77d+4vr+9s2bkNbu49gI4AACAPwAAgD8A36i8XMtqulGOgTtruGa2vJRSuxanlLoAAIA/AACAP4CucD0UtoS6YfOcO6tcBDfFiAU74E20ugAAgD8AAIA/zcRVvVzbM7p69b03sc6rMqYmnjoeKeC2AACAPwAAgD8a5dm9ro2MujrHdzn1eG00lauouuTlj7gAAIA/AACAPwDDvz09ekC5dcX9ua+q7LT8t0C7lkYWOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC/FUS7GvOiMAWyUS8CMAXSUR0CSGqECNjsldX2UKGgGR0BjHOjGkvboaAdN6ANoCEdAkhq8t9QXRHV9lChoBkdAYH8ZWq94/2gHTegDaAhHQJIbpMPBi1B1fZQoaAZHQG3nOZCv5gxoB00RAWgIR0CSI3VQQ+UydX2UKGgGR0AgDdJrcj7iaAdL0GgIR0CSI9QRPGhmdX2UKGgGR0BB1KJ/G2kSaAdL5mgIR0CSJ7ZiuuA7dX2UKGgGR0BhwPerMkhSaAdN6ANoCEdAkihuJHiFTXV9lChoBkdAYK99n9NvfmgHTegDaAhHQJIuIBsANod1fZQoaAZHQGPQEFnqVyFoB03oA2gIR0CSMBokRjBmdX2UKGgGR0AySm1YyO7yaAdL22gIR0CSRqPszEaVdX2UKGgGR0AXWjSG8EmqaAdNRAFoCEdAkklALNOdoXV9lChoBkdAY1iSg5BC2WgHTegDaAhHQJJP1XDFZPl1fZQoaAZHQFylulXRw61oB03oA2gIR0CSU940Mw10dX2UKGgGR0A7RoSL61staAdNXAFoCEdAkliMTJyQxXV9lChoBkdAZSEIMSbpeWgHTegDaAhHQJJZe7ROUMZ1fZQoaAZHQGNfi3ocJdBoB03oA2gIR0CSX6EBbOeKdX2UKGgGR0BhwcT8HfMwaAdN6ANoCEdAkmBQQL/jsHV9lChoBkdAXRJAu7HyVmgHTegDaAhHQJJiqtjkMkR1fZQoaAZHQGJB2C/XXiBoB03oA2gIR0CSZOZFG5MDdX2UKGgGR0BgLKc/dIoWaAdN6ANoCEdAkmZfGQ0XQHV9lChoBkdARiTbYbsF+2gHS95oCEdAkmfWs7uDz3V9lChoBkdAPGoIF/x2CGgHTTsBaAhHQJJojQhOgxt1fZQoaAZHQGOQuiWVu79oB03oA2gIR0CSazwx33YddX2UKGgGR0BaZaaXrt3OaAdN6ANoCEdAkmxSZF5OanV9lChoBkdAZXWQDmr8zmgHTegDaAhHQJJ1swfyPMl1fZQoaAZHQFxnA4GUwBZoB03oA2gIR0CSey2sJY1YdX2UKGgGR0BauVHBk7OnaAdN6ANoCEdAkoIJDRc/uHV9lChoBkdAXNlF5OafBmgHTegDaAhHQJKLsF1SwW51fZQoaAZHQBM6AWi1y/9oB005AWgIR0CSn1A7PppwdX2UKGgGR0BaoKpo9LYgaAdN6ANoCEdAkp+01AJLNHV9lChoBkdAYrM9dNWU8mgHTegDaAhHQJKmritJWeZ1fZQoaAZHQBKwkLQXyiFoB0vEaAhHQJKt6uA7Ppp1fZQoaAZHQFz6rFfiPyVoB03oA2gIR0CSr8mReTmodX2UKGgGR0BB0L5ZbILgaAdLxmgIR0CStQlrdnCgdX2UKGgGR0BhmSWzF+/haAdN6ANoCEdAkrdRq9GqgnV9lChoBkdAXpuXkYGdJGgHTegDaAhHQJK3/itJWeZ1fZQoaAZHQGHlYHHFPzpoB03oA2gIR0CSulkeZG8VdX2UKGgGR0BhmoZOzposaAdN6ANoCEdAkryHWattAXV9lChoBkdAXGF/G2kSEmgHTegDaAhHQJK99/kNnXd1fZQoaAZHQGN2uoHcDbJoB03oA2gIR0CSv28TzunddX2UKGgGR0BkOaDmKZUlaAdN6ANoCEdAksAe6unuRnV9lChoBkdAZIx/smfGuWgHTegDaAhHQJLCjIZIg/11fZQoaAZHQGC0eXqqwQloB03oA2gIR0CSw6D0lJHzdX2UKGgGR0BoMK2a2F37aAdN6ANoCEdAktHCBwuM/HV9lChoBkdAXnxJ17pmmWgHTegDaAhHQJLY3YJ3PiV1fZQoaAZHQGETDZ13dKxoB03oA2gIR0CS4t55Z8rqdX2UKGgGR0BjldLSNOuaaAdN6ANoCEdAkuW91dPcjHV9lChoBkdAYPk2phnanWgHTegDaAhHQJMHvQHAymB1fZQoaAZHQDkXUwztTk1oB0vyaAhHQJMITSJCSid1fZQoaAZHQGJ1VVYISlFoB03oA2gIR0CTCcH+6y0KdX2UKGgGR0Bjkwm5UcXFaAdN6ANoCEdAkw9Tn7pFC3V9lChoBkdAX8m6f8MuvmgHTegDaAhHQJMRcaDPGAF1fZQoaAZHQGDVqCpWFOBoB03oA2gIR0CTEheFL39KdX2UKGgGR0BiU95fMOf/aAdN6ANoCEdAkxRJnctXgnV9lChoBkdAYPIUpNKywGgHTegDaAhHQJMWTIDHOr11fZQoaAZHQGKg/ATIvJ1oB03oA2gIR0CTF59hZyMldX2UKGgGR0BiYaf4AS39aAdN6ANoCEdAkxjqB7NSqHV9lChoBkdAYymGQjlgdGgHTegDaAhHQJMZhVrAP/d1fZQoaAZHQGGqbJnxri5oB03oA2gIR0CTG8hlDneSdX2UKGgGR0BuehgE2YOUaAdNLAFoCEdAkxwhnBciW3V9lChoBkdAZGC078vVVmgHTegDaAhHQJMcsjeKsMl1fZQoaAZHQENX/5LytmtoB0vmaAhHQJMeIy0rsjV1fZQoaAZHQDhUW/JvHcVoB0uoaAhHQJMh6NaQmu11fZQoaAZHQGOGn6Mzdk9oB03oA2gIR0CTKaTaTOgQdX2UKGgGR0BiEVnZkCmuaAdN6ANoCEdAkzAr5M10knV9lChoBkdAYcfUMG5c1WgHTegDaAhHQJM7npIMBp51fZQoaAZHQGBweoUBXCFoB03oA2gIR0CTXCCJGe+VdX2UKGgGR0Bm1bOu7pV0aAdN6ANoCEdAk1ymLgn+h3V9lChoBkdAY105H3Dej2gHTegDaAhHQJNjUSBbwBp1fZQoaAZHQGBwDASFoL5oB03oA2gIR0CTZXUr08NhdX2UKGgGR0Bg3B2r4nF6aAdN6ANoCEdAk2igjD8+A3V9lChoBkdAYupyCnP3SWgHTegDaAhHQJNq9eAuqWF1fZQoaAZHQGRpfs3Q2MtoB03oA2gIR0CTbHbVSXMRdX2UKGgGR0BhT2dkJ8fFaAdN6ANoCEdAk2347A+IM3V9lChoBkdAYjKOz6ab4WgHTegDaAhHQJNxZYlpoK51fZQoaAZHQGNT1NxlxwRoB03oA2gIR0CTcdEn9ehPdX2UKGgGR0BkC/OKO1fFaAdN6ANoCEdAk3J9MfzSTnV9lChoBkdAYq46mwaBJGgHTegDaAhHQJN08zAN5MV1fZQoaAZHQGV5jWkJrtVoB03oA2gIR0CTePHbAUL2dX2UKGgGR0BhAvTTfBN3aAdN6ANoCEdAk4DBSYPXkHV9lChoBkdAXz1DlYEGJWgHTegDaAhHQJOHa20AtFt1fZQoaAZHQGSG9kauOjtoB03oA2gIR0CTk8JbMX7+dX2UKGgGR0Bh0u65Gz8haAdN6ANoCEdAk7Wp+lTFVHV9lChoBkdAZTBcnmaH9GgHTegDaAhHQJO2NdHDrJN1fZQoaAZHQGQ2mZE2HcloB03oA2gIR0CTvRO4XoC/dX2UKGgGR0BelLq6e5FxaAdN6ANoCEdAk79VAZ88cXV9lChoBkdAY+DC9h7VrmgHTegDaAhHQJPCgQQL/jt1fZQoaAZHQGUUCOvMbFVoB03oA2gIR0CTxOXZoPCmdX2UKGgGR0BiNA95hSccaAdN6ANoCEdAk8ZgR9PUKHV9lChoBkdAY0xXXAdn02gHTegDaAhHQJPH41O0svt1fZQoaAZHQE4UvHtF8XxoB00iAWgIR0CTyhfNA1NydX2UKGgGR0BinI0Q9RrKaAdN6ANoCEdAk8taPsAvMHV9lChoBkdAY1QsRxtHhGgHTegDaAhHQJPLw5YHPeJ1fZQoaAZHQGGotqxkd3loB03oA2gIR0CTzG0G/vfCdX2UKGgGR0Bj9Bk9U0emaAdN6ANoCEdAk83zwH7gsXV9lChoBkdAYkmJvYODrmgHTegDaAhHQJPRkWk8A7x1fZQoaAZHQDYCb/ffoA5oB0vcaAhHQJPYRib2Dg91fZQoaAZHQGNkAOSW7e5oB03oA2gIR0CT2Ee5Fw1jdX2UKGgGR0BiiSfzz3AVaAdN6ANoCEdAk94bDuSfUXV9lChoBkdAYXj15jYqXmgHTegDaAhHQJPosiA2AG11ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 256,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:655bfa76095fbc4cef63ba61b2f324bb30182b9bc5f62e1cfc15027eb812a062
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6187f7a46ea133eaa87893df310a960777b198acc497756912b788a92bfc4803
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (166 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 251.5496425466169, "std_reward": 38.106910691151256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-18T00:22:41.241110"}
|