llava-uhd-new / scripts /v1_5 /eval /infographics.sh
ZzzHelloWorld's picture
Add files using upload-large-folder tool
c728d79 verified
#!/bin/bash
gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
IFS=',' read -ra GPULIST <<< "$gpu_list"
CHUNKS=${#GPULIST[@]}
CKPT=$1
echo $CKPT
SPLIT="test"
for IDX in $(seq 0 $((CHUNKS-1))); do
CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m llava.eval.model_vqa_loader \
--model-path ./checkpoints_new/$CKPT \
--question-file ./playground/data/eval/InfographicsVQA/info_questions.jsonl \
--image-folder ./playground/data/ureader/DUE_Benchmark/InfographicsVQA/pngs \
--answers-file ./playground/data/eval/InfographicsVQA/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl \
--num-chunks $CHUNKS \
--chunk-idx $IDX \
--temperature 0 \
--num_beams 1 \
--conv-mode vicuna_v1 &
done
wait
output_file=./playground/data/eval/InfographicsVQA/answers/$SPLIT/$CKPT/merge_slice.jsonl
# Clear out the output file if it exists.
> "$output_file"
# Loop through the indices and concatenate each file.
for IDX in $(seq 0 $((CHUNKS-1))); do
cat ./playground/data/eval/InfographicsVQA/answers/$SPLIT/$CKPT/${CHUNKS}_${IDX}.jsonl >> "$output_file"
done
python -m llava.eval.eval_docvqa \
--annotation-file ./playground/data/eval/InfographicsVQA/info_annotations.jsonl \
--result-file $output_file \
--mid_result ./playground/data/eval/InfographicsVQA/mid_results/$CKPT.jsonl \
--output_result ./exp_results/$CKPT/info_result.jsonl