# Check if three arguments are passed | |
if [ "$#" -ne 7 ]; then | |
echo "Usage: $0 <model_path> <question_path> <base_answer_path> <image_folder> <extra_prompt> <N> <temperature>" | |
exit 1 | |
fi | |
# Assign the command line arguments to variables | |
model_path=$1 | |
question_path=$2 | |
base_answer_path=$3 | |
image_folder=$4 | |
extra_prompt=$5 | |
N=$6 | |
temperature=$7 | |
# Loop over each chunk/process | |
for (( chunk_id=0; chunk_id<N; chunk_id++ )) | |
do | |
# Define the answer path for each chunk | |
answer_path="${base_answer_path}/result_${chunk_id}.jsonl" | |
if [ -f "$answer_path" ]; then | |
rm "$answer_path" | |
fi | |
# Run the Python program in the background | |
CUDA_VISIBLE_DEVICES="$chunk_id" python3 llava/eval/model_vqa.py --model-path "$model_path" --question-file "$question_path" --answers-file "$answer_path" --num-chunks "$N" --chunk-idx "$chunk_id" --image-folder "$image_folder" --extra-prompt "$extra_prompt" --temperature "$temperature" & | |
# Uncomment below if you need a slight delay between starting each process | |
# sleep 0.1 | |
done | |
# Wait for all background processes to finish | |
wait | |
merged_file="${base_answer_path}/result.jsonl" | |
if [ -f "$merged_file" ]; then | |
rm "$merged_file" | |
fi | |
# Merge all the JSONL files into one | |
#cat "${base_answer_path}"_*.jsonl > "${base_answer_path}.jsonl" | |
for ((i=0; i<N; i++)); do | |
input_file="${base_answer_path}/result_${i}.jsonl" | |
cat "$input_file" >> "${base_answer_path}/result.jsonl" | |
done | |
# remove the unmerged files | |
for (( chunk_id=0; chunk_id<N; chunk_id++ )) | |
do | |
# Define the answer path for each chunk | |
answer_path="${base_answer_path}/result_${chunk_id}.jsonl" | |
if [ -f "$answer_path" ]; then | |
rm "$answer_path" | |
fi | |
done |