llava-uhd-new / scripts /archived /dpo_data_info.py
ZzzHelloWorld's picture
Add files using upload-large-folder tool
ca7c7f9 verified
import json
import re
json_path = "/mnt/bn/vl-research/workspace/boli01/projects/sft_data_workspace/vlfeedback_80k.jsonl"
with open(json_path, "r") as f:
data = f.readlines()
data = [json.loads(d) for d in data]
def convert_format(original_data, dimension="Visual Faithfulness"):
converted_data = []
for item in original_data:
# Assuming the best response is the one with the highest helpfulness rating
best_completion = max(item["completions"], key=lambda x: int(x["annotations"]["Helpfulness"]["Rating"]))
best_response = best_completion["response"]
best_model = best_completion["model"]
if "†source" in best_response:
print(best_response)
# Regex pattern to match the pattern 【digit†source】
pattern = r"【\d+†source】"
# Replace the matched patterns with an empty string
cleaned_text = re.sub(pattern, "", best_response)
best_response = cleaned_text
print(f"*****************************************")
print(best_response)
# Assuming the worst response is the one with the lowest helpfulness rating
worst_completion = min(item["completions"], key=lambda x: int(x["annotations"]["Helpfulness"]["Rating"]))
worst_response = worst_completion["response"]
if "†source" in worst_response:
print(worst_response)
# Regex pattern to match the pattern ��digit†source】
pattern = r"【\d+†source】"
# Replace the matched patterns with an empty string
cleaned_text = re.sub(pattern, "", worst_response)
worst_response = cleaned_text
print(f"*****************************************")
print(worst_response)
# Extract scores
best_score = int(best_completion["annotations"][dimension]["Rating"])
worst_score = int(worst_completion["annotations"][dimension]["Rating"])
# Construct the new format
new_item = {
"id": item["id"],
"prompt": item["prompt"],
"answer": "",
"image": f"silkie_dpo/{item['id']}.jpg", # Assuming the video ID is the last part of the original ID
"chosen": best_response,
"rejected": worst_response,
"chosen_score": best_score,
"rejected_score": worst_score,
}
converted_data.append(new_item)
return converted_data
for dimension in ["Visual Faithfulness", "Helpfulness", "Ethical Considerations"]:
converted_data = convert_format(data, dimension=dimension)
with open(f"/mnt/bn/vl-research/data/llava_instruct/dpo_data/silkie_dpo_data_{dimension.replace(' ', '_').lower()}_{len(converted_data)}.json", "w") as f:
json.dump(converted_data, f, indent=4)