|
import os |
|
import argparse |
|
import json |
|
|
|
from llava.eval.m4c_evaluator import EvalAIAnswerProcessor |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--annotation-file", type=str, required=True) |
|
parser.add_argument("--result-file", type=str, required=True) |
|
parser.add_argument("--result-upload-file", type=str, required=True) |
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
args = parse_args() |
|
|
|
os.makedirs(os.path.dirname(args.result_upload_file), exist_ok=True) |
|
|
|
results = [] |
|
error_line = 0 |
|
for line_idx, line in enumerate(open(args.result_file)): |
|
try: |
|
results.append(json.loads(line)) |
|
except: |
|
error_line += 1 |
|
results = {x["question_id"]: x["text"] for x in results} |
|
test_split = [json.loads(line) for line in open(args.annotation_file)] |
|
split_ids = set([x["question_id"] for x in test_split]) |
|
|
|
print(f"total results: {len(results)}, total split: {len(test_split)}, error_line: {error_line}") |
|
|
|
all_answers = [] |
|
|
|
answer_processor = EvalAIAnswerProcessor() |
|
|
|
for x in test_split: |
|
|
|
assert x["question_id"] in results, print(x) |
|
all_answers.append({"image": x["image"], "answer": answer_processor(results[x["question_id"]])}) |
|
|
|
with open(args.result_upload_file, "w") as f: |
|
json.dump(all_answers, f) |
|
|