ppo-LunarLander-v2 / config.json
ZivK's picture
Inital trained ppo model of LunarLander-v2
3966343
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79838de530a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79838de53130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79838de531c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79838de53250>", "_build": "<function ActorCriticPolicy._build at 0x79838de532e0>", "forward": "<function ActorCriticPolicy.forward at 0x79838de53370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79838de53400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79838de53490>", "_predict": "<function ActorCriticPolicy._predict at 0x79838de53520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79838de535b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79838de53640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79838de536d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79838dff1800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699724515309562584, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIqCcr5zlg0/2MgOvgnsQ76ose+9HjLGPAAAAAAAAAAAeugKvlJfmbumGic4jyS9NXEJ+zz6a1e3AACAPwAAgD8A0cc9NaKiPuY4172llIq+lgmkvSautjwAAAAAAAAAAHMQFb49byG7oymFOPA4LDUr2kM8MUybtwAAgD8AAIA/UxyPvhoSKj8WXA69PG+Evl9NxL2q09Y9AAAAAAAAAADzCra9XKsSunOXn7qvmMS1+ciNOgIpvjkAAAAAAACAPw3jlb2syb8/JdSOvvOf/r2mvsu43bggvgAAAAAAAAAAzQHQvZUQbD+r+cO93tzOvr1SiL2BrpE8AAAAAAAAAAAa7QU99uATuh5qQ7l1Rry06VR8OyJ7ZTgAAIA/AACAP5pgzTzhEI+64Fw2Oxw32DZSLgi5l2s6ugAAgD8AAIA/qx+ivoHbSz8Vc4i9Dbahvk4Njr5PScE9AAAAAAAAAACaNBg+vzuFP9blmT1x4oC+hBQsPlgHoL0AAAAAAAAAAMCfg7183lo9Jhg7PYEFXL7DHsO7PgEPPQAAAAAAAAAATZTOvSlgGrqrzwi6/Ig1Np8uPDkk7xw5AACAPwAAAACaqrg89th4uiE6tbsArz84ETcROwH9vzcAAIA/AACAP6iNl76ojCw/rSJavWeNlr54pPK9+4ePPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGZ0hrN4Z/GMAWyUTegDjAF0lEdAk0NTPOY6XHV9lChoBkdAYg2UwBYFJWgHTegDaAhHQJNDpXRw6yV1fZQoaAZHQGh0Exh2GItoB03oA2gIR0CTRkEpAlfJdX2UKGgGR0BllPpjc2zfaAdN6ANoCEdAk2aW0JF9a3V9lChoBkdAYwwBUaQ3gmgHTegDaAhHQJNpz++/QBx1fZQoaAZHQGZLKbz9S/FoB03oA2gIR0CTbfWqcVgydX2UKGgGR0BhiDcdo372aAdN6ANoCEdAk25eg6EJ0HV9lChoBkdAZucojv/ipGgHTegDaAhHQJN19h4MWoF1fZQoaAZHQGRshBRhttRoB03oA2gIR0CTd1wCbMHKdX2UKGgGR0Bka4/LTx5LaAdN6ANoCEdAk4HcBhhH9XV9lChoBkdAXYyQaJhvzmgHTegDaAhHQJOCPHGS6lN1fZQoaAZHQGKgzS1E3KloB03oA2gIR0CTgqbm2b5NdX2UKGgGR0Bi27fcer+6aAdN6ANoCEdAk4R1VxS5y3V9lChoBkdAY7ADqW1MNGgHTegDaAhHQJOGU3Kji4t1fZQoaAZHQGTo+hoM8YBoB03oA2gIR0CTh1tW+49YdX2UKGgGR0BxZm+dsi0OaAdNCwNoCEdAk4htutOmBXV9lChoBkdAXkIRe1KGtmgHTegDaAhHQJOM6cOLBKt1fZQoaAZHQGpT46Oo5xRoB02mA2gIR0CTkbXr+o9+dX2UKGgGR0BnFghnrY5DaAdN6ANoCEdAk5o4F7laKXV9lChoBkdAcF7glWwNb2gHTXABaAhHQJOaY0sOG0x1fZQoaAZHQG3cyAhB7eFoB015AmgIR0CTnN0DU3GXdX2UKGgGR0BxP5R77bcoaAdNsgFoCEdAk50GNBF/hHV9lChoBkdAYiAelKsdUGgHTegDaAhHQJOwnqv/zat1fZQoaAZHQGSs17IDHOtoB03oA2gIR0CTstA80UGndX2UKGgGR0BmgPQID5j6aAdN6ANoCEdAk7ahMrVe8nV9lChoBkdAZaACuEEkjWgHTegDaAhHQJO3D+n62v11fZQoaAZHQHGvnWWhRIloB03JAWgIR0CTuL85jpcHdX2UKGgGR0BkbmHYYixFaAdN6ANoCEdAk78YKpkwvnV9lChoBkdAb0mahHskZGgHTbkCaAhHQJPAM482aUl1fZQoaAZHQGzHZW7voeRoB03wAmgIR0CTxXKYzBRAdX2UKGgGR0Bxh1U0elsQaAdNJAJoCEdAk87SmIj4YnV9lChoBkdAXlIqkM1CPmgHTegDaAhHQJPQ+qGUOd51fZQoaAZHQGYM9JJ5E+hoB03oA2gIR0CT1FwXZXdTdX2UKGgGR0BvmSkRBeHBaAdNMANoCEdAk9ZxTOxB3XV9lChoBkdAYlVFEy+HrWgHTegDaAhHQJPWdLeyiVV1fZQoaAZHQG7hAO8TSLJoB032AWgIR0CT4jFa0QbudX2UKGgGR0BvB7haTwDvaAdNkwNoCEdAk+O4dp7CznV9lChoBkdAYyBq46Oo52gHTegDaAhHQJPpH1pTMq11fZQoaAZHQGREgHNX5nFoB03oA2gIR0CT6/ZF5OafdX2UKGgGR0Blz1SXMQmNaAdN6ANoCEdAk+9GWyC4BnV9lChoBkdAYzXiobXHzmgHTegDaAhHQJQJUcghbGF1fZQoaAZHQG2jjlxOtXBoB00qA2gIR0CUDxLt/nW8dX2UKGgGR0BifvXRPXTWaAdN6ANoCEdAlA9Nd7fHgnV9lChoBkdAYSFg75mAb2gHTegDaAhHQJQP3yvs7dV1fZQoaAZHQGHGYdyT6i1oB03oA2gIR0CUEkbUwztUdX2UKGgGR0BtsSABkqc3aAdNgQJoCEdAlBcuANG3F3V9lChoBkdAberUyYXwb2gHTcACaAhHQJQaSpFTeft1fZQoaAZHQG7zjtPYWcloB001A2gIR0CUG2j2i+L4dX2UKGgGR0BxMsAQxvehaAdNuwFoCEdAlBx6XSjQA3V9lChoBkdAbtwevIOpbWgHTTACaAhHQJQctaC+UQl1fZQoaAZHQHFQ+yAxzq9oB01YAWgIR0CUHMnQY1pCdX2UKGgGR0BKNyVGCqZMaAdL4GgIR0CUHN8aXKKYdX2UKGgGR0Bkfx8BuGbkaAdN6ANoCEdAlB3hXCCSR3V9lChoBkdAZa3EMspXqGgHTegDaAhHQJQjzpNbkfd1fZQoaAZHQHBJLilzltFoB02dAWgIR0CUJBXVbzK+dX2UKGgGR0Bk7Lp1RtP6aAdN6ANoCEdAlCWN4VymynV9lChoBkdActgE3sHB12gHTZ0BaAhHQJQuh8gIQe51fZQoaAZHQG+2UCA+Y+loB02BAWgIR0CULsK9f1HwdX2UKGgGR0BfWuc2BJ7LaAdN6ANoCEdAlDMRQSBbwHV9lChoBkdAcmxpyIYWL2gHTZwCaAhHQJQ4YZrHlwN1fZQoaAZHQHGhZZr56+poB02EAWgIR0CUOQHBUJfIdX2UKGgGR0BxVKHCXQdCaAdNngFoCEdAlDrGe+VTrHV9lChoBkdAYpeMdcSoO2gHTegDaAhHQJQ6/uqm0md1fZQoaAZHQHDNJpBX0XhoB02CAWgIR0CUOxoAXEZSdX2UKGgGR0BtJgUBXCCSaAdNXwNoCEdAlDyfECNjsnV9lChoBkdAbAEN7SiM52gHTXsCaAhHQJQ8t5Y5ksl1fZQoaAZHQGGRgjyFwkxoB03oA2gIR0CUVgXQtz0ZdX2UKGgGR0BwgXN7jT8YaAdNjgNoCEdAlFcZo9LYgHV9lChoBkdAcHDIhQm/nGgHTXIBaAhHQJRYhz6rNnp1fZQoaAZHQHI36jWTX8RoB00wA2gIR0CUWxw2VE/jdX2UKGgGR0Bvmj1K5CnhaAdNXQFoCEdAlFs0QK8cuXV9lChoBkdAcHfjafzz3GgHTT4DaAhHQJRdVfrrxAl1fZQoaAZHQHBELEcbR4RoB001AWgIR0CUXWKw6hg3dX2UKGgGR0BwmXEFW4mUaAdNLwFoCEdAlF2M2itaIXV9lChoBkdAUDJzZHuqm2gHS7FoCEdAlF7xl6JIlXV9lChoBkdAchjrSE12q2gHTQgCaAhHQJRfR1loUSJ1fZQoaAZHQHH6op6QeV9oB01QAWgIR0CUYGx6OYICdX2UKGgGR0BkkBpQDV6NaAdN6ANoCEdAlGDZAD7qIXV9lChoBkdAYhU5U96kZmgHTegDaAhHQJRiv6dlNDd1fZQoaAZHQHF1so+fRNRoB03HAWgIR0CUZLY2Kl54dX2UKGgGR0Bv5Chi9ZieaAdNUgFoCEdAlGic89wFT3V9lChoBkdAcObYj0L+gmgHTVMBaAhHQJRovjp9qlB1fZQoaAZHQEPtAv+OwPloB0vgaAhHQJRplqFh5Pd1fZQoaAZHQHBLR+WnjyZoB019AmgIR0CUbDews5GSdX2UKGgGR0BuQCH9FWn1aAdN/wFoCEdAlG2ypFTef3V9lChoBkdAcY73rUsnRmgHTbYBaAhHQJRw8T/Q0Gh1fZQoaAZHQG2gmKqGUOdoB02mAWgIR0CUcdyTpxFRdX2UKGgGR0Byyo4FRpDeaAdN9QFoCEdAlHI0ZBLPEHV9lChoBkdAR5zbzshPkGgHS81oCEdAlHKgdXDFZXV9lChoBkdAb03yvLX+VGgHTfcCaAhHQJRzRJQLux91fZQoaAZHQHFeK3/givBoB01SAmgIR0CUdbUI9kjHdX2UKGgGR0BtIZh2GIsRaAdNsAFoCEdAlHb9Mj/uLXV9lChoBkdAcXkOOKfnOmgHTTQCaAhHQJR6EDOkcjt1fZQoaAZHQHCMGRRuTA5oB01bAWgIR0CUfJh6Skj5dX2UKGgGR0Bw46KgqVhTaAdNBANoCEdAlH3wNwzch3V9lChoBkdAYkGp2ECeVmgHTegDaAhHQJR+FNoJzDJ1fZQoaAZHQG9uz0pVjqhoB02oAWgIR0CUf2WE9MbndX2UKGgGR0BIOTlkpZwGaAdNDwFoCEdAlH/f1g6U7nV9lChoBkdAcFO5AQg9vGgHTU0BaAhHQJSASPS2H+J1fZQoaAZHQGUlxt52QnxoB03oA2gIR0CUgiF+uvECdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}