ZioYuri78 commited on
Commit
5320c10
1 Parent(s): af88806

Upload PPO_LLV2_1024_64_32_500K

Browse files
PPO_LLV2_1024_64_32_500K.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4cf043726dc2d1a85128643d5cf1ae3192d4f037610ff13724902fb27198451
3
+ size 149017
PPO_LLV2_1024_64_32_500K/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
PPO_LLV2_1024_64_32_500K/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff27b5ddda0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff27b5dde40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff27b5ddee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff27b5ddf80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff27b5de020>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff27b5de0c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff27b5de160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff27b5de200>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff27b5de2a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff27b5de340>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff27b5de3e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff27b5de480>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ff27b5da000>"
21
+ },
22
+ "verbose": 2,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 524288,
25
+ "_total_timesteps": 500000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1712580237497407178,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAID0Zj2upaG6kE8zu3uSdbwKWYQ6prBWvQAAAAAAAIA/gFOXvXw3pT53UAi+FWCqvu/zHb71ZVC9AAAAAAAAAAAAiG07HxXNueh8CD7lBIE2X1MTO1/2gTUAAIA/AACAPyaR2D6BAYo/UXO3Pkfmv77ne8I+5E2YPQAAAAAAAAAAs9+4PeFQi7qbO3k8fyGYvZtv1blmqTW9AAAAAAAAAABmZvY4uG61P4IbGjzzR489Da/LumN1+LwAAAAAAAAAAAqrgD4kxVI8AOLmu//NjbohD8Y9Dmb/OgAAgD8AAAAAFvtmvnYEB7zOTq07RU0YOZ1HUj0yAf65AACAPwAAgD8Nuza+uDD4OjZZFbwblU45TP+7vKa+GLoAAIA/AACAP0Cu5L1cMzm6AiTNvG+ZwLi/gk25zbouOAAAgD8AAIA/0xwCvj1ULbsOH5w6kG++ObBQMzzzy4i5AACAPwAAgD8zEOA8KfBKusIQEDvDlkm25TaPu/SdQ7UAAIA/AACAP+aiNz1IV4G69cHtuaxiArWzpd66cBgKOQAAgD8AAIA/MwPiusO9a7oo72k77xHhN0KygLvrWaE2AACAPwAAgD/WPoo+9C0JvQDifz7TglM7b257vhr+hb0AAAAAAACAP838Tb3hzIq6ZSR5O13CMzMHwlS7E+9CMwAAgD8AAIA/M0vdPY+GPrrHf4E8uauRPM3YjrkOOfU8AACAPwAAgD9DsQU/XZrevdMWFDzjJ6M8JOsZvgUa47oAAIA/AACAP/On3j0UKte6I2fkO5XvYzyddjG8kLBIPQAAgD8AAIA/5mFTPaQAULku8Aq8cNiqNxoroDpbvxq3AACAPwAAgD+a65I9MSI5PiMsEj1Wr3m+09ZsvhvAWT0AAAAAAAAAAI0xmL0I3wc/7iX3vU77tb5Dxca8nhnKvAAAAAAAAAAAWkbOvVRKjz8G3G++s9PmviMxqb1p/qY8AAAAAAAAAADTQ3Q+SIroO7WmLb22gJC64nSAPU5khbsAAIA/AACAP7Vrqr4BHK+8uDBkPAtbbjyE2MA9e8L1vAAAAAAAAAAAMwjGva5/oLpLa6y4x0TpvLwHfjuS8cs9AACAPwAAAADNNi08FDaMuqqCazyf2BW52J2fu8XeELgAAIA/AACAPw0dxz0gf+M+7lJTvWXZpr5ljBI+m8NuuwAAAAAAAAAAzYSXPY82QLq+vQY6dzNGNG0Mt7pNxBy5AACAPwAAgD/uvqO+VGqZvAvLFrwbD1K89zrSPdK2gb0AAAAAAAAAAJqg27yKuLo/5i9uvhmRcj1uY6I8FjSDvAAAAAAAAAAAWqGrvT3CBLuDJtw7PAHDPKHtCLxR3ac9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.04857599999999995,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVJgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEPmScslLOCMAWyUTegDjAF0lEdAcptIAfdRBXV9lChoBkdAUtsuIyj59GgHTegDaAhHQHKhMRlHz6J1fZQoaAZHQFrSW5Yoy9FoB03oA2gIR0Byp+D8LroodX2UKGgGR0BJP4cebNKRaAdN6ANoCEdAcqwlrM1TBXV9lChoBkdAXM19XtBv72gHTegDaAhHQHKu2DHwPRR1fZQoaAZHQENiZm7J4jdoB03oA2gIR0Byt07zTWoWdX2UKGgGR0BWE70OEug6aAdN6ANoCEdAcrhEPlMh5nV9lChoBkdAWnZlUZNwi2gHTegDaAhHQHLGx1s+FDh1fZQoaAZHQGF16ef7JnxoB03oA2gIR0Byy0XGff4zdX2UKGgGR8At9/x2B8QaaAdLzWgIR0ByzCPBBRhudX2UKGgGR0BQhNFnZkCnaAdN6ANoCEdActdbQTmGNHV9lChoBkdAMCHxOLzf8GgHS8RoCEdActgEHMUypXV9lChoBkfAJyuVxCIDYGgHS6BoCEdAc6TaSs8xK3V9lChoBkdASQD19ORDC2gHTegDaAhHQHOrqFM7EHd1fZQoaAZHQDwBooNNJvpoB0vRaAhHQHOtLU1AJLN1fZQoaAZHv9+ydFvybx5oB0uoaAhHQHOvhD1Gsmx1fZQoaAZHQD4bk5p8F6loB0u6aAhHQHPD2X5WRzR1fZQoaAZHQER1dKNAC4loB0u+aAhHQHPLFR+BpYd1fZQoaAZHwEkrHMEA5rBoB0uvaAhHQHPTd43WFvh1fZQoaAZHQFcvOGTLW7RoB03oA2gIR0Bz2cw5/9YPdX2UKGgGR0BC49tVJcxCaAdN6ANoCEdAc9w+mFaje3V9lChoBkfABD3Cbc45tGgHS7VoCEdAc+iq3EyckXV9lChoBkdAVDwUO/cnE2gHTegDaAhHQHQDFl5GBnV1fZQoaAZHQGD5VJlJ6IFoB03oA2gIR0B0CrEfkmx/dX2UKGgGR0AjQkzoEB8yaAdLtWgIR0B0FpLxqfvndX2UKGgGR0BZqoI4VARkaAdN6ANoCEdAdDNa37UG3XV9lChoBkdAVWsByS3b22gHTegDaAhHQHQ4Kw2VE/l1fZQoaAZHQF+8Sq2jO9poB03oA2gIR0B0OYdzXBgvdX2UKGgGR0BXhz101ZTyaAdN6ANoCEdAdEf6k690zXV9lChoBkdAT/dJ8OTaCmgHTegDaAhHQHRJJosZpBZ1fZQoaAZHQFXpFNL127poB03oA2gIR0B0S97WuoxYdX2UKGgGR8BAjjaoMrmRaAdLyWgIR0B0Y4JqqOtGdX2UKGgGR0BUNj37DVH4aAdN6ANoCEdAdGdUahpQDXV9lChoBkdASAtTP0I1L2gHTegDaAhHQHRvrP+n62x1fZQoaAZHQF/ad+XqqwRoB03oA2gIR0B0c4VTJhfCdX2UKGgGR0BcagdGRV6vaAdN6ANoCEdAdHbymhufmXV9lChoBkdAGDxT850bLmgHS4xoCEdAdH5oBq9GqnV9lChoBkdAYT/AJswcpGgHTegDaAhHQHR/EgGKQ7t1fZQoaAZHwDFTdXT3IuJoB0vBaAhHQHSALt/nW8R1fZQoaAZHQFujKpT/ACZoB03oA2gIR0B0jL1L8JlbdX2UKGgGR0BN/wXIlt0naAdN6ANoCEdAdI8K/VRUFXV9lChoBkdATPv+OwPiDWgHTegDaAhHQHSYLr9l2/11fZQoaAZHQF0/AxBVuJloB03oA2gIR0B0nbf3vhIfdX2UKGgGR0BAaVktmL9/aAdLsWgIR0B0oVXOnl4kdX2UKGgGR0AhSGRmseXBaAdLmGgIR0B0o8kona37dX2UKGgGR0A6pGp++dsjaAdLlmgIR0B0pjZ9NN8FdX2UKGgGR0A2gTwDvE0jaAdLxmgIR0B0rjovBacJdX2UKGgGR0Al0LUCq6vraAdLrmgIR0B0s9OP/7zkdX2UKGgGR0BhIDXarWAgaAdN6ANoCEdAdLZCGetjkXV9lChoBkdAVOSuLaVUuWgHTegDaAhHQHS7S6g/Tsp1fZQoaAZHQDd+fvnbItFoB0ukaAhHQHS+RrrPdEd1fZQoaAZHQFZE1mrbQC1oB03oA2gIR0B0xGtuDSPVdX2UKGgGR0BTU6IWP91maAdN6ANoCEdAdM52U0Nz83V9lChoBkdAUZv2dupCKWgHTegDaAhHQHThfeDWbw11fZQoaAZHQB7nTAnDziFoB0uEaAhHQHTmEF4cFQl1fZQoaAZHQExejKPn0TVoB03oA2gIR0B07fYjB2wFdX2UKGgGR0A9aVO9FnZkaAdLw2gIR0B07vrY5DJEdX2UKGgGR0BSefeP7vXtaAdN6ANoCEdAdPfa6BiCrnV9lChoBkdAZJ5LM9r432gHTegDaAhHQHXMqOktVaR1fZQoaAZHQGDneHaews5oB03oA2gIR0B1zsiV0Lc9dX2UKGgGR0BYC7fYSQHSaAdN6ANoCEdAdeGigkC3gHV9lChoBkdAV7y/QBxPwmgHTegDaAhHQHXn19ORDCx1fZQoaAZHwAiZTQ3PzFxoB0unaAhHQHXsB5Pdl/Z1fZQoaAZHwGidslb/wRZoB01ZAWgIR0B17xGz8gp0dX2UKGgGR0BZkrrPdEb6aAdN6ANoCEdAdfQ/ViF0xXV9lChoBkdAVEOXHBDXv2gHTegDaAhHQHX2V6JIlMR1fZQoaAZHQF+BtxuKoAJoB03oA2gIR0B2AFbdJrckdX2UKGgGR0BgcDg88s+WaAdN6ANoCEdAdhTH1vl2eXV9lChoBkdAWzdaouPFN2gHTegDaAhHQHYa8qBmPHV1fZQoaAZHQEBzlV94NZxoB0vKaAhHQHYnCgGr0at1fZQoaAZHQAT7sv7FbV1oB0u3aAhHQHYrp04iosJ1fZQoaAZHQDaiAXl8w6BoB0vBaAhHQHYspyuIRAd1fZQoaAZHQE+0P07KaG5oB0upaAhHQHYyXcDbJwN1fZQoaAZHQGPW63Zwn6VoB03oA2gIR0B2OvvnbItEdX2UKGgGR0BTGdZ7ojfOaAdN6ANoCEdAdj7gPEsJ6nV9lChoBkdAYwOMir1dxGgHTegDaAhHQHZL7CemNzd1fZQoaAZHQE9eXm/336BoB03oA2gIR0B2TNhNM496dX2UKGgGR0BGvKFh5PdmaAdLf2gIR0B2VT3FkxyodX2UKGgGR0BTBQCjk+5faAdN6ANoCEdAdmNFhXr+pHV9lChoBkfAV8nXUYsND2gHTVMDaAhHQHZ06SDAaeh1fZQoaAZHQF+biPhhpg1oB03oA2gIR0B2fKYa5wwTdX2UKGgGR0BfBc9r433paAdN6ANoCEdAdn3ETxoZh3V9lChoBkdARORCY1He8GgHTegDaAhHQHaMoODrZ8N1fZQoaAZHQEdVIGQjlgdoB0vBaAhHQHaTUF8ohIR1fZQoaAZHQFut7mdRR/FoB03oA2gIR0B2ljLRrrPddX2UKGgGR0Bfvhsdkrf+aAdN6ANoCEdAdpv2DQJHAnV9lChoBkdAYBRjS5RTCWgHTegDaAhHQHafr9l2/zt1fZQoaAZHQFSNJmNBF/hoB03oA2gIR0B2ojRplBhQdX2UKGgGR0BA36vRqoIfaAdLm2gIR0B2pm6Ae7tidX2UKGgGR0BaxJPuXu3MaAdN6ANoCEdAdq0oexOclXV9lChoBkdAYbSFVT72tmgHTegDaAhHQHa1Z75VOsV1fZQoaAZHQFG7ld1MdtFoB03oA2gIR0B2xF2dNFjNdX2UKGgGR0Blu6m65Gz9aAdN6ANoCEdAds4150KZ2XV9lChoBkdAMhfxpcophGgHS6xoCEdAdtupON5t33V9lChoBkdAYMPbRF7UomgHTegDaAhHQHbiTQiRnvl1fZQoaAZHQGN8HgxagVZoB03oA2gIR0B25xLM9r44dX2UKGgGR0BdOUXgtOEeaAdN6ANoCEdAdvAaLGaQWHV9lChoBkdAV4dHTZxrBWgHTegDaAhHQHb5ZxrBTGZ1fZQoaAZHQFkTpQDV6NVoB03oA2gIR0B3AoZYPoV3dX2UKGgGR0BgkG3nZCfIaAdN6ANoCEdAdwUc6eXiSHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 64,
55
+ "n_steps": 1024,
56
+ "gamma": 0.999,
57
+ "gae_lambda": 0.98,
58
+ "ent_coef": 0.01,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 4,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGQvaG9tZS96aW95dXJpNzgvYW5hY29uZGEzL2VudnMvQUlfRW52L2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZC9ob21lL3ppb3l1cmk3OC9hbmFjb25kYTMvZW52cy9BSV9FbnYvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
+ "observation_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True True True True True]",
75
+ "bounded_above": "[ True True True True True True True True]",
76
+ "_shape": [
77
+ 8
78
+ ],
79
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
80
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
81
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
82
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
83
+ "_np_random": null
84
+ },
85
+ "action_space": {
86
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
+ "n": "4",
89
+ "start": "0",
90
+ "_shape": [],
91
+ "dtype": "int64",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 32,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGQvaG9tZS96aW95dXJpNzgvYW5hY29uZGEzL2VudnMvQUlfRW52L2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZC9ob21lL3ppb3l1cmk3OC9hbmFjb25kYTMvZW52cy9BSV9FbnYvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
98
+ }
99
+ }
PPO_LLV2_1024_64_32_500K/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d345e1ff8f3bd0a04fab008ad0055f3b7f87eabb02900b5db115f5513677a69e
3
+ size 88490
PPO_LLV2_1024_64_32_500K/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef6e57b8f0852f2955e143c11cd77db16ceda11416d547751c75a778f7b05a10
3
+ size 43762
PPO_LLV2_1024_64_32_500K/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
PPO_LLV2_1024_64_32_500K/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024
2
+ - Python: 3.11.8
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.2+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.28.1
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 192.50 +/- 73.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff27b5ddda0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff27b5dde40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff27b5ddee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff27b5ddf80>", "_build": "<function ActorCriticPolicy._build at 0x7ff27b5de020>", "forward": "<function ActorCriticPolicy.forward at 0x7ff27b5de0c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff27b5de160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff27b5de200>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff27b5de2a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff27b5de340>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff27b5de3e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff27b5de480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff27b5da000>"}, "verbose": 2, "policy_kwargs": {}, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712580237497407178, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAID0Zj2upaG6kE8zu3uSdbwKWYQ6prBWvQAAAAAAAIA/gFOXvXw3pT53UAi+FWCqvu/zHb71ZVC9AAAAAAAAAAAAiG07HxXNueh8CD7lBIE2X1MTO1/2gTUAAIA/AACAPyaR2D6BAYo/UXO3Pkfmv77ne8I+5E2YPQAAAAAAAAAAs9+4PeFQi7qbO3k8fyGYvZtv1blmqTW9AAAAAAAAAABmZvY4uG61P4IbGjzzR489Da/LumN1+LwAAAAAAAAAAAqrgD4kxVI8AOLmu//NjbohD8Y9Dmb/OgAAgD8AAAAAFvtmvnYEB7zOTq07RU0YOZ1HUj0yAf65AACAPwAAgD8Nuza+uDD4OjZZFbwblU45TP+7vKa+GLoAAIA/AACAP0Cu5L1cMzm6AiTNvG+ZwLi/gk25zbouOAAAgD8AAIA/0xwCvj1ULbsOH5w6kG++ObBQMzzzy4i5AACAPwAAgD8zEOA8KfBKusIQEDvDlkm25TaPu/SdQ7UAAIA/AACAP+aiNz1IV4G69cHtuaxiArWzpd66cBgKOQAAgD8AAIA/MwPiusO9a7oo72k77xHhN0KygLvrWaE2AACAPwAAgD/WPoo+9C0JvQDifz7TglM7b257vhr+hb0AAAAAAACAP838Tb3hzIq6ZSR5O13CMzMHwlS7E+9CMwAAgD8AAIA/M0vdPY+GPrrHf4E8uauRPM3YjrkOOfU8AACAPwAAgD9DsQU/XZrevdMWFDzjJ6M8JOsZvgUa47oAAIA/AACAP/On3j0UKte6I2fkO5XvYzyddjG8kLBIPQAAgD8AAIA/5mFTPaQAULku8Aq8cNiqNxoroDpbvxq3AACAPwAAgD+a65I9MSI5PiMsEj1Wr3m+09ZsvhvAWT0AAAAAAAAAAI0xmL0I3wc/7iX3vU77tb5Dxca8nhnKvAAAAAAAAAAAWkbOvVRKjz8G3G++s9PmviMxqb1p/qY8AAAAAAAAAADTQ3Q+SIroO7WmLb22gJC64nSAPU5khbsAAIA/AACAP7Vrqr4BHK+8uDBkPAtbbjyE2MA9e8L1vAAAAAAAAAAAMwjGva5/oLpLa6y4x0TpvLwHfjuS8cs9AACAPwAAAADNNi08FDaMuqqCazyf2BW52J2fu8XeELgAAIA/AACAPw0dxz0gf+M+7lJTvWXZpr5ljBI+m8NuuwAAAAAAAAAAzYSXPY82QLq+vQY6dzNGNG0Mt7pNxBy5AACAPwAAgD/uvqO+VGqZvAvLFrwbD1K89zrSPdK2gb0AAAAAAAAAAJqg27yKuLo/5i9uvhmRcj1uY6I8FjSDvAAAAAAAAAAAWqGrvT3CBLuDJtw7PAHDPKHtCLxR3ac9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEPmScslLOCMAWyUTegDjAF0lEdAcptIAfdRBXV9lChoBkdAUtsuIyj59GgHTegDaAhHQHKhMRlHz6J1fZQoaAZHQFrSW5Yoy9FoB03oA2gIR0Byp+D8LroodX2UKGgGR0BJP4cebNKRaAdN6ANoCEdAcqwlrM1TBXV9lChoBkdAXM19XtBv72gHTegDaAhHQHKu2DHwPRR1fZQoaAZHQENiZm7J4jdoB03oA2gIR0Byt07zTWoWdX2UKGgGR0BWE70OEug6aAdN6ANoCEdAcrhEPlMh5nV9lChoBkdAWnZlUZNwi2gHTegDaAhHQHLGx1s+FDh1fZQoaAZHQGF16ef7JnxoB03oA2gIR0Byy0XGff4zdX2UKGgGR8At9/x2B8QaaAdLzWgIR0ByzCPBBRhudX2UKGgGR0BQhNFnZkCnaAdN6ANoCEdActdbQTmGNHV9lChoBkdAMCHxOLzf8GgHS8RoCEdActgEHMUypXV9lChoBkfAJyuVxCIDYGgHS6BoCEdAc6TaSs8xK3V9lChoBkdASQD19ORDC2gHTegDaAhHQHOrqFM7EHd1fZQoaAZHQDwBooNNJvpoB0vRaAhHQHOtLU1AJLN1fZQoaAZHv9+ydFvybx5oB0uoaAhHQHOvhD1Gsmx1fZQoaAZHQD4bk5p8F6loB0u6aAhHQHPD2X5WRzR1fZQoaAZHQER1dKNAC4loB0u+aAhHQHPLFR+BpYd1fZQoaAZHwEkrHMEA5rBoB0uvaAhHQHPTd43WFvh1fZQoaAZHQFcvOGTLW7RoB03oA2gIR0Bz2cw5/9YPdX2UKGgGR0BC49tVJcxCaAdN6ANoCEdAc9w+mFaje3V9lChoBkfABD3Cbc45tGgHS7VoCEdAc+iq3EyckXV9lChoBkdAVDwUO/cnE2gHTegDaAhHQHQDFl5GBnV1fZQoaAZHQGD5VJlJ6IFoB03oA2gIR0B0CrEfkmx/dX2UKGgGR0AjQkzoEB8yaAdLtWgIR0B0FpLxqfvndX2UKGgGR0BZqoI4VARkaAdN6ANoCEdAdDNa37UG3XV9lChoBkdAVWsByS3b22gHTegDaAhHQHQ4Kw2VE/l1fZQoaAZHQF+8Sq2jO9poB03oA2gIR0B0OYdzXBgvdX2UKGgGR0BXhz101ZTyaAdN6ANoCEdAdEf6k690zXV9lChoBkdAT/dJ8OTaCmgHTegDaAhHQHRJJosZpBZ1fZQoaAZHQFXpFNL127poB03oA2gIR0B0S97WuoxYdX2UKGgGR8BAjjaoMrmRaAdLyWgIR0B0Y4JqqOtGdX2UKGgGR0BUNj37DVH4aAdN6ANoCEdAdGdUahpQDXV9lChoBkdASAtTP0I1L2gHTegDaAhHQHRvrP+n62x1fZQoaAZHQF/ad+XqqwRoB03oA2gIR0B0c4VTJhfCdX2UKGgGR0BcagdGRV6vaAdN6ANoCEdAdHbymhufmXV9lChoBkdAGDxT850bLmgHS4xoCEdAdH5oBq9GqnV9lChoBkdAYT/AJswcpGgHTegDaAhHQHR/EgGKQ7t1fZQoaAZHwDFTdXT3IuJoB0vBaAhHQHSALt/nW8R1fZQoaAZHQFujKpT/ACZoB03oA2gIR0B0jL1L8JlbdX2UKGgGR0BN/wXIlt0naAdN6ANoCEdAdI8K/VRUFXV9lChoBkdATPv+OwPiDWgHTegDaAhHQHSYLr9l2/11fZQoaAZHQF0/AxBVuJloB03oA2gIR0B0nbf3vhIfdX2UKGgGR0BAaVktmL9/aAdLsWgIR0B0oVXOnl4kdX2UKGgGR0AhSGRmseXBaAdLmGgIR0B0o8kona37dX2UKGgGR0A6pGp++dsjaAdLlmgIR0B0pjZ9NN8FdX2UKGgGR0A2gTwDvE0jaAdLxmgIR0B0rjovBacJdX2UKGgGR0Al0LUCq6vraAdLrmgIR0B0s9OP/7zkdX2UKGgGR0BhIDXarWAgaAdN6ANoCEdAdLZCGetjkXV9lChoBkdAVOSuLaVUuWgHTegDaAhHQHS7S6g/Tsp1fZQoaAZHQDd+fvnbItFoB0ukaAhHQHS+RrrPdEd1fZQoaAZHQFZE1mrbQC1oB03oA2gIR0B0xGtuDSPVdX2UKGgGR0BTU6IWP91maAdN6ANoCEdAdM52U0Nz83V9lChoBkdAUZv2dupCKWgHTegDaAhHQHThfeDWbw11fZQoaAZHQB7nTAnDziFoB0uEaAhHQHTmEF4cFQl1fZQoaAZHQExejKPn0TVoB03oA2gIR0B07fYjB2wFdX2UKGgGR0A9aVO9FnZkaAdLw2gIR0B07vrY5DJEdX2UKGgGR0BSefeP7vXtaAdN6ANoCEdAdPfa6BiCrnV9lChoBkdAZJ5LM9r432gHTegDaAhHQHXMqOktVaR1fZQoaAZHQGDneHaews5oB03oA2gIR0B1zsiV0Lc9dX2UKGgGR0BYC7fYSQHSaAdN6ANoCEdAdeGigkC3gHV9lChoBkdAV7y/QBxPwmgHTegDaAhHQHXn19ORDCx1fZQoaAZHwAiZTQ3PzFxoB0unaAhHQHXsB5Pdl/Z1fZQoaAZHwGidslb/wRZoB01ZAWgIR0B17xGz8gp0dX2UKGgGR0BZkrrPdEb6aAdN6ANoCEdAdfQ/ViF0xXV9lChoBkdAVEOXHBDXv2gHTegDaAhHQHX2V6JIlMR1fZQoaAZHQF+BtxuKoAJoB03oA2gIR0B2AFbdJrckdX2UKGgGR0BgcDg88s+WaAdN6ANoCEdAdhTH1vl2eXV9lChoBkdAWzdaouPFN2gHTegDaAhHQHYa8qBmPHV1fZQoaAZHQEBzlV94NZxoB0vKaAhHQHYnCgGr0at1fZQoaAZHQAT7sv7FbV1oB0u3aAhHQHYrp04iosJ1fZQoaAZHQDaiAXl8w6BoB0vBaAhHQHYspyuIRAd1fZQoaAZHQE+0P07KaG5oB0upaAhHQHYyXcDbJwN1fZQoaAZHQGPW63Zwn6VoB03oA2gIR0B2OvvnbItEdX2UKGgGR0BTGdZ7ojfOaAdN6ANoCEdAdj7gPEsJ6nV9lChoBkdAYwOMir1dxGgHTegDaAhHQHZL7CemNzd1fZQoaAZHQE9eXm/336BoB03oA2gIR0B2TNhNM496dX2UKGgGR0BGvKFh5PdmaAdLf2gIR0B2VT3FkxyodX2UKGgGR0BTBQCjk+5faAdN6ANoCEdAdmNFhXr+pHV9lChoBkfAV8nXUYsND2gHTVMDaAhHQHZ06SDAaeh1fZQoaAZHQF+biPhhpg1oB03oA2gIR0B2fKYa5wwTdX2UKGgGR0BfBc9r433paAdN6ANoCEdAdn3ETxoZh3V9lChoBkdARORCY1He8GgHTegDaAhHQHaMoODrZ8N1fZQoaAZHQEdVIGQjlgdoB0vBaAhHQHaTUF8ohIR1fZQoaAZHQFut7mdRR/FoB03oA2gIR0B2ljLRrrPddX2UKGgGR0Bfvhsdkrf+aAdN6ANoCEdAdpv2DQJHAnV9lChoBkdAYBRjS5RTCWgHTegDaAhHQHafr9l2/zt1fZQoaAZHQFSNJmNBF/hoB03oA2gIR0B2ojRplBhQdX2UKGgGR0BA36vRqoIfaAdLm2gIR0B2pm6Ae7tidX2UKGgGR0BaxJPuXu3MaAdN6ANoCEdAdq0oexOclXV9lChoBkdAYbSFVT72tmgHTegDaAhHQHa1Z75VOsV1fZQoaAZHQFG7ld1MdtFoB03oA2gIR0B2xF2dNFjNdX2UKGgGR0Blu6m65Gz9aAdN6ANoCEdAds4150KZ2XV9lChoBkdAMhfxpcophGgHS6xoCEdAdtupON5t33V9lChoBkdAYMPbRF7UomgHTegDaAhHQHbiTQiRnvl1fZQoaAZHQGN8HgxagVZoB03oA2gIR0B25xLM9r44dX2UKGgGR0BdOUXgtOEeaAdN6ANoCEdAdvAaLGaQWHV9lChoBkdAV4dHTZxrBWgHTegDaAhHQHb5ZxrBTGZ1fZQoaAZHQFkTpQDV6NVoB03oA2gIR0B3AoZYPoV3dX2UKGgGR0BgkG3nZCfIaAdN6ANoCEdAdwUc6eXiSHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 64, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGQvaG9tZS96aW95dXJpNzgvYW5hY29uZGEzL2VudnMvQUlfRW52L2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZC9ob21lL3ppb3l1cmk3OC9hbmFjb25kYTMvZW52cy9BSV9FbnYvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGQvaG9tZS96aW95dXJpNzgvYW5hY29uZGEzL2VudnMvQUlfRW52L2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZC9ob21lL3ppb3l1cmk3OC9hbmFjb25kYTMvZW52cy9BSV9FbnYvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024", "Python": "3.11.8", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.2+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
replay.mp4 ADDED
Binary file (190 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 192.5007762, "std_reward": 73.21535091987441, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-08T15:01:42.478535"}