Musimple / sample.py
ZheqiDAI's picture
Initial commit
070e26e
raw
history blame
4.94 kB
import os
import torch
import h5py
import random
import numpy as np
import soundfile as sf
from models import DiT
from diffusion import create_diffusion
from tqdm import tqdm
import sys
sys.path.append('./tools/bigvgan_v2_22khz_80band_256x')
from bigvgan import BigVGAN
from torch import nn
import torch.nn.functional as F
import argparse
device = 'cuda:1' if torch.cuda.is_available() else 'cpu'
class MelToAudio_bigvgan(nn.Module):
def __init__(self):
super().__init__()
self.vocoder = BigVGAN.from_pretrained('/home/zheqid/workspace/music_dit/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
self.vocoder.remove_weight_norm()
def __call__(self, z):
x = self.mel_to_audio(z)
return x
def mel_to_audio(self, x):
with torch.no_grad():
self.vocoder.eval()
y = self.vocoder(x[:, :, :])
y = y.squeeze(0)
return y
vocoder = MelToAudio_bigvgan().to(device)
def load_trained_model(checkpoint_path):
model = DiT(
input_size=(80, 800),
patch_size=8,
in_channels=1,
hidden_size=384,
depth=12,
num_heads=6,
)
model.to(device)
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
return model
def load_all_meta_and_mel_from_h5(h5_file):
with h5py.File(h5_file, 'r') as f:
keys = list(f.keys())
for key in keys:
meta_latent = torch.FloatTensor(f[key]['meta'][:]).to(device)
mel = torch.FloatTensor(f[key]['mel'][:]).to(device)
yield key, meta_latent, mel
def extract_random_mel_segment(mel, segment_length=800):
total_length = mel.shape[2]
if total_length > segment_length:
start = np.random.randint(0, total_length - segment_length)
mel_segment = mel[:, :, start:start + segment_length]
else:
padding = segment_length - total_length
mel_segment = F.pad(mel, (0, padding), mode='constant', value=0)
mel_segment = (mel_segment + 10) / 20
return mel_segment
def infer_and_generate_audio(model, diffusion, meta_latent):
latent_size = (80, 800)
z = torch.randn(1, 1, latent_size[0], latent_size[1], device=device)
model_kwargs = dict(y=meta_latent)
with torch.no_grad():
samples = diffusion.p_sample_loop(
model.forward, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
)
return samples
def save_audio(mel, vocoder, output_path, sample_rate=24000):
with torch.no_grad():
if mel.dim() == 4 and mel.shape[1] == 1:
mel = mel[0, 0, :, :]
elif mel.dim() == 3 and mel.shape[0] == 1:
mel = mel[0]
else:
raise ValueError(f"Unexpected mel shape: {mel.shape}")
mel = mel.unsqueeze(0)
wav = vocoder(mel * 20 - 10).cpu().numpy()
sf.write(output_path, wav[0], samplerate=sample_rate)
print(f"Saved audio to: {output_path}")
def main():
parser = argparse.ArgumentParser(description='Generate audio using DiT and BigVGAN')
parser.add_argument('--checkpoint', type=str, required=True, help='Path to model checkpoint')
parser.add_argument('--h5_file', type=str, required=True, help='Path to input H5 file')
parser.add_argument('--output_gt_dir', type=str, required=True, help='Directory to save ground truth audio')
parser.add_argument('--output_gen_dir', type=str, required=True, help='Directory to save generated audio')
parser.add_argument('--segment_length', type=int, default=800, help='Segment length for mel slices (default: 800)')
parser.add_argument('--sample_rate', type=int, default=22050, help='Sample rate for output audio (default: 24000)')
args = parser.parse_args()
model = load_trained_model(args.checkpoint)
diffusion = create_diffusion(timestep_respacing="")
for i, (key, meta_latent, mel) in enumerate(tqdm(load_all_meta_and_mel_from_h5(args.h5_file))):
mel_segment = extract_random_mel_segment(mel, segment_length=args.segment_length)
ground_truth_wav_path = os.path.join(args.output_gt_dir, f"{key}.wav")
save_audio(mel_segment, vocoder, ground_truth_wav_path, sample_rate=args.sample_rate)
generated_mel = infer_and_generate_audio(model, diffusion, meta_latent)
output_wav_path = os.path.join(args.output_gen_dir, f"{key}.wav")
save_audio(generated_mel, vocoder, output_wav_path, sample_rate=args.sample_rate)
if __name__ == "__main__":
main()
### how to use
'''
python sample.py --checkpoint ./gtzan-ck/model_epoch_20000.pt \
--h5_file ./dataset/gtzan_test.h5 \
--output_gt_dir ./sample/gn \
--output_gen_dir ./sample/gt \
--segment_length 800 \
--sample_rate 22050
'''