ZhengPeng7
commited on
Commit
·
bc71d93
1
Parent(s):
5e43a3a
Initial uploading of BiRefNet model trained on DIS-TR and DIS-TEs for DIS.
Browse files- BiRefNet_config.py +11 -0
- README.md +57 -0
- birefnet.py +2244 -0
- config.json +20 -0
- model.safetensors +3 -0
BiRefNet_config.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class BiRefNetConfig(PretrainedConfig):
|
4 |
+
model_type = "SegformerForSemanticSegmentation"
|
5 |
+
def __init__(
|
6 |
+
self,
|
7 |
+
bb_pretrained=False,
|
8 |
+
**kwargs
|
9 |
+
):
|
10 |
+
self.bb_pretrained = bb_pretrained
|
11 |
+
super().__init__(**kwargs)
|
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: BiRefNet
|
3 |
+
tags:
|
4 |
+
- background-removal
|
5 |
+
- mask-generation
|
6 |
+
- Dichotomous Image Segmentation
|
7 |
+
- pytorch_model_hub_mixin
|
8 |
+
- model_hub_mixin
|
9 |
+
repo_url: https://github.com/ZhengPeng7/BiRefNet
|
10 |
+
pipeline_tag: image-segmentation
|
11 |
+
---
|
12 |
+
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
|
13 |
+
|
14 |
+
<div align='center'>
|
15 |
+
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>, 
|
16 |
+
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>, 
|
17 |
+
<a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>, 
|
18 |
+
<a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>, 
|
19 |
+
<a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>, 
|
20 |
+
<a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>, 
|
21 |
+
<a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
|
22 |
+
</div>
|
23 |
+
|
24 |
+
<div align='center'>
|
25 |
+
<sup>1 </sup>Nankai University  <sup>2 </sup>Northwestern Polytechnical University  <sup>3 </sup>National University of Defense Technology  <sup>4 </sup>Aalto University  <sup>5 </sup>Shanghai AI Laboratory  <sup>6 </sup>University of Trento 
|
26 |
+
</div>
|
27 |
+
|
28 |
+
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
|
29 |
+
<a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a> 
|
30 |
+
<a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a> 
|
31 |
+
<a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a> 
|
32 |
+
<a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a> 
|
33 |
+
<a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a> 
|
34 |
+
<a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a> 
|
35 |
+
<a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a> 
|
36 |
+
<a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a> 
|
37 |
+
<a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a> 
|
38 |
+
</div>
|
39 |
+
|
40 |
+
## This repo holds the official weights of BiRefNet trained on DIS5K-TR and DIS5K-TEs for Dichotomous Image Segmentation (DIS).
|
41 |
+
|
42 |
+
**Check the main BiRefNet model repo for more info and how to use it:**
|
43 |
+
https://huggingface.co/ZhengPeng7/BiRefNet/blob/main/README.md
|
44 |
+
|
45 |
+
**Also check the GitHub repo of BiRefNet for all things you may want:**
|
46 |
+
https://github.com/ZhengPeng7/BiRefNet
|
47 |
+
|
48 |
+
## Citation
|
49 |
+
|
50 |
+
```
|
51 |
+
@article{BiRefNet,
|
52 |
+
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
|
53 |
+
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
|
54 |
+
journal={CAAI Artificial Intelligence Research},
|
55 |
+
year={2024}
|
56 |
+
}
|
57 |
+
```
|
birefnet.py
ADDED
@@ -0,0 +1,2244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### config.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import math
|
5 |
+
|
6 |
+
|
7 |
+
class Config():
|
8 |
+
def __init__(self) -> None:
|
9 |
+
# PATH settings
|
10 |
+
self.sys_home_dir = os.environ['HOME'] # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
|
11 |
+
|
12 |
+
# TASK settings
|
13 |
+
self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
|
14 |
+
self.training_set = {
|
15 |
+
'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
|
16 |
+
'COD': 'TR-COD10K+TR-CAMO',
|
17 |
+
'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
|
18 |
+
'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
|
19 |
+
'P3M-10k': 'TR-P3M-10k',
|
20 |
+
}[self.task]
|
21 |
+
self.prompt4loc = ['dense', 'sparse'][0]
|
22 |
+
|
23 |
+
# Faster-Training settings
|
24 |
+
self.load_all = True
|
25 |
+
self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
|
26 |
+
# Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
|
27 |
+
# 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
|
28 |
+
# 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
|
29 |
+
self.precisionHigh = True
|
30 |
+
|
31 |
+
# MODEL settings
|
32 |
+
self.ms_supervision = True
|
33 |
+
self.out_ref = self.ms_supervision and True
|
34 |
+
self.dec_ipt = True
|
35 |
+
self.dec_ipt_split = True
|
36 |
+
self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
|
37 |
+
self.mul_scl_ipt = ['', 'add', 'cat'][2]
|
38 |
+
self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
|
39 |
+
self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
|
40 |
+
self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
|
41 |
+
|
42 |
+
# TRAINING settings
|
43 |
+
self.batch_size = 4
|
44 |
+
self.IoU_finetune_last_epochs = [
|
45 |
+
0,
|
46 |
+
{
|
47 |
+
'DIS5K': -50,
|
48 |
+
'COD': -20,
|
49 |
+
'HRSOD': -20,
|
50 |
+
'DIS5K+HRSOD+HRS10K': -20,
|
51 |
+
'P3M-10k': -20,
|
52 |
+
}[self.task]
|
53 |
+
][1] # choose 0 to skip
|
54 |
+
self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
|
55 |
+
self.size = 1024
|
56 |
+
self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
|
57 |
+
|
58 |
+
# Backbone settings
|
59 |
+
self.bb = [
|
60 |
+
'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
|
61 |
+
'swin_v1_t', 'swin_v1_s', # 3, 4
|
62 |
+
'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
|
63 |
+
'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
|
64 |
+
'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
|
65 |
+
][6]
|
66 |
+
self.lateral_channels_in_collection = {
|
67 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
68 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
69 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
70 |
+
'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
|
71 |
+
'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
|
72 |
+
}[self.bb]
|
73 |
+
if self.mul_scl_ipt == 'cat':
|
74 |
+
self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
|
75 |
+
self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
|
76 |
+
|
77 |
+
# MODEL settings - inactive
|
78 |
+
self.lat_blk = ['BasicLatBlk'][0]
|
79 |
+
self.dec_channels_inter = ['fixed', 'adap'][0]
|
80 |
+
self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
|
81 |
+
self.progressive_ref = self.refine and True
|
82 |
+
self.ender = self.progressive_ref and False
|
83 |
+
self.scale = self.progressive_ref and 2
|
84 |
+
self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
|
85 |
+
self.refine_iteration = 1
|
86 |
+
self.freeze_bb = False
|
87 |
+
self.model = [
|
88 |
+
'BiRefNet',
|
89 |
+
][0]
|
90 |
+
if self.dec_blk == 'HierarAttDecBlk':
|
91 |
+
self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
|
92 |
+
|
93 |
+
# TRAINING settings - inactive
|
94 |
+
self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
|
95 |
+
self.optimizer = ['Adam', 'AdamW'][1]
|
96 |
+
self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
|
97 |
+
self.lr_decay_rate = 0.5
|
98 |
+
# Loss
|
99 |
+
self.lambdas_pix_last = {
|
100 |
+
# not 0 means opening this loss
|
101 |
+
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
|
102 |
+
'bce': 30 * 1, # high performance
|
103 |
+
'iou': 0.5 * 1, # 0 / 255
|
104 |
+
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
|
105 |
+
'mse': 150 * 0, # can smooth the saliency map
|
106 |
+
'triplet': 3 * 0,
|
107 |
+
'reg': 100 * 0,
|
108 |
+
'ssim': 10 * 1, # help contours,
|
109 |
+
'cnt': 5 * 0, # help contours
|
110 |
+
'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
|
111 |
+
}
|
112 |
+
self.lambdas_cls = {
|
113 |
+
'ce': 5.0
|
114 |
+
}
|
115 |
+
# Adv
|
116 |
+
self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
|
117 |
+
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
|
118 |
+
|
119 |
+
# PATH settings - inactive
|
120 |
+
self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
|
121 |
+
self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
|
122 |
+
self.weights = {
|
123 |
+
'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
|
124 |
+
'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
|
125 |
+
'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
|
126 |
+
'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
|
127 |
+
'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
|
128 |
+
'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
|
129 |
+
'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
|
130 |
+
'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
|
131 |
+
}
|
132 |
+
|
133 |
+
# Callbacks - inactive
|
134 |
+
self.verbose_eval = True
|
135 |
+
self.only_S_MAE = False
|
136 |
+
self.use_fp16 = False # Bugs. It may cause nan in training.
|
137 |
+
self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
|
138 |
+
|
139 |
+
# others
|
140 |
+
self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
|
141 |
+
|
142 |
+
self.batch_size_valid = 1
|
143 |
+
self.rand_seed = 7
|
144 |
+
# run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
|
145 |
+
# with open(run_sh_file[0], 'r') as f:
|
146 |
+
# lines = f.readlines()
|
147 |
+
# self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
|
148 |
+
# self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
|
149 |
+
# self.val_step = [0, self.save_step][0]
|
150 |
+
|
151 |
+
def print_task(self) -> None:
|
152 |
+
# Return task for choosing settings in shell scripts.
|
153 |
+
print(self.task)
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
### models/backbones/pvt_v2.py
|
158 |
+
|
159 |
+
import torch
|
160 |
+
import torch.nn as nn
|
161 |
+
from functools import partial
|
162 |
+
|
163 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
164 |
+
from timm.models.registry import register_model
|
165 |
+
|
166 |
+
import math
|
167 |
+
|
168 |
+
# from config import Config
|
169 |
+
|
170 |
+
# config = Config()
|
171 |
+
|
172 |
+
class Mlp(nn.Module):
|
173 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
174 |
+
super().__init__()
|
175 |
+
out_features = out_features or in_features
|
176 |
+
hidden_features = hidden_features or in_features
|
177 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
178 |
+
self.dwconv = DWConv(hidden_features)
|
179 |
+
self.act = act_layer()
|
180 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
181 |
+
self.drop = nn.Dropout(drop)
|
182 |
+
|
183 |
+
self.apply(self._init_weights)
|
184 |
+
|
185 |
+
def _init_weights(self, m):
|
186 |
+
if isinstance(m, nn.Linear):
|
187 |
+
trunc_normal_(m.weight, std=.02)
|
188 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
189 |
+
nn.init.constant_(m.bias, 0)
|
190 |
+
elif isinstance(m, nn.LayerNorm):
|
191 |
+
nn.init.constant_(m.bias, 0)
|
192 |
+
nn.init.constant_(m.weight, 1.0)
|
193 |
+
elif isinstance(m, nn.Conv2d):
|
194 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
195 |
+
fan_out //= m.groups
|
196 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
197 |
+
if m.bias is not None:
|
198 |
+
m.bias.data.zero_()
|
199 |
+
|
200 |
+
def forward(self, x, H, W):
|
201 |
+
x = self.fc1(x)
|
202 |
+
x = self.dwconv(x, H, W)
|
203 |
+
x = self.act(x)
|
204 |
+
x = self.drop(x)
|
205 |
+
x = self.fc2(x)
|
206 |
+
x = self.drop(x)
|
207 |
+
return x
|
208 |
+
|
209 |
+
|
210 |
+
class Attention(nn.Module):
|
211 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
212 |
+
super().__init__()
|
213 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
214 |
+
|
215 |
+
self.dim = dim
|
216 |
+
self.num_heads = num_heads
|
217 |
+
head_dim = dim // num_heads
|
218 |
+
self.scale = qk_scale or head_dim ** -0.5
|
219 |
+
|
220 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
221 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
222 |
+
self.attn_drop_prob = attn_drop
|
223 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
224 |
+
self.proj = nn.Linear(dim, dim)
|
225 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
226 |
+
|
227 |
+
self.sr_ratio = sr_ratio
|
228 |
+
if sr_ratio > 1:
|
229 |
+
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
230 |
+
self.norm = nn.LayerNorm(dim)
|
231 |
+
|
232 |
+
self.apply(self._init_weights)
|
233 |
+
|
234 |
+
def _init_weights(self, m):
|
235 |
+
if isinstance(m, nn.Linear):
|
236 |
+
trunc_normal_(m.weight, std=.02)
|
237 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
238 |
+
nn.init.constant_(m.bias, 0)
|
239 |
+
elif isinstance(m, nn.LayerNorm):
|
240 |
+
nn.init.constant_(m.bias, 0)
|
241 |
+
nn.init.constant_(m.weight, 1.0)
|
242 |
+
elif isinstance(m, nn.Conv2d):
|
243 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
244 |
+
fan_out //= m.groups
|
245 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
246 |
+
if m.bias is not None:
|
247 |
+
m.bias.data.zero_()
|
248 |
+
|
249 |
+
def forward(self, x, H, W):
|
250 |
+
B, N, C = x.shape
|
251 |
+
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
252 |
+
|
253 |
+
if self.sr_ratio > 1:
|
254 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
255 |
+
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
256 |
+
x_ = self.norm(x_)
|
257 |
+
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
258 |
+
else:
|
259 |
+
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
260 |
+
k, v = kv[0], kv[1]
|
261 |
+
|
262 |
+
if config.SDPA_enabled:
|
263 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
264 |
+
q, k, v,
|
265 |
+
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
|
266 |
+
).transpose(1, 2).reshape(B, N, C)
|
267 |
+
else:
|
268 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
269 |
+
attn = attn.softmax(dim=-1)
|
270 |
+
attn = self.attn_drop(attn)
|
271 |
+
|
272 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
273 |
+
x = self.proj(x)
|
274 |
+
x = self.proj_drop(x)
|
275 |
+
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class Block(nn.Module):
|
280 |
+
|
281 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
282 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
283 |
+
super().__init__()
|
284 |
+
self.norm1 = norm_layer(dim)
|
285 |
+
self.attn = Attention(
|
286 |
+
dim,
|
287 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
288 |
+
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
289 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
290 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
291 |
+
self.norm2 = norm_layer(dim)
|
292 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
293 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
294 |
+
|
295 |
+
self.apply(self._init_weights)
|
296 |
+
|
297 |
+
def _init_weights(self, m):
|
298 |
+
if isinstance(m, nn.Linear):
|
299 |
+
trunc_normal_(m.weight, std=.02)
|
300 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
301 |
+
nn.init.constant_(m.bias, 0)
|
302 |
+
elif isinstance(m, nn.LayerNorm):
|
303 |
+
nn.init.constant_(m.bias, 0)
|
304 |
+
nn.init.constant_(m.weight, 1.0)
|
305 |
+
elif isinstance(m, nn.Conv2d):
|
306 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
307 |
+
fan_out //= m.groups
|
308 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
309 |
+
if m.bias is not None:
|
310 |
+
m.bias.data.zero_()
|
311 |
+
|
312 |
+
def forward(self, x, H, W):
|
313 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
314 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
315 |
+
|
316 |
+
return x
|
317 |
+
|
318 |
+
|
319 |
+
class OverlapPatchEmbed(nn.Module):
|
320 |
+
""" Image to Patch Embedding
|
321 |
+
"""
|
322 |
+
|
323 |
+
def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
|
324 |
+
super().__init__()
|
325 |
+
img_size = to_2tuple(img_size)
|
326 |
+
patch_size = to_2tuple(patch_size)
|
327 |
+
|
328 |
+
self.img_size = img_size
|
329 |
+
self.patch_size = patch_size
|
330 |
+
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
331 |
+
self.num_patches = self.H * self.W
|
332 |
+
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
|
333 |
+
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
334 |
+
self.norm = nn.LayerNorm(embed_dim)
|
335 |
+
|
336 |
+
self.apply(self._init_weights)
|
337 |
+
|
338 |
+
def _init_weights(self, m):
|
339 |
+
if isinstance(m, nn.Linear):
|
340 |
+
trunc_normal_(m.weight, std=.02)
|
341 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
342 |
+
nn.init.constant_(m.bias, 0)
|
343 |
+
elif isinstance(m, nn.LayerNorm):
|
344 |
+
nn.init.constant_(m.bias, 0)
|
345 |
+
nn.init.constant_(m.weight, 1.0)
|
346 |
+
elif isinstance(m, nn.Conv2d):
|
347 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
348 |
+
fan_out //= m.groups
|
349 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
350 |
+
if m.bias is not None:
|
351 |
+
m.bias.data.zero_()
|
352 |
+
|
353 |
+
def forward(self, x):
|
354 |
+
x = self.proj(x)
|
355 |
+
_, _, H, W = x.shape
|
356 |
+
x = x.flatten(2).transpose(1, 2)
|
357 |
+
x = self.norm(x)
|
358 |
+
|
359 |
+
return x, H, W
|
360 |
+
|
361 |
+
|
362 |
+
class PyramidVisionTransformerImpr(nn.Module):
|
363 |
+
def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
364 |
+
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
365 |
+
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
|
366 |
+
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
|
367 |
+
super().__init__()
|
368 |
+
self.num_classes = num_classes
|
369 |
+
self.depths = depths
|
370 |
+
|
371 |
+
# patch_embed
|
372 |
+
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
|
373 |
+
embed_dim=embed_dims[0])
|
374 |
+
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
|
375 |
+
embed_dim=embed_dims[1])
|
376 |
+
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
|
377 |
+
embed_dim=embed_dims[2])
|
378 |
+
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
|
379 |
+
embed_dim=embed_dims[3])
|
380 |
+
|
381 |
+
# transformer encoder
|
382 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
383 |
+
cur = 0
|
384 |
+
self.block1 = nn.ModuleList([Block(
|
385 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
386 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
387 |
+
sr_ratio=sr_ratios[0])
|
388 |
+
for i in range(depths[0])])
|
389 |
+
self.norm1 = norm_layer(embed_dims[0])
|
390 |
+
|
391 |
+
cur += depths[0]
|
392 |
+
self.block2 = nn.ModuleList([Block(
|
393 |
+
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
394 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
395 |
+
sr_ratio=sr_ratios[1])
|
396 |
+
for i in range(depths[1])])
|
397 |
+
self.norm2 = norm_layer(embed_dims[1])
|
398 |
+
|
399 |
+
cur += depths[1]
|
400 |
+
self.block3 = nn.ModuleList([Block(
|
401 |
+
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
402 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
403 |
+
sr_ratio=sr_ratios[2])
|
404 |
+
for i in range(depths[2])])
|
405 |
+
self.norm3 = norm_layer(embed_dims[2])
|
406 |
+
|
407 |
+
cur += depths[2]
|
408 |
+
self.block4 = nn.ModuleList([Block(
|
409 |
+
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
410 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
411 |
+
sr_ratio=sr_ratios[3])
|
412 |
+
for i in range(depths[3])])
|
413 |
+
self.norm4 = norm_layer(embed_dims[3])
|
414 |
+
|
415 |
+
# classification head
|
416 |
+
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
|
417 |
+
|
418 |
+
self.apply(self._init_weights)
|
419 |
+
|
420 |
+
def _init_weights(self, m):
|
421 |
+
if isinstance(m, nn.Linear):
|
422 |
+
trunc_normal_(m.weight, std=.02)
|
423 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
424 |
+
nn.init.constant_(m.bias, 0)
|
425 |
+
elif isinstance(m, nn.LayerNorm):
|
426 |
+
nn.init.constant_(m.bias, 0)
|
427 |
+
nn.init.constant_(m.weight, 1.0)
|
428 |
+
elif isinstance(m, nn.Conv2d):
|
429 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
430 |
+
fan_out //= m.groups
|
431 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
432 |
+
if m.bias is not None:
|
433 |
+
m.bias.data.zero_()
|
434 |
+
|
435 |
+
def init_weights(self, pretrained=None):
|
436 |
+
if isinstance(pretrained, str):
|
437 |
+
logger = 1
|
438 |
+
#load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
|
439 |
+
|
440 |
+
def reset_drop_path(self, drop_path_rate):
|
441 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
|
442 |
+
cur = 0
|
443 |
+
for i in range(self.depths[0]):
|
444 |
+
self.block1[i].drop_path.drop_prob = dpr[cur + i]
|
445 |
+
|
446 |
+
cur += self.depths[0]
|
447 |
+
for i in range(self.depths[1]):
|
448 |
+
self.block2[i].drop_path.drop_prob = dpr[cur + i]
|
449 |
+
|
450 |
+
cur += self.depths[1]
|
451 |
+
for i in range(self.depths[2]):
|
452 |
+
self.block3[i].drop_path.drop_prob = dpr[cur + i]
|
453 |
+
|
454 |
+
cur += self.depths[2]
|
455 |
+
for i in range(self.depths[3]):
|
456 |
+
self.block4[i].drop_path.drop_prob = dpr[cur + i]
|
457 |
+
|
458 |
+
def freeze_patch_emb(self):
|
459 |
+
self.patch_embed1.requires_grad = False
|
460 |
+
|
461 |
+
@torch.jit.ignore
|
462 |
+
def no_weight_decay(self):
|
463 |
+
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
|
464 |
+
|
465 |
+
def get_classifier(self):
|
466 |
+
return self.head
|
467 |
+
|
468 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
469 |
+
self.num_classes = num_classes
|
470 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
471 |
+
|
472 |
+
def forward_features(self, x):
|
473 |
+
B = x.shape[0]
|
474 |
+
outs = []
|
475 |
+
|
476 |
+
# stage 1
|
477 |
+
x, H, W = self.patch_embed1(x)
|
478 |
+
for i, blk in enumerate(self.block1):
|
479 |
+
x = blk(x, H, W)
|
480 |
+
x = self.norm1(x)
|
481 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
482 |
+
outs.append(x)
|
483 |
+
|
484 |
+
# stage 2
|
485 |
+
x, H, W = self.patch_embed2(x)
|
486 |
+
for i, blk in enumerate(self.block2):
|
487 |
+
x = blk(x, H, W)
|
488 |
+
x = self.norm2(x)
|
489 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
490 |
+
outs.append(x)
|
491 |
+
|
492 |
+
# stage 3
|
493 |
+
x, H, W = self.patch_embed3(x)
|
494 |
+
for i, blk in enumerate(self.block3):
|
495 |
+
x = blk(x, H, W)
|
496 |
+
x = self.norm3(x)
|
497 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
498 |
+
outs.append(x)
|
499 |
+
|
500 |
+
# stage 4
|
501 |
+
x, H, W = self.patch_embed4(x)
|
502 |
+
for i, blk in enumerate(self.block4):
|
503 |
+
x = blk(x, H, W)
|
504 |
+
x = self.norm4(x)
|
505 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
506 |
+
outs.append(x)
|
507 |
+
|
508 |
+
return outs
|
509 |
+
|
510 |
+
# return x.mean(dim=1)
|
511 |
+
|
512 |
+
def forward(self, x):
|
513 |
+
x = self.forward_features(x)
|
514 |
+
# x = self.head(x)
|
515 |
+
|
516 |
+
return x
|
517 |
+
|
518 |
+
|
519 |
+
class DWConv(nn.Module):
|
520 |
+
def __init__(self, dim=768):
|
521 |
+
super(DWConv, self).__init__()
|
522 |
+
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
523 |
+
|
524 |
+
def forward(self, x, H, W):
|
525 |
+
B, N, C = x.shape
|
526 |
+
x = x.transpose(1, 2).view(B, C, H, W).contiguous()
|
527 |
+
x = self.dwconv(x)
|
528 |
+
x = x.flatten(2).transpose(1, 2)
|
529 |
+
|
530 |
+
return x
|
531 |
+
|
532 |
+
|
533 |
+
def _conv_filter(state_dict, patch_size=16):
|
534 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
535 |
+
out_dict = {}
|
536 |
+
for k, v in state_dict.items():
|
537 |
+
if 'patch_embed.proj.weight' in k:
|
538 |
+
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
539 |
+
out_dict[k] = v
|
540 |
+
|
541 |
+
return out_dict
|
542 |
+
|
543 |
+
|
544 |
+
## @register_model
|
545 |
+
class pvt_v2_b0(PyramidVisionTransformerImpr):
|
546 |
+
def __init__(self, **kwargs):
|
547 |
+
super(pvt_v2_b0, self).__init__(
|
548 |
+
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
549 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
550 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
551 |
+
|
552 |
+
|
553 |
+
|
554 |
+
## @register_model
|
555 |
+
class pvt_v2_b1(PyramidVisionTransformerImpr):
|
556 |
+
def __init__(self, **kwargs):
|
557 |
+
super(pvt_v2_b1, self).__init__(
|
558 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
559 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
560 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
561 |
+
|
562 |
+
## @register_model
|
563 |
+
class pvt_v2_b2(PyramidVisionTransformerImpr):
|
564 |
+
def __init__(self, in_channels=3, **kwargs):
|
565 |
+
super(pvt_v2_b2, self).__init__(
|
566 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
567 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
568 |
+
drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
|
569 |
+
|
570 |
+
## @register_model
|
571 |
+
class pvt_v2_b3(PyramidVisionTransformerImpr):
|
572 |
+
def __init__(self, **kwargs):
|
573 |
+
super(pvt_v2_b3, self).__init__(
|
574 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
575 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
576 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
577 |
+
|
578 |
+
## @register_model
|
579 |
+
class pvt_v2_b4(PyramidVisionTransformerImpr):
|
580 |
+
def __init__(self, **kwargs):
|
581 |
+
super(pvt_v2_b4, self).__init__(
|
582 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
583 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
|
584 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
585 |
+
|
586 |
+
|
587 |
+
## @register_model
|
588 |
+
class pvt_v2_b5(PyramidVisionTransformerImpr):
|
589 |
+
def __init__(self, **kwargs):
|
590 |
+
super(pvt_v2_b5, self).__init__(
|
591 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
592 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
593 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
594 |
+
|
595 |
+
|
596 |
+
|
597 |
+
### models/backbones/swin_v1.py
|
598 |
+
|
599 |
+
# --------------------------------------------------------
|
600 |
+
# Swin Transformer
|
601 |
+
# Copyright (c) 2021 Microsoft
|
602 |
+
# Licensed under The MIT License [see LICENSE for details]
|
603 |
+
# Written by Ze Liu, Yutong Lin, Yixuan Wei
|
604 |
+
# --------------------------------------------------------
|
605 |
+
|
606 |
+
import torch
|
607 |
+
import torch.nn as nn
|
608 |
+
import torch.nn.functional as F
|
609 |
+
import torch.utils.checkpoint as checkpoint
|
610 |
+
import numpy as np
|
611 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
612 |
+
|
613 |
+
# from config import Config
|
614 |
+
|
615 |
+
|
616 |
+
# config = Config()
|
617 |
+
|
618 |
+
class Mlp(nn.Module):
|
619 |
+
""" Multilayer perceptron."""
|
620 |
+
|
621 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
622 |
+
super().__init__()
|
623 |
+
out_features = out_features or in_features
|
624 |
+
hidden_features = hidden_features or in_features
|
625 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
626 |
+
self.act = act_layer()
|
627 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
628 |
+
self.drop = nn.Dropout(drop)
|
629 |
+
|
630 |
+
def forward(self, x):
|
631 |
+
x = self.fc1(x)
|
632 |
+
x = self.act(x)
|
633 |
+
x = self.drop(x)
|
634 |
+
x = self.fc2(x)
|
635 |
+
x = self.drop(x)
|
636 |
+
return x
|
637 |
+
|
638 |
+
|
639 |
+
def window_partition(x, window_size):
|
640 |
+
"""
|
641 |
+
Args:
|
642 |
+
x: (B, H, W, C)
|
643 |
+
window_size (int): window size
|
644 |
+
|
645 |
+
Returns:
|
646 |
+
windows: (num_windows*B, window_size, window_size, C)
|
647 |
+
"""
|
648 |
+
B, H, W, C = x.shape
|
649 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
650 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
651 |
+
return windows
|
652 |
+
|
653 |
+
|
654 |
+
def window_reverse(windows, window_size, H, W):
|
655 |
+
"""
|
656 |
+
Args:
|
657 |
+
windows: (num_windows*B, window_size, window_size, C)
|
658 |
+
window_size (int): Window size
|
659 |
+
H (int): Height of image
|
660 |
+
W (int): Width of image
|
661 |
+
|
662 |
+
Returns:
|
663 |
+
x: (B, H, W, C)
|
664 |
+
"""
|
665 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
666 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
667 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
668 |
+
return x
|
669 |
+
|
670 |
+
|
671 |
+
class WindowAttention(nn.Module):
|
672 |
+
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
673 |
+
It supports both of shifted and non-shifted window.
|
674 |
+
|
675 |
+
Args:
|
676 |
+
dim (int): Number of input channels.
|
677 |
+
window_size (tuple[int]): The height and width of the window.
|
678 |
+
num_heads (int): Number of attention heads.
|
679 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
680 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
681 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
682 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
683 |
+
"""
|
684 |
+
|
685 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
686 |
+
|
687 |
+
super().__init__()
|
688 |
+
self.dim = dim
|
689 |
+
self.window_size = window_size # Wh, Ww
|
690 |
+
self.num_heads = num_heads
|
691 |
+
head_dim = dim // num_heads
|
692 |
+
self.scale = qk_scale or head_dim ** -0.5
|
693 |
+
|
694 |
+
# define a parameter table of relative position bias
|
695 |
+
self.relative_position_bias_table = nn.Parameter(
|
696 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
697 |
+
|
698 |
+
# get pair-wise relative position index for each token inside the window
|
699 |
+
coords_h = torch.arange(self.window_size[0])
|
700 |
+
coords_w = torch.arange(self.window_size[1])
|
701 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
|
702 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
703 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
704 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
705 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
706 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
707 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
708 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
709 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
710 |
+
|
711 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
712 |
+
self.attn_drop_prob = attn_drop
|
713 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
714 |
+
self.proj = nn.Linear(dim, dim)
|
715 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
716 |
+
|
717 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
718 |
+
self.softmax = nn.Softmax(dim=-1)
|
719 |
+
|
720 |
+
def forward(self, x, mask=None):
|
721 |
+
""" Forward function.
|
722 |
+
|
723 |
+
Args:
|
724 |
+
x: input features with shape of (num_windows*B, N, C)
|
725 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
726 |
+
"""
|
727 |
+
B_, N, C = x.shape
|
728 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
729 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
730 |
+
|
731 |
+
q = q * self.scale
|
732 |
+
|
733 |
+
if config.SDPA_enabled:
|
734 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
735 |
+
q, k, v,
|
736 |
+
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
|
737 |
+
).transpose(1, 2).reshape(B_, N, C)
|
738 |
+
else:
|
739 |
+
attn = (q @ k.transpose(-2, -1))
|
740 |
+
|
741 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
742 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
743 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
744 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
745 |
+
|
746 |
+
if mask is not None:
|
747 |
+
nW = mask.shape[0]
|
748 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
749 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
750 |
+
attn = self.softmax(attn)
|
751 |
+
else:
|
752 |
+
attn = self.softmax(attn)
|
753 |
+
|
754 |
+
attn = self.attn_drop(attn)
|
755 |
+
|
756 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
757 |
+
x = self.proj(x)
|
758 |
+
x = self.proj_drop(x)
|
759 |
+
return x
|
760 |
+
|
761 |
+
|
762 |
+
class SwinTransformerBlock(nn.Module):
|
763 |
+
""" Swin Transformer Block.
|
764 |
+
|
765 |
+
Args:
|
766 |
+
dim (int): Number of input channels.
|
767 |
+
num_heads (int): Number of attention heads.
|
768 |
+
window_size (int): Window size.
|
769 |
+
shift_size (int): Shift size for SW-MSA.
|
770 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
771 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
772 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
773 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
774 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
775 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
776 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
777 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
778 |
+
"""
|
779 |
+
|
780 |
+
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
|
781 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
782 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
783 |
+
super().__init__()
|
784 |
+
self.dim = dim
|
785 |
+
self.num_heads = num_heads
|
786 |
+
self.window_size = window_size
|
787 |
+
self.shift_size = shift_size
|
788 |
+
self.mlp_ratio = mlp_ratio
|
789 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
790 |
+
|
791 |
+
self.norm1 = norm_layer(dim)
|
792 |
+
self.attn = WindowAttention(
|
793 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
794 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
795 |
+
|
796 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
797 |
+
self.norm2 = norm_layer(dim)
|
798 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
799 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
800 |
+
|
801 |
+
self.H = None
|
802 |
+
self.W = None
|
803 |
+
|
804 |
+
def forward(self, x, mask_matrix):
|
805 |
+
""" Forward function.
|
806 |
+
|
807 |
+
Args:
|
808 |
+
x: Input feature, tensor size (B, H*W, C).
|
809 |
+
H, W: Spatial resolution of the input feature.
|
810 |
+
mask_matrix: Attention mask for cyclic shift.
|
811 |
+
"""
|
812 |
+
B, L, C = x.shape
|
813 |
+
H, W = self.H, self.W
|
814 |
+
assert L == H * W, "input feature has wrong size"
|
815 |
+
|
816 |
+
shortcut = x
|
817 |
+
x = self.norm1(x)
|
818 |
+
x = x.view(B, H, W, C)
|
819 |
+
|
820 |
+
# pad feature maps to multiples of window size
|
821 |
+
pad_l = pad_t = 0
|
822 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
823 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
824 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
825 |
+
_, Hp, Wp, _ = x.shape
|
826 |
+
|
827 |
+
# cyclic shift
|
828 |
+
if self.shift_size > 0:
|
829 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
830 |
+
attn_mask = mask_matrix
|
831 |
+
else:
|
832 |
+
shifted_x = x
|
833 |
+
attn_mask = None
|
834 |
+
|
835 |
+
# partition windows
|
836 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
837 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
838 |
+
|
839 |
+
# W-MSA/SW-MSA
|
840 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
841 |
+
|
842 |
+
# merge windows
|
843 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
844 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
845 |
+
|
846 |
+
# reverse cyclic shift
|
847 |
+
if self.shift_size > 0:
|
848 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
849 |
+
else:
|
850 |
+
x = shifted_x
|
851 |
+
|
852 |
+
if pad_r > 0 or pad_b > 0:
|
853 |
+
x = x[:, :H, :W, :].contiguous()
|
854 |
+
|
855 |
+
x = x.view(B, H * W, C)
|
856 |
+
|
857 |
+
# FFN
|
858 |
+
x = shortcut + self.drop_path(x)
|
859 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
860 |
+
|
861 |
+
return x
|
862 |
+
|
863 |
+
|
864 |
+
class PatchMerging(nn.Module):
|
865 |
+
""" Patch Merging Layer
|
866 |
+
|
867 |
+
Args:
|
868 |
+
dim (int): Number of input channels.
|
869 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
870 |
+
"""
|
871 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
872 |
+
super().__init__()
|
873 |
+
self.dim = dim
|
874 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
875 |
+
self.norm = norm_layer(4 * dim)
|
876 |
+
|
877 |
+
def forward(self, x, H, W):
|
878 |
+
""" Forward function.
|
879 |
+
|
880 |
+
Args:
|
881 |
+
x: Input feature, tensor size (B, H*W, C).
|
882 |
+
H, W: Spatial resolution of the input feature.
|
883 |
+
"""
|
884 |
+
B, L, C = x.shape
|
885 |
+
assert L == H * W, "input feature has wrong size"
|
886 |
+
|
887 |
+
x = x.view(B, H, W, C)
|
888 |
+
|
889 |
+
# padding
|
890 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
891 |
+
if pad_input:
|
892 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
893 |
+
|
894 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
895 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
896 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
897 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
898 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
899 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
900 |
+
|
901 |
+
x = self.norm(x)
|
902 |
+
x = self.reduction(x)
|
903 |
+
|
904 |
+
return x
|
905 |
+
|
906 |
+
|
907 |
+
class BasicLayer(nn.Module):
|
908 |
+
""" A basic Swin Transformer layer for one stage.
|
909 |
+
|
910 |
+
Args:
|
911 |
+
dim (int): Number of feature channels
|
912 |
+
depth (int): Depths of this stage.
|
913 |
+
num_heads (int): Number of attention head.
|
914 |
+
window_size (int): Local window size. Default: 7.
|
915 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
916 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
917 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
918 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
919 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
920 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
921 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
922 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
923 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
924 |
+
"""
|
925 |
+
|
926 |
+
def __init__(self,
|
927 |
+
dim,
|
928 |
+
depth,
|
929 |
+
num_heads,
|
930 |
+
window_size=7,
|
931 |
+
mlp_ratio=4.,
|
932 |
+
qkv_bias=True,
|
933 |
+
qk_scale=None,
|
934 |
+
drop=0.,
|
935 |
+
attn_drop=0.,
|
936 |
+
drop_path=0.,
|
937 |
+
norm_layer=nn.LayerNorm,
|
938 |
+
downsample=None,
|
939 |
+
use_checkpoint=False):
|
940 |
+
super().__init__()
|
941 |
+
self.window_size = window_size
|
942 |
+
self.shift_size = window_size // 2
|
943 |
+
self.depth = depth
|
944 |
+
self.use_checkpoint = use_checkpoint
|
945 |
+
|
946 |
+
# build blocks
|
947 |
+
self.blocks = nn.ModuleList([
|
948 |
+
SwinTransformerBlock(
|
949 |
+
dim=dim,
|
950 |
+
num_heads=num_heads,
|
951 |
+
window_size=window_size,
|
952 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
953 |
+
mlp_ratio=mlp_ratio,
|
954 |
+
qkv_bias=qkv_bias,
|
955 |
+
qk_scale=qk_scale,
|
956 |
+
drop=drop,
|
957 |
+
attn_drop=attn_drop,
|
958 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
959 |
+
norm_layer=norm_layer)
|
960 |
+
for i in range(depth)])
|
961 |
+
|
962 |
+
# patch merging layer
|
963 |
+
if downsample is not None:
|
964 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
965 |
+
else:
|
966 |
+
self.downsample = None
|
967 |
+
|
968 |
+
def forward(self, x, H, W):
|
969 |
+
""" Forward function.
|
970 |
+
|
971 |
+
Args:
|
972 |
+
x: Input feature, tensor size (B, H*W, C).
|
973 |
+
H, W: Spatial resolution of the input feature.
|
974 |
+
"""
|
975 |
+
|
976 |
+
# calculate attention mask for SW-MSA
|
977 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
978 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
979 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
980 |
+
h_slices = (slice(0, -self.window_size),
|
981 |
+
slice(-self.window_size, -self.shift_size),
|
982 |
+
slice(-self.shift_size, None))
|
983 |
+
w_slices = (slice(0, -self.window_size),
|
984 |
+
slice(-self.window_size, -self.shift_size),
|
985 |
+
slice(-self.shift_size, None))
|
986 |
+
cnt = 0
|
987 |
+
for h in h_slices:
|
988 |
+
for w in w_slices:
|
989 |
+
img_mask[:, h, w, :] = cnt
|
990 |
+
cnt += 1
|
991 |
+
|
992 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
993 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
994 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
995 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
996 |
+
|
997 |
+
for blk in self.blocks:
|
998 |
+
blk.H, blk.W = H, W
|
999 |
+
if self.use_checkpoint:
|
1000 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
1001 |
+
else:
|
1002 |
+
x = blk(x, attn_mask)
|
1003 |
+
if self.downsample is not None:
|
1004 |
+
x_down = self.downsample(x, H, W)
|
1005 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
1006 |
+
return x, H, W, x_down, Wh, Ww
|
1007 |
+
else:
|
1008 |
+
return x, H, W, x, H, W
|
1009 |
+
|
1010 |
+
|
1011 |
+
class PatchEmbed(nn.Module):
|
1012 |
+
""" Image to Patch Embedding
|
1013 |
+
|
1014 |
+
Args:
|
1015 |
+
patch_size (int): Patch token size. Default: 4.
|
1016 |
+
in_channels (int): Number of input image channels. Default: 3.
|
1017 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
1018 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
1019 |
+
"""
|
1020 |
+
|
1021 |
+
def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
|
1022 |
+
super().__init__()
|
1023 |
+
patch_size = to_2tuple(patch_size)
|
1024 |
+
self.patch_size = patch_size
|
1025 |
+
|
1026 |
+
self.in_channels = in_channels
|
1027 |
+
self.embed_dim = embed_dim
|
1028 |
+
|
1029 |
+
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
1030 |
+
if norm_layer is not None:
|
1031 |
+
self.norm = norm_layer(embed_dim)
|
1032 |
+
else:
|
1033 |
+
self.norm = None
|
1034 |
+
|
1035 |
+
def forward(self, x):
|
1036 |
+
"""Forward function."""
|
1037 |
+
# padding
|
1038 |
+
_, _, H, W = x.size()
|
1039 |
+
if W % self.patch_size[1] != 0:
|
1040 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
1041 |
+
if H % self.patch_size[0] != 0:
|
1042 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
1043 |
+
|
1044 |
+
x = self.proj(x) # B C Wh Ww
|
1045 |
+
if self.norm is not None:
|
1046 |
+
Wh, Ww = x.size(2), x.size(3)
|
1047 |
+
x = x.flatten(2).transpose(1, 2)
|
1048 |
+
x = self.norm(x)
|
1049 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
1050 |
+
|
1051 |
+
return x
|
1052 |
+
|
1053 |
+
|
1054 |
+
class SwinTransformer(nn.Module):
|
1055 |
+
""" Swin Transformer backbone.
|
1056 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
1057 |
+
https://arxiv.org/pdf/2103.14030
|
1058 |
+
|
1059 |
+
Args:
|
1060 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
1061 |
+
used in absolute postion embedding. Default 224.
|
1062 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
1063 |
+
in_channels (int): Number of input image channels. Default: 3.
|
1064 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
1065 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
1066 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
1067 |
+
window_size (int): Window size. Default: 7.
|
1068 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
1069 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
1070 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
1071 |
+
drop_rate (float): Dropout rate.
|
1072 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
1073 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
1074 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
1075 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
1076 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
1077 |
+
out_indices (Sequence[int]): Output from which stages.
|
1078 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
1079 |
+
-1 means not freezing any parameters.
|
1080 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
1081 |
+
"""
|
1082 |
+
|
1083 |
+
def __init__(self,
|
1084 |
+
pretrain_img_size=224,
|
1085 |
+
patch_size=4,
|
1086 |
+
in_channels=3,
|
1087 |
+
embed_dim=96,
|
1088 |
+
depths=[2, 2, 6, 2],
|
1089 |
+
num_heads=[3, 6, 12, 24],
|
1090 |
+
window_size=7,
|
1091 |
+
mlp_ratio=4.,
|
1092 |
+
qkv_bias=True,
|
1093 |
+
qk_scale=None,
|
1094 |
+
drop_rate=0.,
|
1095 |
+
attn_drop_rate=0.,
|
1096 |
+
drop_path_rate=0.2,
|
1097 |
+
norm_layer=nn.LayerNorm,
|
1098 |
+
ape=False,
|
1099 |
+
patch_norm=True,
|
1100 |
+
out_indices=(0, 1, 2, 3),
|
1101 |
+
frozen_stages=-1,
|
1102 |
+
use_checkpoint=False):
|
1103 |
+
super().__init__()
|
1104 |
+
|
1105 |
+
self.pretrain_img_size = pretrain_img_size
|
1106 |
+
self.num_layers = len(depths)
|
1107 |
+
self.embed_dim = embed_dim
|
1108 |
+
self.ape = ape
|
1109 |
+
self.patch_norm = patch_norm
|
1110 |
+
self.out_indices = out_indices
|
1111 |
+
self.frozen_stages = frozen_stages
|
1112 |
+
|
1113 |
+
# split image into non-overlapping patches
|
1114 |
+
self.patch_embed = PatchEmbed(
|
1115 |
+
patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
|
1116 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
1117 |
+
|
1118 |
+
# absolute position embedding
|
1119 |
+
if self.ape:
|
1120 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
1121 |
+
patch_size = to_2tuple(patch_size)
|
1122 |
+
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
|
1123 |
+
|
1124 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
|
1125 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
1126 |
+
|
1127 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
1128 |
+
|
1129 |
+
# stochastic depth
|
1130 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
1131 |
+
|
1132 |
+
# build layers
|
1133 |
+
self.layers = nn.ModuleList()
|
1134 |
+
for i_layer in range(self.num_layers):
|
1135 |
+
layer = BasicLayer(
|
1136 |
+
dim=int(embed_dim * 2 ** i_layer),
|
1137 |
+
depth=depths[i_layer],
|
1138 |
+
num_heads=num_heads[i_layer],
|
1139 |
+
window_size=window_size,
|
1140 |
+
mlp_ratio=mlp_ratio,
|
1141 |
+
qkv_bias=qkv_bias,
|
1142 |
+
qk_scale=qk_scale,
|
1143 |
+
drop=drop_rate,
|
1144 |
+
attn_drop=attn_drop_rate,
|
1145 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
1146 |
+
norm_layer=norm_layer,
|
1147 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
1148 |
+
use_checkpoint=use_checkpoint)
|
1149 |
+
self.layers.append(layer)
|
1150 |
+
|
1151 |
+
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
1152 |
+
self.num_features = num_features
|
1153 |
+
|
1154 |
+
# add a norm layer for each output
|
1155 |
+
for i_layer in out_indices:
|
1156 |
+
layer = norm_layer(num_features[i_layer])
|
1157 |
+
layer_name = f'norm{i_layer}'
|
1158 |
+
self.add_module(layer_name, layer)
|
1159 |
+
|
1160 |
+
self._freeze_stages()
|
1161 |
+
|
1162 |
+
def _freeze_stages(self):
|
1163 |
+
if self.frozen_stages >= 0:
|
1164 |
+
self.patch_embed.eval()
|
1165 |
+
for param in self.patch_embed.parameters():
|
1166 |
+
param.requires_grad = False
|
1167 |
+
|
1168 |
+
if self.frozen_stages >= 1 and self.ape:
|
1169 |
+
self.absolute_pos_embed.requires_grad = False
|
1170 |
+
|
1171 |
+
if self.frozen_stages >= 2:
|
1172 |
+
self.pos_drop.eval()
|
1173 |
+
for i in range(0, self.frozen_stages - 1):
|
1174 |
+
m = self.layers[i]
|
1175 |
+
m.eval()
|
1176 |
+
for param in m.parameters():
|
1177 |
+
param.requires_grad = False
|
1178 |
+
|
1179 |
+
|
1180 |
+
def forward(self, x):
|
1181 |
+
"""Forward function."""
|
1182 |
+
x = self.patch_embed(x)
|
1183 |
+
|
1184 |
+
Wh, Ww = x.size(2), x.size(3)
|
1185 |
+
if self.ape:
|
1186 |
+
# interpolate the position embedding to the corresponding size
|
1187 |
+
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
|
1188 |
+
x = (x + absolute_pos_embed) # B Wh*Ww C
|
1189 |
+
|
1190 |
+
outs = []#x.contiguous()]
|
1191 |
+
x = x.flatten(2).transpose(1, 2)
|
1192 |
+
x = self.pos_drop(x)
|
1193 |
+
for i in range(self.num_layers):
|
1194 |
+
layer = self.layers[i]
|
1195 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
1196 |
+
|
1197 |
+
if i in self.out_indices:
|
1198 |
+
norm_layer = getattr(self, f'norm{i}')
|
1199 |
+
x_out = norm_layer(x_out)
|
1200 |
+
|
1201 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
1202 |
+
outs.append(out)
|
1203 |
+
|
1204 |
+
return tuple(outs)
|
1205 |
+
|
1206 |
+
def train(self, mode=True):
|
1207 |
+
"""Convert the model into training mode while keep layers freezed."""
|
1208 |
+
super(SwinTransformer, self).train(mode)
|
1209 |
+
self._freeze_stages()
|
1210 |
+
|
1211 |
+
def swin_v1_t():
|
1212 |
+
model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
|
1213 |
+
return model
|
1214 |
+
|
1215 |
+
def swin_v1_s():
|
1216 |
+
model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
|
1217 |
+
return model
|
1218 |
+
|
1219 |
+
def swin_v1_b():
|
1220 |
+
model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
|
1221 |
+
return model
|
1222 |
+
|
1223 |
+
def swin_v1_l():
|
1224 |
+
model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
|
1225 |
+
return model
|
1226 |
+
|
1227 |
+
|
1228 |
+
|
1229 |
+
### models/modules/deform_conv.py
|
1230 |
+
|
1231 |
+
import torch
|
1232 |
+
import torch.nn as nn
|
1233 |
+
from torchvision.ops import deform_conv2d
|
1234 |
+
|
1235 |
+
|
1236 |
+
class DeformableConv2d(nn.Module):
|
1237 |
+
def __init__(self,
|
1238 |
+
in_channels,
|
1239 |
+
out_channels,
|
1240 |
+
kernel_size=3,
|
1241 |
+
stride=1,
|
1242 |
+
padding=1,
|
1243 |
+
bias=False):
|
1244 |
+
|
1245 |
+
super(DeformableConv2d, self).__init__()
|
1246 |
+
|
1247 |
+
assert type(kernel_size) == tuple or type(kernel_size) == int
|
1248 |
+
|
1249 |
+
kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
|
1250 |
+
self.stride = stride if type(stride) == tuple else (stride, stride)
|
1251 |
+
self.padding = padding
|
1252 |
+
|
1253 |
+
self.offset_conv = nn.Conv2d(in_channels,
|
1254 |
+
2 * kernel_size[0] * kernel_size[1],
|
1255 |
+
kernel_size=kernel_size,
|
1256 |
+
stride=stride,
|
1257 |
+
padding=self.padding,
|
1258 |
+
bias=True)
|
1259 |
+
|
1260 |
+
nn.init.constant_(self.offset_conv.weight, 0.)
|
1261 |
+
nn.init.constant_(self.offset_conv.bias, 0.)
|
1262 |
+
|
1263 |
+
self.modulator_conv = nn.Conv2d(in_channels,
|
1264 |
+
1 * kernel_size[0] * kernel_size[1],
|
1265 |
+
kernel_size=kernel_size,
|
1266 |
+
stride=stride,
|
1267 |
+
padding=self.padding,
|
1268 |
+
bias=True)
|
1269 |
+
|
1270 |
+
nn.init.constant_(self.modulator_conv.weight, 0.)
|
1271 |
+
nn.init.constant_(self.modulator_conv.bias, 0.)
|
1272 |
+
|
1273 |
+
self.regular_conv = nn.Conv2d(in_channels,
|
1274 |
+
out_channels=out_channels,
|
1275 |
+
kernel_size=kernel_size,
|
1276 |
+
stride=stride,
|
1277 |
+
padding=self.padding,
|
1278 |
+
bias=bias)
|
1279 |
+
|
1280 |
+
def forward(self, x):
|
1281 |
+
#h, w = x.shape[2:]
|
1282 |
+
#max_offset = max(h, w)/4.
|
1283 |
+
|
1284 |
+
offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
|
1285 |
+
modulator = 2. * torch.sigmoid(self.modulator_conv(x))
|
1286 |
+
|
1287 |
+
x = deform_conv2d(
|
1288 |
+
input=x,
|
1289 |
+
offset=offset,
|
1290 |
+
weight=self.regular_conv.weight,
|
1291 |
+
bias=self.regular_conv.bias,
|
1292 |
+
padding=self.padding,
|
1293 |
+
mask=modulator,
|
1294 |
+
stride=self.stride,
|
1295 |
+
)
|
1296 |
+
return x
|
1297 |
+
|
1298 |
+
|
1299 |
+
|
1300 |
+
|
1301 |
+
### utils.py
|
1302 |
+
|
1303 |
+
import torch.nn as nn
|
1304 |
+
|
1305 |
+
|
1306 |
+
def build_act_layer(act_layer):
|
1307 |
+
if act_layer == 'ReLU':
|
1308 |
+
return nn.ReLU(inplace=True)
|
1309 |
+
elif act_layer == 'SiLU':
|
1310 |
+
return nn.SiLU(inplace=True)
|
1311 |
+
elif act_layer == 'GELU':
|
1312 |
+
return nn.GELU()
|
1313 |
+
|
1314 |
+
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
|
1315 |
+
|
1316 |
+
|
1317 |
+
def build_norm_layer(dim,
|
1318 |
+
norm_layer,
|
1319 |
+
in_format='channels_last',
|
1320 |
+
out_format='channels_last',
|
1321 |
+
eps=1e-6):
|
1322 |
+
layers = []
|
1323 |
+
if norm_layer == 'BN':
|
1324 |
+
if in_format == 'channels_last':
|
1325 |
+
layers.append(to_channels_first())
|
1326 |
+
layers.append(nn.BatchNorm2d(dim))
|
1327 |
+
if out_format == 'channels_last':
|
1328 |
+
layers.append(to_channels_last())
|
1329 |
+
elif norm_layer == 'LN':
|
1330 |
+
if in_format == 'channels_first':
|
1331 |
+
layers.append(to_channels_last())
|
1332 |
+
layers.append(nn.LayerNorm(dim, eps=eps))
|
1333 |
+
if out_format == 'channels_first':
|
1334 |
+
layers.append(to_channels_first())
|
1335 |
+
else:
|
1336 |
+
raise NotImplementedError(
|
1337 |
+
f'build_norm_layer does not support {norm_layer}')
|
1338 |
+
return nn.Sequential(*layers)
|
1339 |
+
|
1340 |
+
|
1341 |
+
class to_channels_first(nn.Module):
|
1342 |
+
|
1343 |
+
def __init__(self):
|
1344 |
+
super().__init__()
|
1345 |
+
|
1346 |
+
def forward(self, x):
|
1347 |
+
return x.permute(0, 3, 1, 2)
|
1348 |
+
|
1349 |
+
|
1350 |
+
class to_channels_last(nn.Module):
|
1351 |
+
|
1352 |
+
def __init__(self):
|
1353 |
+
super().__init__()
|
1354 |
+
|
1355 |
+
def forward(self, x):
|
1356 |
+
return x.permute(0, 2, 3, 1)
|
1357 |
+
|
1358 |
+
|
1359 |
+
|
1360 |
+
### dataset.py
|
1361 |
+
|
1362 |
+
_class_labels_TR_sorted = (
|
1363 |
+
'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
|
1364 |
+
'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
|
1365 |
+
'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
|
1366 |
+
'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
|
1367 |
+
'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
|
1368 |
+
'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
|
1369 |
+
'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
|
1370 |
+
'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
|
1371 |
+
'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
|
1372 |
+
'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
|
1373 |
+
'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
|
1374 |
+
'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
|
1375 |
+
'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
|
1376 |
+
'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
|
1377 |
+
)
|
1378 |
+
class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
|
1379 |
+
|
1380 |
+
|
1381 |
+
### models/backbones/build_backbones.py
|
1382 |
+
|
1383 |
+
import torch
|
1384 |
+
import torch.nn as nn
|
1385 |
+
from collections import OrderedDict
|
1386 |
+
from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
|
1387 |
+
# from models.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
|
1388 |
+
# from models.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
|
1389 |
+
# from config import Config
|
1390 |
+
|
1391 |
+
|
1392 |
+
config = Config()
|
1393 |
+
|
1394 |
+
def build_backbone(bb_name, pretrained=True, params_settings=''):
|
1395 |
+
if bb_name == 'vgg16':
|
1396 |
+
bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
|
1397 |
+
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
|
1398 |
+
elif bb_name == 'vgg16bn':
|
1399 |
+
bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
|
1400 |
+
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
|
1401 |
+
elif bb_name == 'resnet50':
|
1402 |
+
bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
|
1403 |
+
bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
|
1404 |
+
else:
|
1405 |
+
bb = eval('{}({})'.format(bb_name, params_settings))
|
1406 |
+
if pretrained:
|
1407 |
+
bb = load_weights(bb, bb_name)
|
1408 |
+
return bb
|
1409 |
+
|
1410 |
+
def load_weights(model, model_name):
|
1411 |
+
save_model = torch.load(config.weights[model_name], map_location='cpu')
|
1412 |
+
model_dict = model.state_dict()
|
1413 |
+
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
|
1414 |
+
# to ignore the weights with mismatched size when I modify the backbone itself.
|
1415 |
+
if not state_dict:
|
1416 |
+
save_model_keys = list(save_model.keys())
|
1417 |
+
sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
|
1418 |
+
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
|
1419 |
+
if not state_dict or not sub_item:
|
1420 |
+
print('Weights are not successully loaded. Check the state dict of weights file.')
|
1421 |
+
return None
|
1422 |
+
else:
|
1423 |
+
print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
|
1424 |
+
model_dict.update(state_dict)
|
1425 |
+
model.load_state_dict(model_dict)
|
1426 |
+
return model
|
1427 |
+
|
1428 |
+
|
1429 |
+
|
1430 |
+
### models/modules/decoder_blocks.py
|
1431 |
+
|
1432 |
+
import torch
|
1433 |
+
import torch.nn as nn
|
1434 |
+
# from models.aspp import ASPP, ASPPDeformable
|
1435 |
+
# from config import Config
|
1436 |
+
|
1437 |
+
|
1438 |
+
# config = Config()
|
1439 |
+
|
1440 |
+
|
1441 |
+
class BasicDecBlk(nn.Module):
|
1442 |
+
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
1443 |
+
super(BasicDecBlk, self).__init__()
|
1444 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
1445 |
+
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
1446 |
+
self.relu_in = nn.ReLU(inplace=True)
|
1447 |
+
if config.dec_att == 'ASPP':
|
1448 |
+
self.dec_att = ASPP(in_channels=inter_channels)
|
1449 |
+
elif config.dec_att == 'ASPPDeformable':
|
1450 |
+
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
1451 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
1452 |
+
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
1453 |
+
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
1454 |
+
|
1455 |
+
def forward(self, x):
|
1456 |
+
x = self.conv_in(x)
|
1457 |
+
x = self.bn_in(x)
|
1458 |
+
x = self.relu_in(x)
|
1459 |
+
if hasattr(self, 'dec_att'):
|
1460 |
+
x = self.dec_att(x)
|
1461 |
+
x = self.conv_out(x)
|
1462 |
+
x = self.bn_out(x)
|
1463 |
+
return x
|
1464 |
+
|
1465 |
+
|
1466 |
+
class ResBlk(nn.Module):
|
1467 |
+
def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
|
1468 |
+
super(ResBlk, self).__init__()
|
1469 |
+
if out_channels is None:
|
1470 |
+
out_channels = in_channels
|
1471 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
1472 |
+
|
1473 |
+
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
1474 |
+
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
1475 |
+
self.relu_in = nn.ReLU(inplace=True)
|
1476 |
+
|
1477 |
+
if config.dec_att == 'ASPP':
|
1478 |
+
self.dec_att = ASPP(in_channels=inter_channels)
|
1479 |
+
elif config.dec_att == 'ASPPDeformable':
|
1480 |
+
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
1481 |
+
|
1482 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
1483 |
+
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
1484 |
+
|
1485 |
+
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
1486 |
+
|
1487 |
+
def forward(self, x):
|
1488 |
+
_x = self.conv_resi(x)
|
1489 |
+
x = self.conv_in(x)
|
1490 |
+
x = self.bn_in(x)
|
1491 |
+
x = self.relu_in(x)
|
1492 |
+
if hasattr(self, 'dec_att'):
|
1493 |
+
x = self.dec_att(x)
|
1494 |
+
x = self.conv_out(x)
|
1495 |
+
x = self.bn_out(x)
|
1496 |
+
return x + _x
|
1497 |
+
|
1498 |
+
|
1499 |
+
|
1500 |
+
### models/modules/lateral_blocks.py
|
1501 |
+
|
1502 |
+
import numpy as np
|
1503 |
+
import torch
|
1504 |
+
import torch.nn as nn
|
1505 |
+
import torch.nn.functional as F
|
1506 |
+
from functools import partial
|
1507 |
+
|
1508 |
+
# from config import Config
|
1509 |
+
|
1510 |
+
|
1511 |
+
# config = Config()
|
1512 |
+
|
1513 |
+
|
1514 |
+
class BasicLatBlk(nn.Module):
|
1515 |
+
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
1516 |
+
super(BasicLatBlk, self).__init__()
|
1517 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
1518 |
+
self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
1519 |
+
|
1520 |
+
def forward(self, x):
|
1521 |
+
x = self.conv(x)
|
1522 |
+
return x
|
1523 |
+
|
1524 |
+
|
1525 |
+
|
1526 |
+
### models/modules/aspp.py
|
1527 |
+
|
1528 |
+
import torch
|
1529 |
+
import torch.nn as nn
|
1530 |
+
import torch.nn.functional as F
|
1531 |
+
# from models.deform_conv import DeformableConv2d
|
1532 |
+
# from config import Config
|
1533 |
+
|
1534 |
+
|
1535 |
+
# config = Config()
|
1536 |
+
|
1537 |
+
|
1538 |
+
class _ASPPModule(nn.Module):
|
1539 |
+
def __init__(self, in_channels, planes, kernel_size, padding, dilation):
|
1540 |
+
super(_ASPPModule, self).__init__()
|
1541 |
+
self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
|
1542 |
+
stride=1, padding=padding, dilation=dilation, bias=False)
|
1543 |
+
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
1544 |
+
self.relu = nn.ReLU(inplace=True)
|
1545 |
+
|
1546 |
+
def forward(self, x):
|
1547 |
+
x = self.atrous_conv(x)
|
1548 |
+
x = self.bn(x)
|
1549 |
+
|
1550 |
+
return self.relu(x)
|
1551 |
+
|
1552 |
+
|
1553 |
+
class ASPP(nn.Module):
|
1554 |
+
def __init__(self, in_channels=64, out_channels=None, output_stride=16):
|
1555 |
+
super(ASPP, self).__init__()
|
1556 |
+
self.down_scale = 1
|
1557 |
+
if out_channels is None:
|
1558 |
+
out_channels = in_channels
|
1559 |
+
self.in_channelster = 256 // self.down_scale
|
1560 |
+
if output_stride == 16:
|
1561 |
+
dilations = [1, 6, 12, 18]
|
1562 |
+
elif output_stride == 8:
|
1563 |
+
dilations = [1, 12, 24, 36]
|
1564 |
+
else:
|
1565 |
+
raise NotImplementedError
|
1566 |
+
|
1567 |
+
self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
|
1568 |
+
self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
|
1569 |
+
self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
|
1570 |
+
self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
|
1571 |
+
|
1572 |
+
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
1573 |
+
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
1574 |
+
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
1575 |
+
nn.ReLU(inplace=True))
|
1576 |
+
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
|
1577 |
+
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
1578 |
+
self.relu = nn.ReLU(inplace=True)
|
1579 |
+
self.dropout = nn.Dropout(0.5)
|
1580 |
+
|
1581 |
+
def forward(self, x):
|
1582 |
+
x1 = self.aspp1(x)
|
1583 |
+
x2 = self.aspp2(x)
|
1584 |
+
x3 = self.aspp3(x)
|
1585 |
+
x4 = self.aspp4(x)
|
1586 |
+
x5 = self.global_avg_pool(x)
|
1587 |
+
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
|
1588 |
+
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
|
1589 |
+
|
1590 |
+
x = self.conv1(x)
|
1591 |
+
x = self.bn1(x)
|
1592 |
+
x = self.relu(x)
|
1593 |
+
|
1594 |
+
return self.dropout(x)
|
1595 |
+
|
1596 |
+
|
1597 |
+
##################### Deformable
|
1598 |
+
class _ASPPModuleDeformable(nn.Module):
|
1599 |
+
def __init__(self, in_channels, planes, kernel_size, padding):
|
1600 |
+
super(_ASPPModuleDeformable, self).__init__()
|
1601 |
+
self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
|
1602 |
+
stride=1, padding=padding, bias=False)
|
1603 |
+
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
1604 |
+
self.relu = nn.ReLU(inplace=True)
|
1605 |
+
|
1606 |
+
def forward(self, x):
|
1607 |
+
x = self.atrous_conv(x)
|
1608 |
+
x = self.bn(x)
|
1609 |
+
|
1610 |
+
return self.relu(x)
|
1611 |
+
|
1612 |
+
|
1613 |
+
class ASPPDeformable(nn.Module):
|
1614 |
+
def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
|
1615 |
+
super(ASPPDeformable, self).__init__()
|
1616 |
+
self.down_scale = 1
|
1617 |
+
if out_channels is None:
|
1618 |
+
out_channels = in_channels
|
1619 |
+
self.in_channelster = 256 // self.down_scale
|
1620 |
+
|
1621 |
+
self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
|
1622 |
+
self.aspp_deforms = nn.ModuleList([
|
1623 |
+
_ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
|
1624 |
+
])
|
1625 |
+
|
1626 |
+
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
1627 |
+
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
1628 |
+
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
1629 |
+
nn.ReLU(inplace=True))
|
1630 |
+
self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
|
1631 |
+
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
1632 |
+
self.relu = nn.ReLU(inplace=True)
|
1633 |
+
self.dropout = nn.Dropout(0.5)
|
1634 |
+
|
1635 |
+
def forward(self, x):
|
1636 |
+
x1 = self.aspp1(x)
|
1637 |
+
x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
|
1638 |
+
x5 = self.global_avg_pool(x)
|
1639 |
+
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
|
1640 |
+
x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
|
1641 |
+
|
1642 |
+
x = self.conv1(x)
|
1643 |
+
x = self.bn1(x)
|
1644 |
+
x = self.relu(x)
|
1645 |
+
|
1646 |
+
return self.dropout(x)
|
1647 |
+
|
1648 |
+
|
1649 |
+
|
1650 |
+
### models/refinement/refiner.py
|
1651 |
+
|
1652 |
+
import torch
|
1653 |
+
import torch.nn as nn
|
1654 |
+
from collections import OrderedDict
|
1655 |
+
import torch
|
1656 |
+
import torch.nn as nn
|
1657 |
+
import torch.nn.functional as F
|
1658 |
+
from torchvision.models import vgg16, vgg16_bn
|
1659 |
+
from torchvision.models import resnet50
|
1660 |
+
|
1661 |
+
# from config import Config
|
1662 |
+
# from dataset import class_labels_TR_sorted
|
1663 |
+
# from models.build_backbone import build_backbone
|
1664 |
+
# from models.decoder_blocks import BasicDecBlk
|
1665 |
+
# from models.lateral_blocks import BasicLatBlk
|
1666 |
+
# from models.ing import *
|
1667 |
+
# from models.stem_layer import StemLayer
|
1668 |
+
|
1669 |
+
|
1670 |
+
class RefinerPVTInChannels4(nn.Module):
|
1671 |
+
def __init__(self, in_channels=3+1):
|
1672 |
+
super(RefinerPVTInChannels4, self).__init__()
|
1673 |
+
self.config = Config()
|
1674 |
+
self.epoch = 1
|
1675 |
+
self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
|
1676 |
+
|
1677 |
+
lateral_channels_in_collection = {
|
1678 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
1679 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
1680 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
1681 |
+
}
|
1682 |
+
channels = lateral_channels_in_collection[self.config.bb]
|
1683 |
+
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
1684 |
+
|
1685 |
+
self.decoder = Decoder(channels)
|
1686 |
+
|
1687 |
+
if 0:
|
1688 |
+
for key, value in self.named_parameters():
|
1689 |
+
if 'bb.' in key:
|
1690 |
+
value.requires_grad = False
|
1691 |
+
|
1692 |
+
def forward(self, x):
|
1693 |
+
if isinstance(x, list):
|
1694 |
+
x = torch.cat(x, dim=1)
|
1695 |
+
########## Encoder ##########
|
1696 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
1697 |
+
x1 = self.bb.conv1(x)
|
1698 |
+
x2 = self.bb.conv2(x1)
|
1699 |
+
x3 = self.bb.conv3(x2)
|
1700 |
+
x4 = self.bb.conv4(x3)
|
1701 |
+
else:
|
1702 |
+
x1, x2, x3, x4 = self.bb(x)
|
1703 |
+
|
1704 |
+
x4 = self.squeeze_module(x4)
|
1705 |
+
|
1706 |
+
########## Decoder ##########
|
1707 |
+
|
1708 |
+
features = [x, x1, x2, x3, x4]
|
1709 |
+
scaled_preds = self.decoder(features)
|
1710 |
+
|
1711 |
+
return scaled_preds
|
1712 |
+
|
1713 |
+
|
1714 |
+
class Refiner(nn.Module):
|
1715 |
+
def __init__(self, in_channels=3+1):
|
1716 |
+
super(Refiner, self).__init__()
|
1717 |
+
self.config = Config()
|
1718 |
+
self.epoch = 1
|
1719 |
+
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
1720 |
+
self.bb = build_backbone(self.config.bb)
|
1721 |
+
|
1722 |
+
lateral_channels_in_collection = {
|
1723 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
1724 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
1725 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
1726 |
+
}
|
1727 |
+
channels = lateral_channels_in_collection[self.config.bb]
|
1728 |
+
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
1729 |
+
|
1730 |
+
self.decoder = Decoder(channels)
|
1731 |
+
|
1732 |
+
if 0:
|
1733 |
+
for key, value in self.named_parameters():
|
1734 |
+
if 'bb.' in key:
|
1735 |
+
value.requires_grad = False
|
1736 |
+
|
1737 |
+
def forward(self, x):
|
1738 |
+
if isinstance(x, list):
|
1739 |
+
x = torch.cat(x, dim=1)
|
1740 |
+
x = self.stem_layer(x)
|
1741 |
+
########## Encoder ##########
|
1742 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
1743 |
+
x1 = self.bb.conv1(x)
|
1744 |
+
x2 = self.bb.conv2(x1)
|
1745 |
+
x3 = self.bb.conv3(x2)
|
1746 |
+
x4 = self.bb.conv4(x3)
|
1747 |
+
else:
|
1748 |
+
x1, x2, x3, x4 = self.bb(x)
|
1749 |
+
|
1750 |
+
x4 = self.squeeze_module(x4)
|
1751 |
+
|
1752 |
+
########## Decoder ##########
|
1753 |
+
|
1754 |
+
features = [x, x1, x2, x3, x4]
|
1755 |
+
scaled_preds = self.decoder(features)
|
1756 |
+
|
1757 |
+
return scaled_preds
|
1758 |
+
|
1759 |
+
|
1760 |
+
class Decoder(nn.Module):
|
1761 |
+
def __init__(self, channels):
|
1762 |
+
super(Decoder, self).__init__()
|
1763 |
+
self.config = Config()
|
1764 |
+
DecoderBlock = eval('BasicDecBlk')
|
1765 |
+
LateralBlock = eval('BasicLatBlk')
|
1766 |
+
|
1767 |
+
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
|
1768 |
+
self.decoder_block3 = DecoderBlock(channels[1], channels[2])
|
1769 |
+
self.decoder_block2 = DecoderBlock(channels[2], channels[3])
|
1770 |
+
self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
|
1771 |
+
|
1772 |
+
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
1773 |
+
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
1774 |
+
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
1775 |
+
|
1776 |
+
if self.config.ms_supervision:
|
1777 |
+
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
1778 |
+
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
1779 |
+
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
1780 |
+
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
|
1781 |
+
|
1782 |
+
def forward(self, features):
|
1783 |
+
x, x1, x2, x3, x4 = features
|
1784 |
+
outs = []
|
1785 |
+
p4 = self.decoder_block4(x4)
|
1786 |
+
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
1787 |
+
_p3 = _p4 + self.lateral_block4(x3)
|
1788 |
+
|
1789 |
+
p3 = self.decoder_block3(_p3)
|
1790 |
+
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
1791 |
+
_p2 = _p3 + self.lateral_block3(x2)
|
1792 |
+
|
1793 |
+
p2 = self.decoder_block2(_p2)
|
1794 |
+
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
1795 |
+
_p1 = _p2 + self.lateral_block2(x1)
|
1796 |
+
|
1797 |
+
_p1 = self.decoder_block1(_p1)
|
1798 |
+
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
1799 |
+
p1_out = self.conv_out1(_p1)
|
1800 |
+
|
1801 |
+
if self.config.ms_supervision:
|
1802 |
+
outs.append(self.conv_ms_spvn_4(p4))
|
1803 |
+
outs.append(self.conv_ms_spvn_3(p3))
|
1804 |
+
outs.append(self.conv_ms_spvn_2(p2))
|
1805 |
+
outs.append(p1_out)
|
1806 |
+
return outs
|
1807 |
+
|
1808 |
+
|
1809 |
+
class RefUNet(nn.Module):
|
1810 |
+
# Refinement
|
1811 |
+
def __init__(self, in_channels=3+1):
|
1812 |
+
super(RefUNet, self).__init__()
|
1813 |
+
self.encoder_1 = nn.Sequential(
|
1814 |
+
nn.Conv2d(in_channels, 64, 3, 1, 1),
|
1815 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
1816 |
+
nn.BatchNorm2d(64),
|
1817 |
+
nn.ReLU(inplace=True)
|
1818 |
+
)
|
1819 |
+
|
1820 |
+
self.encoder_2 = nn.Sequential(
|
1821 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
1822 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
1823 |
+
nn.BatchNorm2d(64),
|
1824 |
+
nn.ReLU(inplace=True)
|
1825 |
+
)
|
1826 |
+
|
1827 |
+
self.encoder_3 = nn.Sequential(
|
1828 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
1829 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
1830 |
+
nn.BatchNorm2d(64),
|
1831 |
+
nn.ReLU(inplace=True)
|
1832 |
+
)
|
1833 |
+
|
1834 |
+
self.encoder_4 = nn.Sequential(
|
1835 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
1836 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
1837 |
+
nn.BatchNorm2d(64),
|
1838 |
+
nn.ReLU(inplace=True)
|
1839 |
+
)
|
1840 |
+
|
1841 |
+
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
1842 |
+
#####
|
1843 |
+
self.decoder_5 = nn.Sequential(
|
1844 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
1845 |
+
nn.BatchNorm2d(64),
|
1846 |
+
nn.ReLU(inplace=True)
|
1847 |
+
)
|
1848 |
+
#####
|
1849 |
+
self.decoder_4 = nn.Sequential(
|
1850 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
1851 |
+
nn.BatchNorm2d(64),
|
1852 |
+
nn.ReLU(inplace=True)
|
1853 |
+
)
|
1854 |
+
|
1855 |
+
self.decoder_3 = nn.Sequential(
|
1856 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
1857 |
+
nn.BatchNorm2d(64),
|
1858 |
+
nn.ReLU(inplace=True)
|
1859 |
+
)
|
1860 |
+
|
1861 |
+
self.decoder_2 = nn.Sequential(
|
1862 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
1863 |
+
nn.BatchNorm2d(64),
|
1864 |
+
nn.ReLU(inplace=True)
|
1865 |
+
)
|
1866 |
+
|
1867 |
+
self.decoder_1 = nn.Sequential(
|
1868 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
1869 |
+
nn.BatchNorm2d(64),
|
1870 |
+
nn.ReLU(inplace=True)
|
1871 |
+
)
|
1872 |
+
|
1873 |
+
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
|
1874 |
+
|
1875 |
+
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
1876 |
+
|
1877 |
+
def forward(self, x):
|
1878 |
+
outs = []
|
1879 |
+
if isinstance(x, list):
|
1880 |
+
x = torch.cat(x, dim=1)
|
1881 |
+
hx = x
|
1882 |
+
|
1883 |
+
hx1 = self.encoder_1(hx)
|
1884 |
+
hx2 = self.encoder_2(hx1)
|
1885 |
+
hx3 = self.encoder_3(hx2)
|
1886 |
+
hx4 = self.encoder_4(hx3)
|
1887 |
+
|
1888 |
+
hx = self.decoder_5(self.pool4(hx4))
|
1889 |
+
hx = torch.cat((self.upscore2(hx), hx4), 1)
|
1890 |
+
|
1891 |
+
d4 = self.decoder_4(hx)
|
1892 |
+
hx = torch.cat((self.upscore2(d4), hx3), 1)
|
1893 |
+
|
1894 |
+
d3 = self.decoder_3(hx)
|
1895 |
+
hx = torch.cat((self.upscore2(d3), hx2), 1)
|
1896 |
+
|
1897 |
+
d2 = self.decoder_2(hx)
|
1898 |
+
hx = torch.cat((self.upscore2(d2), hx1), 1)
|
1899 |
+
|
1900 |
+
d1 = self.decoder_1(hx)
|
1901 |
+
|
1902 |
+
x = self.conv_d0(d1)
|
1903 |
+
outs.append(x)
|
1904 |
+
return outs
|
1905 |
+
|
1906 |
+
|
1907 |
+
|
1908 |
+
### models/stem_layer.py
|
1909 |
+
|
1910 |
+
import torch.nn as nn
|
1911 |
+
# from utils import build_act_layer, build_norm_layer
|
1912 |
+
|
1913 |
+
|
1914 |
+
class StemLayer(nn.Module):
|
1915 |
+
r""" Stem layer of InternImage
|
1916 |
+
Args:
|
1917 |
+
in_channels (int): number of input channels
|
1918 |
+
out_channels (int): number of output channels
|
1919 |
+
act_layer (str): activation layer
|
1920 |
+
norm_layer (str): normalization layer
|
1921 |
+
"""
|
1922 |
+
|
1923 |
+
def __init__(self,
|
1924 |
+
in_channels=3+1,
|
1925 |
+
inter_channels=48,
|
1926 |
+
out_channels=96,
|
1927 |
+
act_layer='GELU',
|
1928 |
+
norm_layer='BN'):
|
1929 |
+
super().__init__()
|
1930 |
+
self.conv1 = nn.Conv2d(in_channels,
|
1931 |
+
inter_channels,
|
1932 |
+
kernel_size=3,
|
1933 |
+
stride=1,
|
1934 |
+
padding=1)
|
1935 |
+
self.norm1 = build_norm_layer(
|
1936 |
+
inter_channels, norm_layer, 'channels_first', 'channels_first'
|
1937 |
+
)
|
1938 |
+
self.act = build_act_layer(act_layer)
|
1939 |
+
self.conv2 = nn.Conv2d(inter_channels,
|
1940 |
+
out_channels,
|
1941 |
+
kernel_size=3,
|
1942 |
+
stride=1,
|
1943 |
+
padding=1)
|
1944 |
+
self.norm2 = build_norm_layer(
|
1945 |
+
out_channels, norm_layer, 'channels_first', 'channels_first'
|
1946 |
+
)
|
1947 |
+
|
1948 |
+
def forward(self, x):
|
1949 |
+
x = self.conv1(x)
|
1950 |
+
x = self.norm1(x)
|
1951 |
+
x = self.act(x)
|
1952 |
+
x = self.conv2(x)
|
1953 |
+
x = self.norm2(x)
|
1954 |
+
return x
|
1955 |
+
|
1956 |
+
|
1957 |
+
### models/birefnet.py
|
1958 |
+
|
1959 |
+
import torch
|
1960 |
+
import torch.nn as nn
|
1961 |
+
import torch.nn.functional as F
|
1962 |
+
from kornia.filters import laplacian
|
1963 |
+
from transformers import PreTrainedModel
|
1964 |
+
|
1965 |
+
# from config import Config
|
1966 |
+
# from dataset import class_labels_TR_sorted
|
1967 |
+
# from models.build_backbone import build_backbone
|
1968 |
+
# from models.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
|
1969 |
+
# from models.lateral_blocks import BasicLatBlk
|
1970 |
+
# from models.aspp import ASPP, ASPPDeformable
|
1971 |
+
# from models.ing import *
|
1972 |
+
# from models.refiner import Refiner, RefinerPVTInChannels4, RefUNet
|
1973 |
+
# from models.stem_layer import StemLayer
|
1974 |
+
from .BiRefNet_config import BiRefNetConfig
|
1975 |
+
|
1976 |
+
|
1977 |
+
class BiRefNet(
|
1978 |
+
PreTrainedModel
|
1979 |
+
):
|
1980 |
+
config_class = BiRefNetConfig
|
1981 |
+
def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
|
1982 |
+
super(BiRefNet, self).__init__(config)
|
1983 |
+
bb_pretrained = config.bb_pretrained
|
1984 |
+
self.config = Config()
|
1985 |
+
self.epoch = 1
|
1986 |
+
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
|
1987 |
+
|
1988 |
+
channels = self.config.lateral_channels_in_collection
|
1989 |
+
|
1990 |
+
if self.config.auxiliary_classification:
|
1991 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
1992 |
+
self.cls_head = nn.Sequential(
|
1993 |
+
nn.Linear(channels[0], len(class_labels_TR_sorted))
|
1994 |
+
)
|
1995 |
+
|
1996 |
+
if self.config.squeeze_block:
|
1997 |
+
self.squeeze_module = nn.Sequential(*[
|
1998 |
+
eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
|
1999 |
+
for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
|
2000 |
+
])
|
2001 |
+
|
2002 |
+
self.decoder = Decoder(channels)
|
2003 |
+
|
2004 |
+
if self.config.ender:
|
2005 |
+
self.dec_end = nn.Sequential(
|
2006 |
+
nn.Conv2d(1, 16, 3, 1, 1),
|
2007 |
+
nn.Conv2d(16, 1, 3, 1, 1),
|
2008 |
+
nn.ReLU(inplace=True),
|
2009 |
+
)
|
2010 |
+
|
2011 |
+
# refine patch-level segmentation
|
2012 |
+
if self.config.refine:
|
2013 |
+
if self.config.refine == 'itself':
|
2014 |
+
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
2015 |
+
else:
|
2016 |
+
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
|
2017 |
+
|
2018 |
+
if self.config.freeze_bb:
|
2019 |
+
# Freeze the backbone...
|
2020 |
+
print(self.named_parameters())
|
2021 |
+
for key, value in self.named_parameters():
|
2022 |
+
if 'bb.' in key and 'refiner.' not in key:
|
2023 |
+
value.requires_grad = False
|
2024 |
+
|
2025 |
+
def forward_enc(self, x):
|
2026 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
2027 |
+
x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
|
2028 |
+
else:
|
2029 |
+
x1, x2, x3, x4 = self.bb(x)
|
2030 |
+
if self.config.mul_scl_ipt == 'cat':
|
2031 |
+
B, C, H, W = x.shape
|
2032 |
+
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
|
2033 |
+
x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
2034 |
+
x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
2035 |
+
x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
2036 |
+
x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
2037 |
+
elif self.config.mul_scl_ipt == 'add':
|
2038 |
+
B, C, H, W = x.shape
|
2039 |
+
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
|
2040 |
+
x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
2041 |
+
x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
2042 |
+
x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
2043 |
+
x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
|
2044 |
+
class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
|
2045 |
+
if self.config.cxt:
|
2046 |
+
x4 = torch.cat(
|
2047 |
+
(
|
2048 |
+
*[
|
2049 |
+
F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
2050 |
+
F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
2051 |
+
F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
2052 |
+
][-len(self.config.cxt):],
|
2053 |
+
x4
|
2054 |
+
),
|
2055 |
+
dim=1
|
2056 |
+
)
|
2057 |
+
return (x1, x2, x3, x4), class_preds
|
2058 |
+
|
2059 |
+
def forward_ori(self, x):
|
2060 |
+
########## Encoder ##########
|
2061 |
+
(x1, x2, x3, x4), class_preds = self.forward_enc(x)
|
2062 |
+
if self.config.squeeze_block:
|
2063 |
+
x4 = self.squeeze_module(x4)
|
2064 |
+
########## Decoder ##########
|
2065 |
+
features = [x, x1, x2, x3, x4]
|
2066 |
+
if self.training and self.config.out_ref:
|
2067 |
+
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
|
2068 |
+
scaled_preds = self.decoder(features)
|
2069 |
+
return scaled_preds, class_preds
|
2070 |
+
|
2071 |
+
def forward(self, x):
|
2072 |
+
scaled_preds, class_preds = self.forward_ori(x)
|
2073 |
+
class_preds_lst = [class_preds]
|
2074 |
+
return [scaled_preds, class_preds_lst] if self.training else scaled_preds
|
2075 |
+
|
2076 |
+
|
2077 |
+
class Decoder(nn.Module):
|
2078 |
+
def __init__(self, channels):
|
2079 |
+
super(Decoder, self).__init__()
|
2080 |
+
self.config = Config()
|
2081 |
+
DecoderBlock = eval(self.config.dec_blk)
|
2082 |
+
LateralBlock = eval(self.config.lat_blk)
|
2083 |
+
|
2084 |
+
if self.config.dec_ipt:
|
2085 |
+
self.split = self.config.dec_ipt_split
|
2086 |
+
N_dec_ipt = 64
|
2087 |
+
DBlock = SimpleConvs
|
2088 |
+
ic = 64
|
2089 |
+
ipt_cha_opt = 1
|
2090 |
+
self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
2091 |
+
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
2092 |
+
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
|
2093 |
+
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
|
2094 |
+
self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
|
2095 |
+
else:
|
2096 |
+
self.split = None
|
2097 |
+
|
2098 |
+
self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
|
2099 |
+
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
|
2100 |
+
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
|
2101 |
+
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
|
2102 |
+
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
|
2103 |
+
|
2104 |
+
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
2105 |
+
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
2106 |
+
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
2107 |
+
|
2108 |
+
if self.config.ms_supervision:
|
2109 |
+
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
2110 |
+
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
2111 |
+
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
2112 |
+
|
2113 |
+
if self.config.out_ref:
|
2114 |
+
_N = 16
|
2115 |
+
self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
2116 |
+
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
2117 |
+
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
2118 |
+
|
2119 |
+
self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2120 |
+
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2121 |
+
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2122 |
+
|
2123 |
+
self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2124 |
+
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2125 |
+
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
2126 |
+
|
2127 |
+
def get_patches_batch(self, x, p):
|
2128 |
+
_size_h, _size_w = p.shape[2:]
|
2129 |
+
patches_batch = []
|
2130 |
+
for idx in range(x.shape[0]):
|
2131 |
+
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
|
2132 |
+
patches_x = []
|
2133 |
+
for column_x in columns_x:
|
2134 |
+
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
|
2135 |
+
patch_sample = torch.cat(patches_x, dim=1)
|
2136 |
+
patches_batch.append(patch_sample)
|
2137 |
+
return torch.cat(patches_batch, dim=0)
|
2138 |
+
|
2139 |
+
def forward(self, features):
|
2140 |
+
if self.training and self.config.out_ref:
|
2141 |
+
outs_gdt_pred = []
|
2142 |
+
outs_gdt_label = []
|
2143 |
+
x, x1, x2, x3, x4, gdt_gt = features
|
2144 |
+
else:
|
2145 |
+
x, x1, x2, x3, x4 = features
|
2146 |
+
outs = []
|
2147 |
+
|
2148 |
+
if self.config.dec_ipt:
|
2149 |
+
patches_batch = self.get_patches_batch(x, x4) if self.split else x
|
2150 |
+
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2151 |
+
p4 = self.decoder_block4(x4)
|
2152 |
+
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
|
2153 |
+
if self.config.out_ref:
|
2154 |
+
p4_gdt = self.gdt_convs_4(p4)
|
2155 |
+
if self.training:
|
2156 |
+
# >> GT:
|
2157 |
+
m4_dia = m4
|
2158 |
+
gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
2159 |
+
outs_gdt_label.append(gdt_label_main_4)
|
2160 |
+
# >> Pred:
|
2161 |
+
gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
|
2162 |
+
outs_gdt_pred.append(gdt_pred_4)
|
2163 |
+
gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
|
2164 |
+
# >> Finally:
|
2165 |
+
p4 = p4 * gdt_attn_4
|
2166 |
+
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
2167 |
+
_p3 = _p4 + self.lateral_block4(x3)
|
2168 |
+
|
2169 |
+
if self.config.dec_ipt:
|
2170 |
+
patches_batch = self.get_patches_batch(x, _p3) if self.split else x
|
2171 |
+
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2172 |
+
p3 = self.decoder_block3(_p3)
|
2173 |
+
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
|
2174 |
+
if self.config.out_ref:
|
2175 |
+
p3_gdt = self.gdt_convs_3(p3)
|
2176 |
+
if self.training:
|
2177 |
+
# >> GT:
|
2178 |
+
# m3 --dilation--> m3_dia
|
2179 |
+
# G_3^gt * m3_dia --> G_3^m, which is the label of gradient
|
2180 |
+
m3_dia = m3
|
2181 |
+
gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
2182 |
+
outs_gdt_label.append(gdt_label_main_3)
|
2183 |
+
# >> Pred:
|
2184 |
+
# p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
|
2185 |
+
# F_3^G --sigmoid--> A_3^G
|
2186 |
+
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
|
2187 |
+
outs_gdt_pred.append(gdt_pred_3)
|
2188 |
+
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
|
2189 |
+
# >> Finally:
|
2190 |
+
# p3 = p3 * A_3^G
|
2191 |
+
p3 = p3 * gdt_attn_3
|
2192 |
+
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
2193 |
+
_p2 = _p3 + self.lateral_block3(x2)
|
2194 |
+
|
2195 |
+
if self.config.dec_ipt:
|
2196 |
+
patches_batch = self.get_patches_batch(x, _p2) if self.split else x
|
2197 |
+
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2198 |
+
p2 = self.decoder_block2(_p2)
|
2199 |
+
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
|
2200 |
+
if self.config.out_ref:
|
2201 |
+
p2_gdt = self.gdt_convs_2(p2)
|
2202 |
+
if self.training:
|
2203 |
+
# >> GT:
|
2204 |
+
m2_dia = m2
|
2205 |
+
gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
2206 |
+
outs_gdt_label.append(gdt_label_main_2)
|
2207 |
+
# >> Pred:
|
2208 |
+
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
|
2209 |
+
outs_gdt_pred.append(gdt_pred_2)
|
2210 |
+
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
|
2211 |
+
# >> Finally:
|
2212 |
+
p2 = p2 * gdt_attn_2
|
2213 |
+
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
2214 |
+
_p1 = _p2 + self.lateral_block2(x1)
|
2215 |
+
|
2216 |
+
if self.config.dec_ipt:
|
2217 |
+
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
2218 |
+
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2219 |
+
_p1 = self.decoder_block1(_p1)
|
2220 |
+
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
2221 |
+
|
2222 |
+
if self.config.dec_ipt:
|
2223 |
+
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
2224 |
+
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
2225 |
+
p1_out = self.conv_out1(_p1)
|
2226 |
+
|
2227 |
+
if self.config.ms_supervision:
|
2228 |
+
outs.append(m4)
|
2229 |
+
outs.append(m3)
|
2230 |
+
outs.append(m2)
|
2231 |
+
outs.append(p1_out)
|
2232 |
+
return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
|
2233 |
+
|
2234 |
+
|
2235 |
+
class SimpleConvs(nn.Module):
|
2236 |
+
def __init__(
|
2237 |
+
self, in_channels: int, out_channels: int, inter_channels=64
|
2238 |
+
) -> None:
|
2239 |
+
super().__init__()
|
2240 |
+
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
|
2241 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
|
2242 |
+
|
2243 |
+
def forward(self, x):
|
2244 |
+
return self.conv_out(self.conv1(x))
|
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ZhengPeng7/BiRefNet-w_codes",
|
3 |
+
"architectures": [
|
4 |
+
"BiRefNet"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "BiRefNet_config.BiRefNetConfig",
|
8 |
+
"AutoModelForImageSegmentation": "birefnet.BiRefNet"
|
9 |
+
},
|
10 |
+
"custom_pipelines": {
|
11 |
+
"image-segmentation": {
|
12 |
+
"pt": [
|
13 |
+
"AutoModelForImageSegmentation"
|
14 |
+
],
|
15 |
+
"tf": [],
|
16 |
+
"type": "image"
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"bb_pretrained": false
|
20 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27bdb96351f57acb5c49b737c2f5d33ed25505b3919d09c7203a712ced5ecfd9
|
3 |
+
size 884878856
|