Zeyue7's picture
VidMuse_CVPR
ffa5ac7
import decord
from decord import VideoReader
from decord import cpu
import torch
import math
import einops
import torchvision.transforms as transforms
def adjust_video_duration(video_tensor, duration, target_fps):
current_duration = video_tensor.shape[1]
target_duration = duration * target_fps
if current_duration > target_duration:
video_tensor = video_tensor[:, :target_duration]
elif current_duration < target_duration:
last_frame = video_tensor[:, -1:]
repeat_times = target_duration - current_duration
video_tensor = torch.cat((video_tensor, last_frame.repeat(1, repeat_times, 1, 1)), dim=1)
return video_tensor
def video_read_local(filepath, seek_time=0., duration=-1, target_fps=2):
vr = VideoReader(filepath, ctx=cpu(0))
fps = vr.get_avg_fps()
if duration > 0:
total_frames_to_read = target_fps * duration
frame_interval = int(math.ceil(fps / target_fps))
start_frame = int(seek_time * fps)
end_frame = start_frame + frame_interval * total_frames_to_read
frame_ids = list(range(start_frame, min(end_frame, len(vr)), frame_interval))
else:
frame_ids = list(range(0, len(vr), int(math.ceil(fps / target_fps))))
frames = vr.get_batch(frame_ids)
frames = torch.from_numpy(frames.asnumpy()).permute(0, 3, 1, 2) # [N, H, W, C] -> [N, C, H, W]
resize_transform = transforms.Resize((224, 224))
frames = [resize_transform(frame) for frame in frames]
video_tensor = torch.stack(frames)
video_tensor = einops.rearrange(video_tensor, 't c h w -> c t h w') # [T, C, H, W] -> [C, T, H, W]
video_tensor = adjust_video_duration(video_tensor, duration, target_fps)
assert video_tensor.shape[1] == duration * target_fps, f"the shape of video_tensor is {video_tensor.shape}"
return video_tensor
def video_read_global(filepath, seek_time=0., duration=-1, target_fps=2, global_mode='average', global_num_frames=32):
vr = VideoReader(filepath, ctx=cpu(0))
fps = vr.get_avg_fps()
frame_count = len(vr)
if duration > 0:
total_frames_to_read = target_fps * duration
frame_interval = int(math.ceil(fps / target_fps))
start_frame = int(seek_time * fps)
end_frame = start_frame + frame_interval * total_frames_to_read
frame_ids = list(range(start_frame, min(end_frame, frame_count), frame_interval))
else:
frame_ids = list(range(0, frame_count, int(math.ceil(fps / target_fps))))
local_frames = vr.get_batch(frame_ids)
local_frames = torch.from_numpy(local_frames.asnumpy()).permute(0, 3, 1, 2) # [N, H, W, C] -> [N, C, H, W]
resize_transform = transforms.Resize((224, 224))
local_frames = [resize_transform(frame) for frame in local_frames]
local_video_tensor = torch.stack(local_frames)
local_video_tensor = einops.rearrange(local_video_tensor, 't c h w -> c t h w') # [T, C, H, W] -> [C, T, H, W]
local_video_tensor = adjust_video_duration(local_video_tensor, duration, target_fps)
if global_mode=='average':
global_frame_ids = torch.linspace(0, frame_count - 1, global_num_frames).long()
global_frames = vr.get_batch(global_frame_ids)
global_frames = torch.from_numpy(global_frames.asnumpy()).permute(0, 3, 1, 2) # [N, H, W, C] -> [N, C, H, W]
global_frames = [resize_transform(frame) for frame in global_frames]
global_video_tensor = torch.stack(global_frames)
global_video_tensor = einops.rearrange(global_video_tensor, 't c h w -> c t h w') # [T, C, H, W] -> [C, T, H, W]
assert global_video_tensor.shape[1] == global_num_frames, f"the shape of global_video_tensor is {global_video_tensor.shape}"
return local_video_tensor, global_video_tensor