|
import random |
|
import numpy as np |
|
from tqdm import tqdm |
|
from einops import repeat |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from transformers import CLIPTokenizer, AutoTokenizer |
|
from transformers import CLIPTextModel, T5EncoderModel, AutoModel |
|
import diffusers |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers import DDPMScheduler, UNet2DConditionModel |
|
from diffusers import AutoencoderKL as DiffuserAutoencoderKL |
|
|
|
from utils.torch_tools import wav_to_fbank |
|
from audioldm.audio.stft import TacotronSTFT |
|
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL |
|
from audioldm.utils import default_audioldm_config, get_metadata |
|
|
|
def build_pretrained_models(name): |
|
checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu") |
|
scale_factor = checkpoint["state_dict"]["scale_factor"].item() |
|
|
|
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k} |
|
|
|
config = default_audioldm_config(name) |
|
vae_config = config["model"]["params"]["first_stage_config"]["params"] |
|
vae_config["scale_factor"] = scale_factor |
|
|
|
vae = AutoencoderKL(**vae_config) |
|
vae.load_state_dict(vae_state_dict) |
|
|
|
fn_STFT = TacotronSTFT( |
|
config["preprocessing"]["stft"]["filter_length"], |
|
config["preprocessing"]["stft"]["hop_length"], |
|
config["preprocessing"]["stft"]["win_length"], |
|
config["preprocessing"]["mel"]["n_mel_channels"], |
|
config["preprocessing"]["audio"]["sampling_rate"], |
|
config["preprocessing"]["mel"]["mel_fmin"], |
|
config["preprocessing"]["mel"]["mel_fmax"], |
|
) |
|
|
|
vae.eval() |
|
fn_STFT.eval() |
|
|
|
return vae, fn_STFT |
|
|
|
def _init_layer(layer): |
|
"""Initialize a Linear or Convolutional layer. """ |
|
nn.init.xavier_uniform_(layer.weight) |
|
|
|
if hasattr(layer, 'bias'): |
|
if layer.bias is not None: |
|
layer.bias.data.fill_(0.) |
|
|
|
class BaseDiffusion(nn.Module): |
|
def __init__( |
|
self, |
|
scheduler_name, |
|
unet_model_config_path=None, |
|
snr_gamma=None, |
|
uncondition=False, |
|
): |
|
super().__init__() |
|
|
|
assert unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required" |
|
self.scheduler_name = scheduler_name |
|
self.unet_model_config_path = unet_model_config_path |
|
self.snr_gamma = snr_gamma |
|
self.uncondition = uncondition |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") |
|
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") |
|
unet_config = UNet2DConditionModel.load_config(unet_model_config_path) |
|
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet") |
|
print("UNet initialized randomly.") |
|
""" |
|
self.text_encoder_name = "./checkpoint/models--google--flan-t5-large/" + \ |
|
"snapshots/0613663d0d48ea86ba8cb3d7a44f0f65dc596a2a/" |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name) |
|
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name) |
|
""" |
|
|
|
def compute_snr(self, timesteps): |
|
""" |
|
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 |
|
""" |
|
alphas_cumprod = self.noise_scheduler.alphas_cumprod |
|
sqrt_alphas_cumprod = alphas_cumprod**0.5 |
|
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 |
|
|
|
|
|
|
|
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() |
|
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): |
|
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] |
|
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) |
|
|
|
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() |
|
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): |
|
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] |
|
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) |
|
|
|
|
|
snr = (alpha / sigma) ** 2 |
|
return snr |
|
|
|
def encode_text(self, input_dict): |
|
raise NotImplementedError |
|
|
|
def forward(self, input_dict): |
|
raise NotImplementedError |
|
|
|
@torch.no_grad() |
|
def inference(self, input_dict): |
|
raise NotImplementedError |
|
|
|
class Text_Onset_2_Audio_Diffusion(BaseDiffusion): |
|
def __init__(self, |
|
scheduler_name, |
|
unet_model_config_path=None, |
|
snr_gamma=None, |
|
freeze_text_encoder=True, |
|
uncondition=False, |
|
): |
|
super().__init__(scheduler_name, unet_model_config_path, snr_gamma, uncondition) |
|
self.freeze_text_encoder = freeze_text_encoder |
|
self.class_emb = nn.Embedding(24, 1024) |
|
|
|
|
|
|
|
def encode_channel(self, input): |
|
|
|
return input.reshape(input.shape[0], 2, 16, 256).transpose(2, 3) |
|
|
|
|
|
def encode_text(self, input_dict): |
|
device = self.device |
|
|
|
encoder_hidden_states = self.class_emb(input_dict["event_info"].unsqueeze(-1)) |
|
boolean_encoder_mask = (torch.ones(len(encoder_hidden_states), 1) == 1).to(device) |
|
|
|
return encoder_hidden_states, boolean_encoder_mask |
|
|
|
def forward(self, input_dict, validation_mode=False): |
|
device = self.device |
|
latents = input_dict["latent"] |
|
num_train_timesteps = self.noise_scheduler.num_train_timesteps |
|
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device) |
|
|
|
|
|
|
|
|
|
encoder_hidden_states, boolean_encoder_mask = self.encode_text(input_dict) |
|
if self.uncondition: |
|
mask_indices = [k for k in range(len(latents)) if random.random() < 0.1] |
|
if len(mask_indices) > 0: |
|
encoder_hidden_states[mask_indices] = 0 |
|
|
|
bsz = latents.shape[0] |
|
if validation_mode: |
|
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device) |
|
else: |
|
|
|
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device) |
|
timesteps = timesteps.long() |
|
|
|
noise = torch.randn_like(latents) |
|
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
onset_emb = self.encode_channel(input_dict["onset"]) |
|
|
|
onset_noisy_latents = torch.cat((onset_emb, noisy_latents), dim=1) |
|
|
|
|
|
if self.noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif self.noise_scheduler.config.prediction_type == "v_prediction": |
|
target = self.noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") |
|
|
|
model_pred = self.unet( |
|
onset_noisy_latents, timesteps, encoder_hidden_states, |
|
|
|
).sample |
|
|
|
if self.snr_gamma is None: |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
else: |
|
|
|
|
|
snr = self.compute_snr(timesteps) |
|
mse_loss_weights = ( |
|
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr |
|
) |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights |
|
loss = loss.mean() |
|
|
|
return loss |
|
|
|
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): |
|
shape = (batch_size, num_channels_latents, 256, 16) |
|
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) |
|
|
|
latents = latents * inference_scheduler.init_noise_sigma |
|
return latents |
|
|
|
def encode_text_classifier_free(self, input_dict, num_samples_per_prompt): |
|
device = self.device |
|
prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict) |
|
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
attention_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
negative_prompt_embeds = torch.zeros(prompt_embeds.shape).to(device) |
|
uncond_attention_mask = (torch.ones(attention_mask.shape) == 1).to(device) |
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) |
|
boolean_prompt_mask = (prompt_mask == 1).to(device) |
|
|
|
return prompt_embeds, boolean_prompt_mask |
|
|
|
@torch.no_grad() |
|
def inference(self, input_dict, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, |
|
disable_progress=True): |
|
prompt = input_dict["onset"] |
|
device = self.device |
|
classifier_free_guidance = guidance_scale > 1.0 |
|
batch_size = len(prompt) * num_samples_per_prompt |
|
|
|
if classifier_free_guidance: |
|
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(input_dict, num_samples_per_prompt) |
|
else: |
|
prompt_embeds, boolean_prompt_mask = self.encode_text(input_dict) |
|
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
inference_scheduler.set_timesteps(num_steps, device=device) |
|
timesteps = inference_scheduler.timesteps |
|
|
|
num_channels_latents = self.unet.config.in_channels - 2 |
|
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) |
|
onset_emb = self.encode_channel(input_dict["onset"]).repeat_interleave(num_samples_per_prompt, 0) |
|
onset_latents = torch.cat((onset_emb, latents), dim=1) |
|
|
|
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order |
|
progress_bar = tqdm(range(num_steps), disable=disable_progress) |
|
|
|
for i, t in tqdm(enumerate(timesteps)): |
|
|
|
latent_model_input = torch.cat([onset_latents] * 2) if classifier_free_guidance else onset_latents |
|
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) |
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=prompt_embeds, |
|
encoder_attention_mask=boolean_prompt_mask |
|
).sample |
|
|
|
|
|
if classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample |
|
onset_latents = torch.cat((onset_emb, latents), dim=1) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): |
|
progress_bar.update(1) |
|
|
|
|
|
return latents |
|
|
|
class ClapText_Onset_2_Audio_Diffusion(Text_Onset_2_Audio_Diffusion): |
|
def encode_text(self, input_dict): |
|
device = self.device |
|
|
|
encoder_hidden_states = input_dict["event_info"].repeat_interleave(2, -1).unsqueeze(1) |
|
boolean_encoder_mask = (torch.ones(len(encoder_hidden_states), 1) == 1).to(device) |
|
|
|
return encoder_hidden_states, boolean_encoder_mask |
|
|
|
|