ZeyadGamal commited on
Commit
d968402
1 Parent(s): 1a2dbb6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.92 +/- 24.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7bd00d89d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7bd00d8a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7bd00d8af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7bd00d8b80>", "_build": "<function ActorCriticPolicy._build at 0x7f7bd00d8c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f7bd00d8ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7bd00d8d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7bd00d8dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7bd00d8e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7bd00d8ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7bd00d8f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7bd00dd040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7bd00d4810>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718798491371353753, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDvNb50e6k+/k9sPS4qpb5mx+u91r6tvQAAAAAAAAAAgKknPUgjjrqToXm5NTpftPie4rku3ZA4AACAPwAAgD9ak0W+iWFBPsF+RD7/X4S+1P4NvGlKCT0AAAAAAAAAAGa+GDzBtsU+qzDsvfGwzr78ajW9UL3ZvQAAAAAAAAAAzU/3vWe4BD+FqnQ9ejqQvte6h7jKhYG7AAAAAAAAAACmFOQ9QbafP3A22z7j+uq+2uUbPupNfD0AAAAAAAAAAA35lj0ULI26m0oevNWilTaBIxC6GDUGtgAAgD8AAAAAIJMBvpEtqT8wQKi+SckJv5/XCL6CvJG8AAAAAAAAAADg0Ja+fGYqPyJGoz0+pqy+jOQOvgb8HT4AAAAAAAAAADMG8DxdPQM/3jGPvfLGv74rqri8NiESPQAAAAAAAAAAJvGvPVzzM7o9img6rQIVuxNNhTqd0+07AACAPwAAgD+AgCg99jx7upJHxzv7Y/o33tAhOkNDOjYAAIA/AAAAAIDdf7174oG6UqGjtyaakrIX2zq7ivq+NgAAgD8AAIA/oFmZPrxJfj70oaq+cticvkTlhj2CK6U8AAAAAAAAAABAsY09/P0tPy2NQb0NAL6+V0ugPea9Bb0AAAAAAAAAAKDMFT4EU8g9gEAovnLcSr6+quE8tsu7vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCS2HYYixGMAWyUTWQBjAF0lEdAhMUvjXFtK3V9lChoBkdAcX9zDn/1hGgHTVABaAhHQITFmoo/iYN1fZQoaAZHQE2aM6RyOrBoB0vWaAhHQITF9+iJwbV1fZQoaAZHQHDvNUOuq3poB00fAWgIR0CE3kVuaWondX2UKGgGR0BuMIU34sVdaAdN4gNoCEdAhOArLyMDOnV9lChoBkdAZ4C+0PYnOWgHTegDaAhHQITg+ocaOxV1fZQoaAZHQG/JtShrWRRoB005AWgIR0CE4SnPVurIdX2UKGgGR0BurgNqgyuZaAdL+mgIR0CE4to1UEPldX2UKGgGR0BxBSJ9AooeaAdN0QJoCEdAhOLmSIP9UHV9lChoBkdAcmlPSDyvtGgHTXcDaAhHQITjSQLeANJ1fZQoaAZHQHGr7noxHoZoB0v2aAhHQITjzXL/0d11fZQoaAZHQHG1QRwqAjJoB00WAWgIR0CE4+Cz1K5DdX2UKGgGR0ByI0WsRxtIaAdNDwFoCEdAhOT4jSofjnV9lChoBkdAcwywjt5UtWgHTWoBaAhHQITlkE9t/F11fZQoaAZHQHAt9ahYeT5oB00VAWgIR0CE5lRpDeCTdX2UKGgGR0BwdNoxpL26aAdNHgFoCEdAhOZvbO/tY3V9lChoBkdAcm/cyWRigGgHTS4BaAhHQITnxtvXK8t1fZQoaAZHQHGravmozepoB00RAWgIR0CE6i3FUADJdX2UKGgGR0BuZeZXuE26aAdNBAFoCEdAhOqO5SWJJ3V9lChoBkdAcGIbvPTodWgHTRkBaAhHQITrPUjLSu11fZQoaAZHQHKz/USZjQRoB0v6aAhHQITsWNcW0qp1fZQoaAZHQHMhZ8jRlYloB00OAWgIR0CE7MD5j6N3dX2UKGgGR0BxcYscyWRjaAdNFQFoCEdAhOz9S2phnnV9lChoBkdAcQjHDaXa8GgHTR0BaAhHQITuVUGVzIV1fZQoaAZHQHGA8iKR+0BoB01cAmgIR0CE7wiX6ZYxdX2UKGgGR0BxtC8/UvwmaAdNuQFoCEdAhO9Y8dPtUnV9lChoBkdAbOemLtNSImgHTQQBaAhHQITwelGgBcR1fZQoaAZHQHFFonSfDk5oB00lAWgIR0CE8cHuZ1FIdX2UKGgGR0BterTrmhduaAdNRQFoCEdAhPIq0D2alXV9lChoBkdAbuxgc94eLmgHTS4BaAhHQITz7mjj7yh1fZQoaAZHQG/gXuNPxhFoB00OAWgIR0CE9c4+8oQWdX2UKGgGR0BwzxTHbRF7aAdL+WgIR0CE92XenAIqdX2UKGgGR0BxAOMAFPi2aAdNCwFoCEdAhPfNZ/0/W3V9lChoBkdAb+XXarWAgGgHTUQBaAhHQIT3/+85CF91fZQoaAZHQHCf/f0mMOxoB00BAWgIR0CE+aD0UXYUdX2UKGgGR0Bw3lVjqfOEaAdL/GgIR0CE+jUwztTldX2UKGgGR0BvaGovSMLnaAdNBAFoCEdAhPrwnQY1pHV9lChoBkdAcKC52Qnx8WgHS+ZoCEdAhP7YKpkwvnV9lChoBkdAb63mPHT7VWgHTSMBaAhHQIT/P/T9bX91fZQoaAZHQHNWTOX3QD5oB01HAWgIR0CE/4rhBJI2dX2UKGgGR0Bux7GkvboKaAdL6WgIR0CFAPPRArxzdX2UKGgGR0BxlhREWqLkaAdNQAFoCEdAhQEI1+AmRnV9lChoBkdAbuWBYmsvI2gHS/doCEdAhQNS6tknTnV9lChoBkdAcL2wQlKK52gHTRcBaAhHQIUE8urZJ051fZQoaAZHQGCPaVMVUMpoB03oA2gIR0CFBeb6xgRcdX2UKGgGR0BwipzNliBoaAdNGAFoCEdAhQcWYfGMoHV9lChoBkdAcGK7r9l2/2gHTTYBaAhHQIUH3FvQ4S91fZQoaAZHQG+ZSiEg4fhoB00oAWgIR0CFHpxn3+MqdX2UKGgGR0BwKJs3yZrpaAdNBQFoCEdAhSDkPMB6r3V9lChoBkdAcdx0WM0gsGgHS+xoCEdAhSFqGtZFHHV9lChoBkdAbz2iwB5ooWgHTQ4BaAhHQIUhjNr0rbx1fZQoaAZHQG7Nly7wrlNoB004AWgIR0CFIqy2x6fKdX2UKGgGR0Bxke4TbnHOaAdNFAFoCEdAhSMZ9uxbCHV9lChoBkdAYYKo6S1VpGgHTegDaAhHQIUkP4yoGY91fZQoaAZHQHIYEngHeJpoB00OAWgIR0CFJPeUILPVdX2UKGgGR0BmauEug6EKaAdN6ANoCEdAhSWOSntOVXV9lChoBkdAcOHV45cTrWgHTQoBaAhHQIUmOgDifg91fZQoaAZHQHFu/cnE2pBoB0v+aAhHQIUmkovzvql1fZQoaAZHQG/61Q66reZoB01NA2gIR0CFJ+xFiKBNdX2UKGgGR0BuvorOJLuhaAdNCAFoCEdAhSf7/ffoBHV9lChoBkdAbz/3ueBg/mgHTRABaAhHQIUo6YE4ecR1fZQoaAZHQG2BFnAZbY9oB00DAWgIR0CFKPAprk8zdX2UKGgGR0Byiyys0YTCaAdL/mgIR0CFKyjwhGH6dX2UKGgGR0BxrHErGza9aAdNDQFoCEdAhSsoznA6+3V9lChoBkdAYX6GW2PT5WgHTegDaAhHQIUr7vqkdmx1fZQoaAZHQHLWhdhRZU1oB00dAWgIR0CFLDDziCJ5dX2UKGgGR0BxC7zQNTcZaAdNDAFoCEdAhS0GxUvPC3V9lChoBkdAca4606YE4mgHTR0BaAhHQIUtQF1SwW51fZQoaAZHQHHhKwQlKK5oB0v1aAhHQIUt13B55Z91fZQoaAZHQHE85DRc/t9oB00IAWgIR0CFLeF9KEnLdX2UKGgGR0BxqEdjoZAIaAdNEAFoCEdAhS/UyxiXpnV9lChoBkdAcT9SaVlf7mgHS+poCEdAhTAkPMB6r3V9lChoBkdAcSPXZXdTHmgHTRUBaAhHQIUwV1ZDArR1fZQoaAZHQHG9QmAskIJoB01vA2gIR0CFMYVYZEUkdX2UKGgGR0ButRmAbyYpaAdNDwFoCEdAhTJK5sj3VXV9lChoBkdAc3lqCpWFOGgHTQgBaAhHQIU0dxEORT11fZQoaAZHQHFdEZR8+idoB00RAWgIR0CFNNea8YhudX2UKGgGR0BzBvWpZOi4aAdL/mgIR0CFNOxoqTbGdX2UKGgGR0BxlIp6QeV+aAdNbgFoCEdAhTTrMC9ytHV9lChoBkdAa/tJzT4L1GgHTQEBaAhHQIU1TYf4h2Z1fZQoaAZHQHKF9BjWkJtoB01zAWgIR0CFNhRc/t6YdX2UKGgGR0BuWp3u/k/9aAdL+2gIR0CFNjFpfx+bdX2UKGgGR0BuKrWRRuTBaAdNIQFoCEdAhTdGmk30gHV9lChoBkdAcofYYixFAmgHTQoBaAhHQIU3UeCCjDd1fZQoaAZHQHCCoRIz3ytoB00oAWgIR0CFOFdVvMr3dX2UKGgGR0BzIpcnmaH9aAdL+2gIR0CFOUFiay8jdX2UKGgGR0BwIIFfReC1aAdNEQFoCEdAhTmGXHBDX3V9lChoBkdAcORNLlFMI2gHTSoBaAhHQIU6n2kBS1p1fZQoaAZHQHMaTmKZUkxoB00iAWgIR0CFO80pEx7BdX2UKGgGR0BzWU/NZ/0/aAdNPwFoCEdAhT3QhW5panV9lChoBkdAcaFIi1RceWgHTQgBaAhHQIU+WZVn27F1fZQoaAZHQHENxZZB9kVoB00LAWgIR0CFPu/cnE2pdX2UKGgGR0BtDnGuLaVVaAdNKQFoCEdAhT/OMdcSoXV9lChoBkdAcpC/Z/Tb4GgHTTMBaAhHQIU/26qbSZ11fZQoaAZHQHCeG74BV+9oB0vlaAhHQIU/48U21lZ1fZQoaAZHQHAdzin5zo5oB00hAWgIR0CFQOvStvGZdX2UKGgGR0Bym9gXuVopaAdNLwFoCEdAhUFQ++ueSXV9lChoBkdAbQfvDxb0OGgHTQwBaAhHQIVBTwe/5+J1fZQoaAZHQHJ7LiyY5T9oB00TAWgIR0CFQqUO/cnFdX2UKGgGR0BwmdV5rxiHaAdNBgFoCEdAhUMlPSDyv3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVZQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUC9ob21lL3pleWFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUC9ob21lL3pleWFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.0-107-generic-x86_64-with-glibc2.29 # 117~20.04.1-Ubuntu SMP Tue Apr 30 10:35:57 UTC 2024", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.24.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:838fa529cc4ede5de7b1aa1dbb2f7966d10b9e25e70640b2f6d32504834c10f5
3
+ size 147913
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7bd00d89d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7bd00d8a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7bd00d8af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7bd00d8b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7bd00d8c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7bd00d8ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7bd00d8d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7bd00d8dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7bd00d8e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7bd00d8ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7bd00d8f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7bd00dd040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f7bd00d4810>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1718798491371353753,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDvNb50e6k+/k9sPS4qpb5mx+u91r6tvQAAAAAAAAAAgKknPUgjjrqToXm5NTpftPie4rku3ZA4AACAPwAAgD9ak0W+iWFBPsF+RD7/X4S+1P4NvGlKCT0AAAAAAAAAAGa+GDzBtsU+qzDsvfGwzr78ajW9UL3ZvQAAAAAAAAAAzU/3vWe4BD+FqnQ9ejqQvte6h7jKhYG7AAAAAAAAAACmFOQ9QbafP3A22z7j+uq+2uUbPupNfD0AAAAAAAAAAA35lj0ULI26m0oevNWilTaBIxC6GDUGtgAAgD8AAAAAIJMBvpEtqT8wQKi+SckJv5/XCL6CvJG8AAAAAAAAAADg0Ja+fGYqPyJGoz0+pqy+jOQOvgb8HT4AAAAAAAAAADMG8DxdPQM/3jGPvfLGv74rqri8NiESPQAAAAAAAAAAJvGvPVzzM7o9img6rQIVuxNNhTqd0+07AACAPwAAgD+AgCg99jx7upJHxzv7Y/o33tAhOkNDOjYAAIA/AAAAAIDdf7174oG6UqGjtyaakrIX2zq7ivq+NgAAgD8AAIA/oFmZPrxJfj70oaq+cticvkTlhj2CK6U8AAAAAAAAAABAsY09/P0tPy2NQb0NAL6+V0ugPea9Bb0AAAAAAAAAAKDMFT4EU8g9gEAovnLcSr6+quE8tsu7vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCS2HYYixGMAWyUTWQBjAF0lEdAhMUvjXFtK3V9lChoBkdAcX9zDn/1hGgHTVABaAhHQITFmoo/iYN1fZQoaAZHQE2aM6RyOrBoB0vWaAhHQITF9+iJwbV1fZQoaAZHQHDvNUOuq3poB00fAWgIR0CE3kVuaWondX2UKGgGR0BuMIU34sVdaAdN4gNoCEdAhOArLyMDOnV9lChoBkdAZ4C+0PYnOWgHTegDaAhHQITg+ocaOxV1fZQoaAZHQG/JtShrWRRoB005AWgIR0CE4SnPVurIdX2UKGgGR0BurgNqgyuZaAdL+mgIR0CE4to1UEPldX2UKGgGR0BxBSJ9AooeaAdN0QJoCEdAhOLmSIP9UHV9lChoBkdAcmlPSDyvtGgHTXcDaAhHQITjSQLeANJ1fZQoaAZHQHGr7noxHoZoB0v2aAhHQITjzXL/0d11fZQoaAZHQHG1QRwqAjJoB00WAWgIR0CE4+Cz1K5DdX2UKGgGR0ByI0WsRxtIaAdNDwFoCEdAhOT4jSofjnV9lChoBkdAcwywjt5UtWgHTWoBaAhHQITlkE9t/F11fZQoaAZHQHAt9ahYeT5oB00VAWgIR0CE5lRpDeCTdX2UKGgGR0BwdNoxpL26aAdNHgFoCEdAhOZvbO/tY3V9lChoBkdAcm/cyWRigGgHTS4BaAhHQITnxtvXK8t1fZQoaAZHQHGravmozepoB00RAWgIR0CE6i3FUADJdX2UKGgGR0BuZeZXuE26aAdNBAFoCEdAhOqO5SWJJ3V9lChoBkdAcGIbvPTodWgHTRkBaAhHQITrPUjLSu11fZQoaAZHQHKz/USZjQRoB0v6aAhHQITsWNcW0qp1fZQoaAZHQHMhZ8jRlYloB00OAWgIR0CE7MD5j6N3dX2UKGgGR0BxcYscyWRjaAdNFQFoCEdAhOz9S2phnnV9lChoBkdAcQjHDaXa8GgHTR0BaAhHQITuVUGVzIV1fZQoaAZHQHGA8iKR+0BoB01cAmgIR0CE7wiX6ZYxdX2UKGgGR0BxtC8/UvwmaAdNuQFoCEdAhO9Y8dPtUnV9lChoBkdAbOemLtNSImgHTQQBaAhHQITwelGgBcR1fZQoaAZHQHFFonSfDk5oB00lAWgIR0CE8cHuZ1FIdX2UKGgGR0BterTrmhduaAdNRQFoCEdAhPIq0D2alXV9lChoBkdAbuxgc94eLmgHTS4BaAhHQITz7mjj7yh1fZQoaAZHQG/gXuNPxhFoB00OAWgIR0CE9c4+8oQWdX2UKGgGR0BwzxTHbRF7aAdL+WgIR0CE92XenAIqdX2UKGgGR0BxAOMAFPi2aAdNCwFoCEdAhPfNZ/0/W3V9lChoBkdAb+XXarWAgGgHTUQBaAhHQIT3/+85CF91fZQoaAZHQHCf/f0mMOxoB00BAWgIR0CE+aD0UXYUdX2UKGgGR0Bw3lVjqfOEaAdL/GgIR0CE+jUwztTldX2UKGgGR0BvaGovSMLnaAdNBAFoCEdAhPrwnQY1pHV9lChoBkdAcKC52Qnx8WgHS+ZoCEdAhP7YKpkwvnV9lChoBkdAb63mPHT7VWgHTSMBaAhHQIT/P/T9bX91fZQoaAZHQHNWTOX3QD5oB01HAWgIR0CE/4rhBJI2dX2UKGgGR0Bux7GkvboKaAdL6WgIR0CFAPPRArxzdX2UKGgGR0BxlhREWqLkaAdNQAFoCEdAhQEI1+AmRnV9lChoBkdAbuWBYmsvI2gHS/doCEdAhQNS6tknTnV9lChoBkdAcL2wQlKK52gHTRcBaAhHQIUE8urZJ051fZQoaAZHQGCPaVMVUMpoB03oA2gIR0CFBeb6xgRcdX2UKGgGR0BwipzNliBoaAdNGAFoCEdAhQcWYfGMoHV9lChoBkdAcGK7r9l2/2gHTTYBaAhHQIUH3FvQ4S91fZQoaAZHQG+ZSiEg4fhoB00oAWgIR0CFHpxn3+MqdX2UKGgGR0BwKJs3yZrpaAdNBQFoCEdAhSDkPMB6r3V9lChoBkdAcdx0WM0gsGgHS+xoCEdAhSFqGtZFHHV9lChoBkdAbz2iwB5ooWgHTQ4BaAhHQIUhjNr0rbx1fZQoaAZHQG7Nly7wrlNoB004AWgIR0CFIqy2x6fKdX2UKGgGR0Bxke4TbnHOaAdNFAFoCEdAhSMZ9uxbCHV9lChoBkdAYYKo6S1VpGgHTegDaAhHQIUkP4yoGY91fZQoaAZHQHIYEngHeJpoB00OAWgIR0CFJPeUILPVdX2UKGgGR0BmauEug6EKaAdN6ANoCEdAhSWOSntOVXV9lChoBkdAcOHV45cTrWgHTQoBaAhHQIUmOgDifg91fZQoaAZHQHFu/cnE2pBoB0v+aAhHQIUmkovzvql1fZQoaAZHQG/61Q66reZoB01NA2gIR0CFJ+xFiKBNdX2UKGgGR0BuvorOJLuhaAdNCAFoCEdAhSf7/ffoBHV9lChoBkdAbz/3ueBg/mgHTRABaAhHQIUo6YE4ecR1fZQoaAZHQG2BFnAZbY9oB00DAWgIR0CFKPAprk8zdX2UKGgGR0Byiyys0YTCaAdL/mgIR0CFKyjwhGH6dX2UKGgGR0BxrHErGza9aAdNDQFoCEdAhSsoznA6+3V9lChoBkdAYX6GW2PT5WgHTegDaAhHQIUr7vqkdmx1fZQoaAZHQHLWhdhRZU1oB00dAWgIR0CFLDDziCJ5dX2UKGgGR0BxC7zQNTcZaAdNDAFoCEdAhS0GxUvPC3V9lChoBkdAca4606YE4mgHTR0BaAhHQIUtQF1SwW51fZQoaAZHQHHhKwQlKK5oB0v1aAhHQIUt13B55Z91fZQoaAZHQHE85DRc/t9oB00IAWgIR0CFLeF9KEnLdX2UKGgGR0BxqEdjoZAIaAdNEAFoCEdAhS/UyxiXpnV9lChoBkdAcT9SaVlf7mgHS+poCEdAhTAkPMB6r3V9lChoBkdAcSPXZXdTHmgHTRUBaAhHQIUwV1ZDArR1fZQoaAZHQHG9QmAskIJoB01vA2gIR0CFMYVYZEUkdX2UKGgGR0ButRmAbyYpaAdNDwFoCEdAhTJK5sj3VXV9lChoBkdAc3lqCpWFOGgHTQgBaAhHQIU0dxEORT11fZQoaAZHQHFdEZR8+idoB00RAWgIR0CFNNea8YhudX2UKGgGR0BzBvWpZOi4aAdL/mgIR0CFNOxoqTbGdX2UKGgGR0BxlIp6QeV+aAdNbgFoCEdAhTTrMC9ytHV9lChoBkdAa/tJzT4L1GgHTQEBaAhHQIU1TYf4h2Z1fZQoaAZHQHKF9BjWkJtoB01zAWgIR0CFNhRc/t6YdX2UKGgGR0BuWp3u/k/9aAdL+2gIR0CFNjFpfx+bdX2UKGgGR0BuKrWRRuTBaAdNIQFoCEdAhTdGmk30gHV9lChoBkdAcofYYixFAmgHTQoBaAhHQIU3UeCCjDd1fZQoaAZHQHCCoRIz3ytoB00oAWgIR0CFOFdVvMr3dX2UKGgGR0BzIpcnmaH9aAdL+2gIR0CFOUFiay8jdX2UKGgGR0BwIIFfReC1aAdNEQFoCEdAhTmGXHBDX3V9lChoBkdAcORNLlFMI2gHTSoBaAhHQIU6n2kBS1p1fZQoaAZHQHMaTmKZUkxoB00iAWgIR0CFO80pEx7BdX2UKGgGR0BzWU/NZ/0/aAdNPwFoCEdAhT3QhW5panV9lChoBkdAcaFIi1RceWgHTQgBaAhHQIU+WZVn27F1fZQoaAZHQHENxZZB9kVoB00LAWgIR0CFPu/cnE2pdX2UKGgGR0BtDnGuLaVVaAdNKQFoCEdAhT/OMdcSoXV9lChoBkdAcpC/Z/Tb4GgHTTMBaAhHQIU/26qbSZ11fZQoaAZHQHCeG74BV+9oB0vlaAhHQIU/48U21lZ1fZQoaAZHQHAdzin5zo5oB00hAWgIR0CFQOvStvGZdX2UKGgGR0Bym9gXuVopaAdNLwFoCEdAhUFQ++ueSXV9lChoBkdAbQfvDxb0OGgHTQwBaAhHQIVBTwe/5+J1fZQoaAZHQHJ7LiyY5T9oB00TAWgIR0CFQqUO/cnFdX2UKGgGR0BwmdV5rxiHaAdNBgFoCEdAhUMlPSDyv3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "n_steps": 1024,
56
+ "gamma": 0.995,
57
+ "gae_lambda": 0.98,
58
+ "ent_coef": 0.01,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 4,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVZQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUC9ob21lL3pleWFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
+ "observation_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True True True True True]",
75
+ "bounded_above": "[ True True True True True True True True]",
76
+ "_shape": [
77
+ 8
78
+ ],
79
+ "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
80
+ "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
81
+ "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
82
+ "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
83
+ "_np_random": null
84
+ },
85
+ "action_space": {
86
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
+ "n": "4",
89
+ "start": "0",
90
+ "_shape": [],
91
+ "dtype": "int64",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 16,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVZQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUC9ob21lL3pleWFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:509e0ba46b5e8489af465b3d60cf90c622bc295365fab967cca2ed70ef48fd5f
3
+ size 88490
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf30a32cad0c4d65790335c6d0ce886fba0b5ba7647de866842136ee1e84e18c
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-107-generic-x86_64-with-glibc2.29 # 117~20.04.1-Ubuntu SMP Tue Apr 30 10:35:57 UTC 2024
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.1
replay.mp4 ADDED
Binary file (177 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.92430242653455, "std_reward": 24.31229079425626, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-19T16:03:25.770058"}