LlemmaFT / Llemma_Finetuned.py
Zenos5's picture
Upload 24 files
766ea9e verified
import transformers
import torch
# from transformers import BitsAndBytesConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from deepeval.models import DeepEvalBaseLLM
class Llemma_Finetuned(DeepEvalBaseLLM):
def __init__(
self,
model,
tokenizer
):
self.model = model
self.tokenizer = tokenizer
def load_model(self):
return self.model
def generate(self, prompt: str) -> str:
model = self.load_model()
device = "cuda" # the device to load the model onto
model_inputs = self.tokenizer([prompt], return_tensors="pt").to(device)
model.to(device)
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
return self.tokenizer.batch_decode(generated_ids)[0]
async def a_generate(self, prompt: str) -> str:
return self.generate(prompt)
def get_model_name(self):
return "Llemma Finetuned"