|
import transformers
|
|
import torch
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
from deepeval.models import DeepEvalBaseLLM
|
|
|
|
|
|
class Llemma_Finetuned(DeepEvalBaseLLM):
|
|
def __init__(
|
|
self,
|
|
model,
|
|
tokenizer
|
|
):
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
|
|
def load_model(self):
|
|
return self.model
|
|
|
|
def generate(self, prompt: str) -> str:
|
|
model = self.load_model()
|
|
|
|
device = "cuda"
|
|
|
|
model_inputs = self.tokenizer([prompt], return_tensors="pt").to(device)
|
|
model.to(device)
|
|
|
|
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
|
return self.tokenizer.batch_decode(generated_ids)[0]
|
|
|
|
async def a_generate(self, prompt: str) -> str:
|
|
return self.generate(prompt)
|
|
|
|
def get_model_name(self):
|
|
return "Llemma Finetuned" |