update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: t5-base-extraction-cnndm_fs0.05-all
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# t5-base-extraction-cnndm_fs0.05-all
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.7605
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 2e-05
|
37 |
+
- train_batch_size: 32
|
38 |
+
- eval_batch_size: 32
|
39 |
+
- seed: 1799
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 20
|
43 |
+
- mixed_precision_training: Native AMP
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
49 |
+
| 2.3409 | 0.45 | 200 | 1.9264 |
|
50 |
+
| 2.0082 | 0.9 | 400 | 1.8570 |
|
51 |
+
| 1.9247 | 1.35 | 600 | 1.8290 |
|
52 |
+
| 1.8895 | 1.81 | 800 | 1.8162 |
|
53 |
+
| 1.8625 | 2.26 | 1000 | 1.8015 |
|
54 |
+
| 1.8354 | 2.71 | 1200 | 1.7894 |
|
55 |
+
| 1.8013 | 3.16 | 1400 | 1.7824 |
|
56 |
+
| 1.7901 | 3.61 | 1600 | 1.7796 |
|
57 |
+
| 1.7769 | 4.06 | 1800 | 1.7807 |
|
58 |
+
| 1.7661 | 4.51 | 2000 | 1.7646 |
|
59 |
+
| 1.7536 | 4.97 | 2200 | 1.7605 |
|
60 |
+
| 1.9045 | 5.42 | 2400 | 2.1358 |
|
61 |
+
| 2.4322 | 5.87 | 2600 | 2.3688 |
|
62 |
+
| 2.4809 | 6.32 | 2800 | 2.3622 |
|
63 |
+
| 2.4628 | 6.77 | 3000 | 2.3625 |
|
64 |
+
| 2.4676 | 7.22 | 3200 | 2.3639 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.18.0
|
70 |
+
- Pytorch 1.10.0+cu111
|
71 |
+
- Datasets 2.5.1
|
72 |
+
- Tokenizers 0.12.1
|