Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 266.12 +/- 23.44
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d208eaa20e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d208eaa2170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d208eaa2200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d208eaa2290>", "_build": "<function ActorCriticPolicy._build at 0x7d208eaa2320>", "forward": "<function ActorCriticPolicy.forward at 0x7d208eaa23b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d208eaa2440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d208eaa24d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d208eaa2560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d208eaa25f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d208eaa2680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d208eaa2710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d20efb49f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696695120592634718, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOG8bwoaYm8yJrNPc29dT2d98G9S4DWPAAAgD8AAIA/wCiaPTDLET/me4084+CjvkqRUjytgWG9AAAAAAAAAACAtSQ9rba3P0MwDD/dlpo90jYEvIK0tz0AAAAAAAAAADNcLr3Jg6o/WqkVv24CCb8ZCCM8yChTvQAAAAAAAAAAmuLavJ/b/ru55Qc+Me3PPA/Zeb3+MKs9AACAPwAAgD+aAGk9+KJxPw+qOjxzJ9O+LT87PabSQ70AAAAAAAAAAICj4b3WnQg/hkiAPi1ynL4XPN87EQ2wPQAAAAAAAAAAAJb+PVLmqT6QAn297iCuvlpekTz9eRe9AAAAAAAAAAAzsqo9j9IHugfhGjpV1wA1m2oiu4sfMrkAAAAAAACAP1pQzD0QnMI/ywfcPjtND71sUxQ+1nuUPgAAAAAAAAAAmnHAvMMBW7pe7B8zXFFcMOzxrDmGZL6zAACAPwAAgD8AojI9H6WJOJIfojrN5WQ0Jqeyu9BywbkAAIA/AACAP+DJRD6nGVU/w6o5vV/mwL6/bRM+V5kMvgAAAAAAAAAAYJgHPo7CgLwACfA9ItgFPSJ4370Sys49AACAPwAAgD+zABE9O6+tPQpTEL49Ype+teKQvfACtzwAAAAAAAAAAGa2Vb0Z+7M+d6kMvZ9Alr5BxWC9r7pKPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDBLidat9yMAWyUS/eMAXSUR0CSsFNX5nDjdX2UKGgGR0Bv9CGvfTCtaAdNDgFoCEdAkrDr+Lm6oXV9lChoBkdAcPD8CxNZeWgHTSUBaAhHQJKxsEB8x9J1fZQoaAZHQG6lGA9V3lloB01kAWgIR0CSshke6qbSdX2UKGgGR0BvWdpXZGrkaAdL9WgIR0CSspuOS4e+dX2UKGgGR0BwzCgAZKnOaAdNMgFoCEdAkrLTKDCgsnV9lChoBkdAcJlOgxrSE2gHS+RoCEdAkrLaAOJ+D3V9lChoBkdATutvbXYlIGgHS9FoCEdAkrMgzLwF1XV9lChoBkdAcGMMdLg4wWgHS/doCEdAkrMnerMkhXV9lChoBkdAcAs6Kcd5p2gHS/BoCEdAkrNd70Fr23V9lChoBkdAOvpXhfjS5WgHS9BoCEdAkrVCfYjB23V9lChoBkdAbTIk4WDYiGgHS/ZoCEdAkrVucYqG13V9lChoBkdAcW+N9H+ZPWgHTVIBaAhHQJK1f7WNFSd1fZQoaAZHQGyGvGACnxdoB00EAWgIR0CStcjt5UtJdX2UKGgGR0By5cMjNY8uaAdNDQFoCEdAkrYmHgxagXV9lChoBkdAcTOX9zfaYmgHTRoBaAhHQJK2klu3trt1fZQoaAZHQHDyVZgXuVpoB00DAWgIR0CSty2oegctdX2UKGgGR0BwYu1eBxxUaAdNEgFoCEdAkriIyKvV3HV9lChoBkdAcLbK64Ds+mgHTQwBaAhHQJK5g6aLGaR1fZQoaAZHQHG6KIrOJLxoB0v8aAhHQJK6ObMHKOl1fZQoaAZHQG9nejEehf1oB00CAWgIR0CSumBLwnYydX2UKGgGR0BzTHdnCfpVaAdL8mgIR0CSuosHSncddX2UKGgGR0Bys0SYgJTmaAdNLAFoCEdAkrrjziCJ43V9lChoBkdAcPNgi/wiJWgHTSEBaAhHQJK7C2+fywx1fZQoaAZHQEtVgqmTC+FoB0u/aAhHQJK7rbzshPl1fZQoaAZHQHNuxMewLVpoB00uAWgIR0CSu9+pOvdNdX2UKGgGR0BxAQn3L3bmaAdNRAFoCEdAkrxw8fV7QnV9lChoBkdAcLrAwfyPMmgHS/JoCEdAkrysgdOqN3V9lChoBkdAcQgkyULUkWgHTSQBaAhHQJK99ahYeT51fZQoaAZHQHCQ8vmHP/toB00tAWgIR0CSvg3UQTVUdX2UKGgGR0BxGMCbMHKPaAdNEgFoCEdAkr4wbQ1JlXV9lChoBkdARa4j8k2P1mgHS7xoCEdAkr/MZLqUvHV9lChoBkdAcHM16mfoR2gHTVABaAhHQJLBIrGza9N1fZQoaAZHQHC9q5wwTM9oB00NAWgIR0CSwcs6JZW8dX2UKGgGR0BvhZ1oxpL3aAdNEwFoCEdAksHUXLvCuXV9lChoBkdAc0i3evZAZGgHS/hoCEdAksLzjWCmM3V9lChoBkdAb74IjW07bWgHTS0BaAhHQJLDqeZof0V1fZQoaAZHQHD5L3bmEGtoB0vsaAhHQJLDsz3yqdZ1fZQoaAZHQHB/2YfGMn9oB01CAWgIR0CSw8n+hoM8dX2UKGgGR0BwG6HVPN3XaAdL+WgIR0CSw8xqO939dX2UKGgGR0Byxb9wWFewaAdNKwFoCEdAksRd+LFXJnV9lChoBkdAcfrz0Yj0MGgHS91oCEdAksTokVvddnV9lChoBkdAcDC7/n4fwWgHTeEBaAhHQJLbzR/mT1V1fZQoaAZHQG6oaVlf7aZoB0vvaAhHQJLb84iosI51fZQoaAZHQHCIrpRoAXFoB02uAWgIR0CS3AvhqCYkdX2UKGgGR0BvQUir1dxAaAdL7WgIR0CS3BzbN8mbdX2UKGgGR0Bs2Rb+tKZlaAdNCAFoCEdAkt4ZwwTM7nV9lChoBkdAclA0se4kNWgHS+5oCEdAkt6LHIZIhHV9lChoBkdAbSZhwVCXyGgHS+9oCEdAkt8nTI/7i3V9lChoBkdAcaSs7MgU12gHTRYBaAhHQJLgWixmkFh1fZQoaAZHQHKEfPw/gR9oB00aAWgIR0CS4Z9lEqlQdX2UKGgGR0BwKM2CNCJGaAdNCQFoCEdAkuG+SW7e23V9lChoBkdAcyCaBZpztGgHTQwBaAhHQJLh8hPj4pN1fZQoaAZHQHJ1s495hSdoB0vqaAhHQJLh73wkPc11fZQoaAZHQG8mGBvrGBFoB00LAWgIR0CS4e7ALy+YdX2UKGgGR0Bw5b889wFUaAdNEQFoCEdAkuICEpRXOnV9lChoBkdAcTROd5IH1WgHTQsBaAhHQJLibhky1u11fZQoaAZHQG35yWiUPhBoB0v+aAhHQJLi7CP6sQx1fZQoaAZHQG7pxv3rUspoB00GAWgIR0CS4zYDTz/ZdX2UKGgGR0BxAmLsKLKnaAdNKgFoCEdAkuPQXVLBbnV9lChoBkdAcLQBHTZxrGgHTS4BaAhHQJLkDm2b5M11fZQoaAZHQHFWs1fmcONoB0vwaAhHQJLkxNtZV4p1fZQoaAZHQHGYRVZLZjBoB0vwaAhHQJLlMhfShJ11fZQoaAZHQG97kEC/47BoB0v1aAhHQJLl3r2QGOd1fZQoaAZHQHBb8kt29tdoB0vxaAhHQJLm4KhL5AR1fZQoaAZHQHE4RciW3SdoB0vsaAhHQJLoKZjQRf51fZQoaAZHQHFTCuIRAbBoB0v9aAhHQJLot0yP+4t1fZQoaAZHQHHHMbBGhEloB00LAWgIR0CS6NoZydWidX2UKGgGR0Bvk0WCVbA2aAdNBwFoCEdAkujY8yN4q3V9lChoBkdAcChpZwGW2WgHS/hoCEdAkukge3hGY3V9lChoBkdAcJvTSsr/bWgHTSUBaAhHQJLp2tdRiw11fZQoaAZHQHIrfCl7+kxoB00yAWgIR0CS6ks54nnddX2UKGgGR0Bwpcg/1QIlaAdNEAFoCEdAkuqtzr/sFHV9lChoBkdAcm5jx0+1SmgHTSkBaAhHQJLrE7o0Q9R1fZQoaAZHQHL9IOtnwodoB00XAWgIR0CS64nCfpUxdX2UKGgGR0BwMvjGT9sKaAdL/2gIR0CS6/j4HoovdX2UKGgGR0BU8lghKUV0aAdN6ANoCEdAkuwswlByCHV9lChoBkdAcWeoG6f8M2gHTQIBaAhHQJLshfmcOLB1fZQoaAZHQHHjiGetjkNoB01iAWgIR0CS7bT3Zf2LdX2UKGgGR0Bul7kjopx4aAdNKAFoCEdAku9HrdFfA3V9lChoBkdAcRLetjkMkWgHTQUBaAhHQJLvhdqtYCB1fZQoaAZHQG7PnVPN3W5oB0vzaAhHQJLv7LpzLfV1fZQoaAZHQG5HWGh24d9oB0v+aAhHQJLv92bG3nZ1fZQoaAZHQHDXqvV3EAJoB0vuaAhHQJLwjSH/Lkl1fZQoaAZHQHDraN2ki2VoB00cAWgIR0CS8M8n/kvLdX2UKGgGR0BuRPHFPznSaAdNIAFoCEdAkvDPvrnkk3V9lChoBkdAUi1e7cwg1WgHS75oCEdAkvFAmeDnNnV9lChoBkdAcNqfJ3gUDmgHTSEBaAhHQJLyp6+nIhh1fZQoaAZHQHEL95MURFtoB00DAWgIR0CS8rIlt0mudX2UKGgGR0BwdhBMSK3vaAdNGQFoCEdAkvLS4nWrfnV9lChoBkdAcrEgRK6FumgHTT0BaAhHQJLzDAM2FWZ1fZQoaAZHQHGtEf1YhdNoB0v1aAhHQJLzQSYgJTl1fZQoaAZHQEvwwsXizcBoB0ufaAhHQJL0INZvDP51fZQoaAZHQEPYrc0tRN1oB0u1aAhHQJL0yNEPUa11fZQoaAZHQHLglF6Rhc9oB01AAWgIR0CS9OSeRPoFdX2UKGgGR0BwFK/j81n/aAdNIAFoCEdAkvWeRYA80XV9lChoBkdAb40L2pQ1rWgHS/FoCEdAkvXEOqebu3V9lChoBkdAcP2OpbUwz2gHS+ZoCEdAkvbhoM8YAXV9lChoBkdAcITlcyFfzGgHS/5oCEdAkvdI9gWrO3V9lChoBkdAcLjPoFFDv2gHTXQCaAhHQJL3ST3Zf2N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb79faf4bee46d71c384582a7eab8bfd816558432e2d2e74ad44631de93a0b72
|
3 |
+
size 146703
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d208eaa20e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d208eaa2170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d208eaa2200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d208eaa2290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d208eaa2320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d208eaa23b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d208eaa2440>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d208eaa24d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d208eaa2560>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d208eaa25f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d208eaa2680>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d208eaa2710>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d20efb49f40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1696695120592634718,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOG8bwoaYm8yJrNPc29dT2d98G9S4DWPAAAgD8AAIA/wCiaPTDLET/me4084+CjvkqRUjytgWG9AAAAAAAAAACAtSQ9rba3P0MwDD/dlpo90jYEvIK0tz0AAAAAAAAAADNcLr3Jg6o/WqkVv24CCb8ZCCM8yChTvQAAAAAAAAAAmuLavJ/b/ru55Qc+Me3PPA/Zeb3+MKs9AACAPwAAgD+aAGk9+KJxPw+qOjxzJ9O+LT87PabSQ70AAAAAAAAAAICj4b3WnQg/hkiAPi1ynL4XPN87EQ2wPQAAAAAAAAAAAJb+PVLmqT6QAn297iCuvlpekTz9eRe9AAAAAAAAAAAzsqo9j9IHugfhGjpV1wA1m2oiu4sfMrkAAAAAAACAP1pQzD0QnMI/ywfcPjtND71sUxQ+1nuUPgAAAAAAAAAAmnHAvMMBW7pe7B8zXFFcMOzxrDmGZL6zAACAPwAAgD8AojI9H6WJOJIfojrN5WQ0Jqeyu9BywbkAAIA/AACAP+DJRD6nGVU/w6o5vV/mwL6/bRM+V5kMvgAAAAAAAAAAYJgHPo7CgLwACfA9ItgFPSJ4370Sys49AACAPwAAgD+zABE9O6+tPQpTEL49Ype+teKQvfACtzwAAAAAAAAAAGa2Vb0Z+7M+d6kMvZ9Alr5BxWC9r7pKPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVGwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDBLidat9yMAWyUS/eMAXSUR0CSsFNX5nDjdX2UKGgGR0Bv9CGvfTCtaAdNDgFoCEdAkrDr+Lm6oXV9lChoBkdAcPD8CxNZeWgHTSUBaAhHQJKxsEB8x9J1fZQoaAZHQG6lGA9V3lloB01kAWgIR0CSshke6qbSdX2UKGgGR0BvWdpXZGrkaAdL9WgIR0CSspuOS4e+dX2UKGgGR0BwzCgAZKnOaAdNMgFoCEdAkrLTKDCgsnV9lChoBkdAcJlOgxrSE2gHS+RoCEdAkrLaAOJ+D3V9lChoBkdATutvbXYlIGgHS9FoCEdAkrMgzLwF1XV9lChoBkdAcGMMdLg4wWgHS/doCEdAkrMnerMkhXV9lChoBkdAcAs6Kcd5p2gHS/BoCEdAkrNd70Fr23V9lChoBkdAOvpXhfjS5WgHS9BoCEdAkrVCfYjB23V9lChoBkdAbTIk4WDYiGgHS/ZoCEdAkrVucYqG13V9lChoBkdAcW+N9H+ZPWgHTVIBaAhHQJK1f7WNFSd1fZQoaAZHQGyGvGACnxdoB00EAWgIR0CStcjt5UtJdX2UKGgGR0By5cMjNY8uaAdNDQFoCEdAkrYmHgxagXV9lChoBkdAcTOX9zfaYmgHTRoBaAhHQJK2klu3trt1fZQoaAZHQHDyVZgXuVpoB00DAWgIR0CSty2oegctdX2UKGgGR0BwYu1eBxxUaAdNEgFoCEdAkriIyKvV3HV9lChoBkdAcLbK64Ds+mgHTQwBaAhHQJK5g6aLGaR1fZQoaAZHQHG6KIrOJLxoB0v8aAhHQJK6ObMHKOl1fZQoaAZHQG9nejEehf1oB00CAWgIR0CSumBLwnYydX2UKGgGR0BzTHdnCfpVaAdL8mgIR0CSuosHSncddX2UKGgGR0Bys0SYgJTmaAdNLAFoCEdAkrrjziCJ43V9lChoBkdAcPNgi/wiJWgHTSEBaAhHQJK7C2+fywx1fZQoaAZHQEtVgqmTC+FoB0u/aAhHQJK7rbzshPl1fZQoaAZHQHNuxMewLVpoB00uAWgIR0CSu9+pOvdNdX2UKGgGR0BxAQn3L3bmaAdNRAFoCEdAkrxw8fV7QnV9lChoBkdAcLrAwfyPMmgHS/JoCEdAkrysgdOqN3V9lChoBkdAcQgkyULUkWgHTSQBaAhHQJK99ahYeT51fZQoaAZHQHCQ8vmHP/toB00tAWgIR0CSvg3UQTVUdX2UKGgGR0BxGMCbMHKPaAdNEgFoCEdAkr4wbQ1JlXV9lChoBkdARa4j8k2P1mgHS7xoCEdAkr/MZLqUvHV9lChoBkdAcHM16mfoR2gHTVABaAhHQJLBIrGza9N1fZQoaAZHQHC9q5wwTM9oB00NAWgIR0CSwcs6JZW8dX2UKGgGR0BvhZ1oxpL3aAdNEwFoCEdAksHUXLvCuXV9lChoBkdAc0i3evZAZGgHS/hoCEdAksLzjWCmM3V9lChoBkdAb74IjW07bWgHTS0BaAhHQJLDqeZof0V1fZQoaAZHQHD5L3bmEGtoB0vsaAhHQJLDsz3yqdZ1fZQoaAZHQHB/2YfGMn9oB01CAWgIR0CSw8n+hoM8dX2UKGgGR0BwG6HVPN3XaAdL+WgIR0CSw8xqO939dX2UKGgGR0Byxb9wWFewaAdNKwFoCEdAksRd+LFXJnV9lChoBkdAcfrz0Yj0MGgHS91oCEdAksTokVvddnV9lChoBkdAcDC7/n4fwWgHTeEBaAhHQJLbzR/mT1V1fZQoaAZHQG6oaVlf7aZoB0vvaAhHQJLb84iosI51fZQoaAZHQHCIrpRoAXFoB02uAWgIR0CS3AvhqCYkdX2UKGgGR0BvQUir1dxAaAdL7WgIR0CS3BzbN8mbdX2UKGgGR0Bs2Rb+tKZlaAdNCAFoCEdAkt4ZwwTM7nV9lChoBkdAclA0se4kNWgHS+5oCEdAkt6LHIZIhHV9lChoBkdAbSZhwVCXyGgHS+9oCEdAkt8nTI/7i3V9lChoBkdAcaSs7MgU12gHTRYBaAhHQJLgWixmkFh1fZQoaAZHQHKEfPw/gR9oB00aAWgIR0CS4Z9lEqlQdX2UKGgGR0BwKM2CNCJGaAdNCQFoCEdAkuG+SW7e23V9lChoBkdAcyCaBZpztGgHTQwBaAhHQJLh8hPj4pN1fZQoaAZHQHJ1s495hSdoB0vqaAhHQJLh73wkPc11fZQoaAZHQG8mGBvrGBFoB00LAWgIR0CS4e7ALy+YdX2UKGgGR0Bw5b889wFUaAdNEQFoCEdAkuICEpRXOnV9lChoBkdAcTROd5IH1WgHTQsBaAhHQJLibhky1u11fZQoaAZHQG35yWiUPhBoB0v+aAhHQJLi7CP6sQx1fZQoaAZHQG7pxv3rUspoB00GAWgIR0CS4zYDTz/ZdX2UKGgGR0BxAmLsKLKnaAdNKgFoCEdAkuPQXVLBbnV9lChoBkdAcLQBHTZxrGgHTS4BaAhHQJLkDm2b5M11fZQoaAZHQHFWs1fmcONoB0vwaAhHQJLkxNtZV4p1fZQoaAZHQHGYRVZLZjBoB0vwaAhHQJLlMhfShJ11fZQoaAZHQG97kEC/47BoB0v1aAhHQJLl3r2QGOd1fZQoaAZHQHBb8kt29tdoB0vxaAhHQJLm4KhL5AR1fZQoaAZHQHE4RciW3SdoB0vsaAhHQJLoKZjQRf51fZQoaAZHQHFTCuIRAbBoB0v9aAhHQJLot0yP+4t1fZQoaAZHQHHHMbBGhEloB00LAWgIR0CS6NoZydWidX2UKGgGR0Bvk0WCVbA2aAdNBwFoCEdAkujY8yN4q3V9lChoBkdAcChpZwGW2WgHS/hoCEdAkukge3hGY3V9lChoBkdAcJvTSsr/bWgHTSUBaAhHQJLp2tdRiw11fZQoaAZHQHIrfCl7+kxoB00yAWgIR0CS6ks54nnddX2UKGgGR0Bwpcg/1QIlaAdNEAFoCEdAkuqtzr/sFHV9lChoBkdAcm5jx0+1SmgHTSkBaAhHQJLrE7o0Q9R1fZQoaAZHQHL9IOtnwodoB00XAWgIR0CS64nCfpUxdX2UKGgGR0BwMvjGT9sKaAdL/2gIR0CS6/j4HoovdX2UKGgGR0BU8lghKUV0aAdN6ANoCEdAkuwswlByCHV9lChoBkdAcWeoG6f8M2gHTQIBaAhHQJLshfmcOLB1fZQoaAZHQHHjiGetjkNoB01iAWgIR0CS7bT3Zf2LdX2UKGgGR0Bul7kjopx4aAdNKAFoCEdAku9HrdFfA3V9lChoBkdAcRLetjkMkWgHTQUBaAhHQJLvhdqtYCB1fZQoaAZHQG7PnVPN3W5oB0vzaAhHQJLv7LpzLfV1fZQoaAZHQG5HWGh24d9oB0v+aAhHQJLv92bG3nZ1fZQoaAZHQHDXqvV3EAJoB0vuaAhHQJLwjSH/Lkl1fZQoaAZHQHDraN2ki2VoB00cAWgIR0CS8M8n/kvLdX2UKGgGR0BuRPHFPznSaAdNIAFoCEdAkvDPvrnkk3V9lChoBkdAUi1e7cwg1WgHS75oCEdAkvFAmeDnNnV9lChoBkdAcNqfJ3gUDmgHTSEBaAhHQJLyp6+nIhh1fZQoaAZHQHEL95MURFtoB00DAWgIR0CS8rIlt0mudX2UKGgGR0BwdhBMSK3vaAdNGQFoCEdAkvLS4nWrfnV9lChoBkdAcrEgRK6FumgHTT0BaAhHQJLzDAM2FWZ1fZQoaAZHQHGtEf1YhdNoB0v1aAhHQJLzQSYgJTl1fZQoaAZHQEvwwsXizcBoB0ufaAhHQJL0INZvDP51fZQoaAZHQEPYrc0tRN1oB0u1aAhHQJL0yNEPUa11fZQoaAZHQHLglF6Rhc9oB01AAWgIR0CS9OSeRPoFdX2UKGgGR0BwFK/j81n/aAdNIAFoCEdAkvWeRYA80XV9lChoBkdAb40L2pQ1rWgHS/FoCEdAkvXEOqebu3V9lChoBkdAcP2OpbUwz2gHS+ZoCEdAkvbhoM8YAXV9lChoBkdAcITlcyFfzGgHS/5oCEdAkvdI9gWrO3V9lChoBkdAcLjPoFFDv2gHTXQCaAhHQJL3ST3Zf2N1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0722488ecc6ed9fc7044415309c0db6a90a9bfd6d170b3bb20607ab64d7be26
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c869ec74d3011ca00a7ce2d97a130800f43a873403f1b8bbe51c7e99f715c41
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (160 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 266.12072853651335, "std_reward": 23.43931951960089, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-07T16:55:51.929064"}
|