|
from ..builder import DETECTORS |
|
from .two_stage import TwoStageDetector |
|
|
|
|
|
@DETECTORS.register_module() |
|
class SparseRCNN(TwoStageDetector): |
|
r"""Implementation of `Sparse R-CNN: End-to-End Object Detection with |
|
Learnable Proposals <https://arxiv.org/abs/2011.12450>`_""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(SparseRCNN, self).__init__(*args, **kwargs) |
|
assert self.with_rpn, 'Sparse R-CNN do not support external proposals' |
|
|
|
def forward_train(self, |
|
img, |
|
img_metas, |
|
gt_bboxes, |
|
gt_labels, |
|
gt_bboxes_ignore=None, |
|
gt_masks=None, |
|
proposals=None, |
|
**kwargs): |
|
"""Forward function of SparseR-CNN in train stage. |
|
|
|
Args: |
|
img (Tensor): of shape (N, C, H, W) encoding input images. |
|
Typically these should be mean centered and std scaled. |
|
img_metas (list[dict]): list of image info dict where each dict |
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys see |
|
:class:`mmdet.datasets.pipelines.Collect`. |
|
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with |
|
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. |
|
gt_labels (list[Tensor]): class indices corresponding to each box |
|
gt_bboxes_ignore (None | list[Tensor): specify which bounding |
|
boxes can be ignored when computing the loss. |
|
gt_masks (List[Tensor], optional) : Segmentation masks for |
|
each box. But we don't support it in this architecture. |
|
proposals (List[Tensor], optional): override rpn proposals with |
|
custom proposals. Use when `with_rpn` is False. |
|
|
|
Returns: |
|
dict[str, Tensor]: a dictionary of loss components |
|
""" |
|
|
|
assert proposals is None, 'Sparse R-CNN does not support' \ |
|
' external proposals' |
|
assert gt_masks is None, 'Sparse R-CNN does not instance segmentation' |
|
|
|
x = self.extract_feat(img) |
|
proposal_boxes, proposal_features, imgs_whwh = \ |
|
self.rpn_head.forward_train(x, img_metas) |
|
roi_losses = self.roi_head.forward_train( |
|
x, |
|
proposal_boxes, |
|
proposal_features, |
|
img_metas, |
|
gt_bboxes, |
|
gt_labels, |
|
gt_bboxes_ignore=gt_bboxes_ignore, |
|
gt_masks=gt_masks, |
|
imgs_whwh=imgs_whwh) |
|
return roi_losses |
|
|
|
def simple_test(self, img, img_metas, rescale=False): |
|
"""Test function without test time augmentation. |
|
|
|
Args: |
|
imgs (list[torch.Tensor]): List of multiple images |
|
img_metas (list[dict]): List of image information. |
|
rescale (bool): Whether to rescale the results. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[list[np.ndarray]]: BBox results of each image and classes. |
|
The outer list corresponds to each image. The inner list |
|
corresponds to each class. |
|
""" |
|
x = self.extract_feat(img) |
|
proposal_boxes, proposal_features, imgs_whwh = \ |
|
self.rpn_head.simple_test_rpn(x, img_metas) |
|
bbox_results = self.roi_head.simple_test( |
|
x, |
|
proposal_boxes, |
|
proposal_features, |
|
img_metas, |
|
imgs_whwh=imgs_whwh, |
|
rescale=rescale) |
|
return bbox_results |
|
|
|
def forward_dummy(self, img): |
|
"""Used for computing network flops. |
|
|
|
See `mmdetection/tools/analysis_tools/get_flops.py` |
|
""" |
|
|
|
x = self.extract_feat(img) |
|
|
|
num_imgs = len(img) |
|
dummy_img_metas = [ |
|
dict(img_shape=(800, 1333, 3)) for _ in range(num_imgs) |
|
] |
|
proposal_boxes, proposal_features, imgs_whwh = \ |
|
self.rpn_head.simple_test_rpn(x, dummy_img_metas) |
|
|
|
roi_outs = self.roi_head.forward_dummy(x, proposal_boxes, |
|
proposal_features, |
|
dummy_img_metas) |
|
return roi_outs |
|
|