|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init |
|
from mmcv.runner import force_fp32 |
|
|
|
from mmdet.core import (anchor_inside_flags, bbox2distance, bbox_overlaps, |
|
build_assigner, build_sampler, distance2bbox, |
|
images_to_levels, multi_apply, multiclass_nms, |
|
reduce_mean, unmap) |
|
from ..builder import HEADS, build_loss |
|
from .anchor_head import AnchorHead |
|
|
|
|
|
class Integral(nn.Module): |
|
"""A fixed layer for calculating integral result from distribution. |
|
|
|
This layer calculates the target location by :math: `sum{P(y_i) * y_i}`, |
|
P(y_i) denotes the softmax vector that represents the discrete distribution |
|
y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max} |
|
|
|
Args: |
|
reg_max (int): The maximal value of the discrete set. Default: 16. You |
|
may want to reset it according to your new dataset or related |
|
settings. |
|
""" |
|
|
|
def __init__(self, reg_max=16): |
|
super(Integral, self).__init__() |
|
self.reg_max = reg_max |
|
self.register_buffer('project', |
|
torch.linspace(0, self.reg_max, self.reg_max + 1)) |
|
|
|
def forward(self, x): |
|
"""Forward feature from the regression head to get integral result of |
|
bounding box location. |
|
|
|
Args: |
|
x (Tensor): Features of the regression head, shape (N, 4*(n+1)), |
|
n is self.reg_max. |
|
|
|
Returns: |
|
x (Tensor): Integral result of box locations, i.e., distance |
|
offsets from the box center in four directions, shape (N, 4). |
|
""" |
|
x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1) |
|
x = F.linear(x, self.project.type_as(x)).reshape(-1, 4) |
|
return x |
|
|
|
|
|
@HEADS.register_module() |
|
class GFLHead(AnchorHead): |
|
"""Generalized Focal Loss: Learning Qualified and Distributed Bounding |
|
Boxes for Dense Object Detection. |
|
|
|
GFL head structure is similar with ATSS, however GFL uses |
|
1) joint representation for classification and localization quality, and |
|
2) flexible General distribution for bounding box locations, |
|
which are supervised by |
|
Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively |
|
|
|
https://arxiv.org/abs/2006.04388 |
|
|
|
Args: |
|
num_classes (int): Number of categories excluding the background |
|
category. |
|
in_channels (int): Number of channels in the input feature map. |
|
stacked_convs (int): Number of conv layers in cls and reg tower. |
|
Default: 4. |
|
conv_cfg (dict): dictionary to construct and config conv layer. |
|
Default: None. |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
Default: dict(type='GN', num_groups=32, requires_grad=True). |
|
loss_qfl (dict): Config of Quality Focal Loss (QFL). |
|
reg_max (int): Max value of integral set :math: `{0, ..., reg_max}` |
|
in QFL setting. Default: 16. |
|
Example: |
|
>>> self = GFLHead(11, 7) |
|
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] |
|
>>> cls_quality_score, bbox_pred = self.forward(feats) |
|
>>> assert len(cls_quality_score) == len(self.scales) |
|
""" |
|
|
|
def __init__(self, |
|
num_classes, |
|
in_channels, |
|
stacked_convs=4, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), |
|
loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25), |
|
reg_max=16, |
|
**kwargs): |
|
self.stacked_convs = stacked_convs |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.reg_max = reg_max |
|
super(GFLHead, self).__init__(num_classes, in_channels, **kwargs) |
|
|
|
self.sampling = False |
|
if self.train_cfg: |
|
self.assigner = build_assigner(self.train_cfg.assigner) |
|
|
|
sampler_cfg = dict(type='PseudoSampler') |
|
self.sampler = build_sampler(sampler_cfg, context=self) |
|
|
|
self.integral = Integral(self.reg_max) |
|
self.loss_dfl = build_loss(loss_dfl) |
|
|
|
def _init_layers(self): |
|
"""Initialize layers of the head.""" |
|
self.relu = nn.ReLU(inplace=True) |
|
self.cls_convs = nn.ModuleList() |
|
self.reg_convs = nn.ModuleList() |
|
for i in range(self.stacked_convs): |
|
chn = self.in_channels if i == 0 else self.feat_channels |
|
self.cls_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg)) |
|
self.reg_convs.append( |
|
ConvModule( |
|
chn, |
|
self.feat_channels, |
|
3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg)) |
|
assert self.num_anchors == 1, 'anchor free version' |
|
self.gfl_cls = nn.Conv2d( |
|
self.feat_channels, self.cls_out_channels, 3, padding=1) |
|
self.gfl_reg = nn.Conv2d( |
|
self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1) |
|
self.scales = nn.ModuleList( |
|
[Scale(1.0) for _ in self.anchor_generator.strides]) |
|
|
|
def init_weights(self): |
|
"""Initialize weights of the head.""" |
|
for m in self.cls_convs: |
|
normal_init(m.conv, std=0.01) |
|
for m in self.reg_convs: |
|
normal_init(m.conv, std=0.01) |
|
bias_cls = bias_init_with_prob(0.01) |
|
normal_init(self.gfl_cls, std=0.01, bias=bias_cls) |
|
normal_init(self.gfl_reg, std=0.01) |
|
|
|
def forward(self, feats): |
|
"""Forward features from the upstream network. |
|
|
|
Args: |
|
feats (tuple[Tensor]): Features from the upstream network, each is |
|
a 4D-tensor. |
|
|
|
Returns: |
|
tuple: Usually a tuple of classification scores and bbox prediction |
|
cls_scores (list[Tensor]): Classification and quality (IoU) |
|
joint scores for all scale levels, each is a 4D-tensor, |
|
the channel number is num_classes. |
|
bbox_preds (list[Tensor]): Box distribution logits for all |
|
scale levels, each is a 4D-tensor, the channel number is |
|
4*(n+1), n is max value of integral set. |
|
""" |
|
return multi_apply(self.forward_single, feats, self.scales) |
|
|
|
def forward_single(self, x, scale): |
|
"""Forward feature of a single scale level. |
|
|
|
Args: |
|
x (Tensor): Features of a single scale level. |
|
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize |
|
the bbox prediction. |
|
|
|
Returns: |
|
tuple: |
|
cls_score (Tensor): Cls and quality joint scores for a single |
|
scale level the channel number is num_classes. |
|
bbox_pred (Tensor): Box distribution logits for a single scale |
|
level, the channel number is 4*(n+1), n is max value of |
|
integral set. |
|
""" |
|
cls_feat = x |
|
reg_feat = x |
|
for cls_conv in self.cls_convs: |
|
cls_feat = cls_conv(cls_feat) |
|
for reg_conv in self.reg_convs: |
|
reg_feat = reg_conv(reg_feat) |
|
cls_score = self.gfl_cls(cls_feat) |
|
bbox_pred = scale(self.gfl_reg(reg_feat)).float() |
|
return cls_score, bbox_pred |
|
|
|
def anchor_center(self, anchors): |
|
"""Get anchor centers from anchors. |
|
|
|
Args: |
|
anchors (Tensor): Anchor list with shape (N, 4), "xyxy" format. |
|
|
|
Returns: |
|
Tensor: Anchor centers with shape (N, 2), "xy" format. |
|
""" |
|
anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2 |
|
anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2 |
|
return torch.stack([anchors_cx, anchors_cy], dim=-1) |
|
|
|
def loss_single(self, anchors, cls_score, bbox_pred, labels, label_weights, |
|
bbox_targets, stride, num_total_samples): |
|
"""Compute loss of a single scale level. |
|
|
|
Args: |
|
anchors (Tensor): Box reference for each scale level with shape |
|
(N, num_total_anchors, 4). |
|
cls_score (Tensor): Cls and quality joint scores for each scale |
|
level has shape (N, num_classes, H, W). |
|
bbox_pred (Tensor): Box distribution logits for each scale |
|
level with shape (N, 4*(n+1), H, W), n is max value of integral |
|
set. |
|
labels (Tensor): Labels of each anchors with shape |
|
(N, num_total_anchors). |
|
label_weights (Tensor): Label weights of each anchor with shape |
|
(N, num_total_anchors) |
|
bbox_targets (Tensor): BBox regression targets of each anchor wight |
|
shape (N, num_total_anchors, 4). |
|
stride (tuple): Stride in this scale level. |
|
num_total_samples (int): Number of positive samples that is |
|
reduced over all GPUs. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
assert stride[0] == stride[1], 'h stride is not equal to w stride!' |
|
anchors = anchors.reshape(-1, 4) |
|
cls_score = cls_score.permute(0, 2, 3, |
|
1).reshape(-1, self.cls_out_channels) |
|
bbox_pred = bbox_pred.permute(0, 2, 3, |
|
1).reshape(-1, 4 * (self.reg_max + 1)) |
|
bbox_targets = bbox_targets.reshape(-1, 4) |
|
labels = labels.reshape(-1) |
|
label_weights = label_weights.reshape(-1) |
|
|
|
|
|
bg_class_ind = self.num_classes |
|
pos_inds = ((labels >= 0) |
|
& (labels < bg_class_ind)).nonzero().squeeze(1) |
|
score = label_weights.new_zeros(labels.shape) |
|
|
|
if len(pos_inds) > 0: |
|
pos_bbox_targets = bbox_targets[pos_inds] |
|
pos_bbox_pred = bbox_pred[pos_inds] |
|
pos_anchors = anchors[pos_inds] |
|
pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0] |
|
|
|
weight_targets = cls_score.detach().sigmoid() |
|
weight_targets = weight_targets.max(dim=1)[0][pos_inds] |
|
pos_bbox_pred_corners = self.integral(pos_bbox_pred) |
|
pos_decode_bbox_pred = distance2bbox(pos_anchor_centers, |
|
pos_bbox_pred_corners) |
|
pos_decode_bbox_targets = pos_bbox_targets / stride[0] |
|
score[pos_inds] = bbox_overlaps( |
|
pos_decode_bbox_pred.detach(), |
|
pos_decode_bbox_targets, |
|
is_aligned=True) |
|
pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1) |
|
target_corners = bbox2distance(pos_anchor_centers, |
|
pos_decode_bbox_targets, |
|
self.reg_max).reshape(-1) |
|
|
|
|
|
loss_bbox = self.loss_bbox( |
|
pos_decode_bbox_pred, |
|
pos_decode_bbox_targets, |
|
weight=weight_targets, |
|
avg_factor=1.0) |
|
|
|
|
|
loss_dfl = self.loss_dfl( |
|
pred_corners, |
|
target_corners, |
|
weight=weight_targets[:, None].expand(-1, 4).reshape(-1), |
|
avg_factor=4.0) |
|
else: |
|
loss_bbox = bbox_pred.sum() * 0 |
|
loss_dfl = bbox_pred.sum() * 0 |
|
weight_targets = bbox_pred.new_tensor(0) |
|
|
|
|
|
loss_cls = self.loss_cls( |
|
cls_score, (labels, score), |
|
weight=label_weights, |
|
avg_factor=num_total_samples) |
|
|
|
return loss_cls, loss_bbox, loss_dfl, weight_targets.sum() |
|
|
|
@force_fp32(apply_to=('cls_scores', 'bbox_preds')) |
|
def loss(self, |
|
cls_scores, |
|
bbox_preds, |
|
gt_bboxes, |
|
gt_labels, |
|
img_metas, |
|
gt_bboxes_ignore=None): |
|
"""Compute losses of the head. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Cls and quality scores for each scale |
|
level has shape (N, num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box distribution logits for each scale |
|
level with shape (N, 4*(n+1), H, W), n is max value of integral |
|
set. |
|
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with |
|
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. |
|
gt_labels (list[Tensor]): class indices corresponding to each box |
|
img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
gt_bboxes_ignore (list[Tensor] | None): specify which bounding |
|
boxes can be ignored when computing the loss. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
assert len(featmap_sizes) == self.anchor_generator.num_levels |
|
|
|
device = cls_scores[0].device |
|
anchor_list, valid_flag_list = self.get_anchors( |
|
featmap_sizes, img_metas, device=device) |
|
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 |
|
|
|
cls_reg_targets = self.get_targets( |
|
anchor_list, |
|
valid_flag_list, |
|
gt_bboxes, |
|
img_metas, |
|
gt_bboxes_ignore_list=gt_bboxes_ignore, |
|
gt_labels_list=gt_labels, |
|
label_channels=label_channels) |
|
if cls_reg_targets is None: |
|
return None |
|
|
|
(anchor_list, labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets |
|
|
|
num_total_samples = reduce_mean( |
|
torch.tensor(num_total_pos, dtype=torch.float, |
|
device=device)).item() |
|
num_total_samples = max(num_total_samples, 1.0) |
|
|
|
losses_cls, losses_bbox, losses_dfl,\ |
|
avg_factor = multi_apply( |
|
self.loss_single, |
|
anchor_list, |
|
cls_scores, |
|
bbox_preds, |
|
labels_list, |
|
label_weights_list, |
|
bbox_targets_list, |
|
self.anchor_generator.strides, |
|
num_total_samples=num_total_samples) |
|
|
|
avg_factor = sum(avg_factor) |
|
avg_factor = reduce_mean(avg_factor).item() |
|
losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox)) |
|
losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl)) |
|
return dict( |
|
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl) |
|
|
|
def _get_bboxes(self, |
|
cls_scores, |
|
bbox_preds, |
|
mlvl_anchors, |
|
img_shapes, |
|
scale_factors, |
|
cfg, |
|
rescale=False, |
|
with_nms=True): |
|
"""Transform outputs for a single batch item into labeled boxes. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box scores for a single scale level |
|
has shape (N, num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box distribution logits for a single |
|
scale level with shape (N, 4*(n+1), H, W), n is max value of |
|
integral set. |
|
mlvl_anchors (list[Tensor]): Box reference for a single scale level |
|
with shape (num_total_anchors, 4). |
|
img_shapes (list[tuple[int]]): Shape of the input image, |
|
list[(height, width, 3)]. |
|
scale_factors (list[ndarray]): Scale factor of the image arange as |
|
(w_scale, h_scale, w_scale, h_scale). |
|
cfg (mmcv.Config | None): Test / postprocessing configuration, |
|
if None, test_cfg would be used. |
|
rescale (bool): If True, return boxes in original image space. |
|
Default: False. |
|
with_nms (bool): If True, do nms before return boxes. |
|
Default: True. |
|
|
|
Returns: |
|
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. |
|
The first item is an (n, 5) tensor, where 5 represent |
|
(tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. |
|
The shape of the second tensor in the tuple is (n,), and |
|
each element represents the class label of the corresponding |
|
box. |
|
""" |
|
cfg = self.test_cfg if cfg is None else cfg |
|
assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) |
|
batch_size = cls_scores[0].shape[0] |
|
|
|
mlvl_bboxes = [] |
|
mlvl_scores = [] |
|
for cls_score, bbox_pred, stride, anchors in zip( |
|
cls_scores, bbox_preds, self.anchor_generator.strides, |
|
mlvl_anchors): |
|
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] |
|
assert stride[0] == stride[1] |
|
scores = cls_score.permute(0, 2, 3, 1).reshape( |
|
batch_size, -1, self.cls_out_channels).sigmoid() |
|
bbox_pred = bbox_pred.permute(0, 2, 3, 1) |
|
|
|
bbox_pred = self.integral(bbox_pred) * stride[0] |
|
bbox_pred = bbox_pred.reshape(batch_size, -1, 4) |
|
|
|
nms_pre = cfg.get('nms_pre', -1) |
|
if nms_pre > 0 and scores.shape[1] > nms_pre: |
|
max_scores, _ = scores.max(-1) |
|
_, topk_inds = max_scores.topk(nms_pre) |
|
batch_inds = torch.arange(batch_size).view( |
|
-1, 1).expand_as(topk_inds).long() |
|
anchors = anchors[topk_inds, :] |
|
bbox_pred = bbox_pred[batch_inds, topk_inds, :] |
|
scores = scores[batch_inds, topk_inds, :] |
|
else: |
|
anchors = anchors.expand_as(bbox_pred) |
|
|
|
bboxes = distance2bbox( |
|
self.anchor_center(anchors), bbox_pred, max_shape=img_shapes) |
|
mlvl_bboxes.append(bboxes) |
|
mlvl_scores.append(scores) |
|
|
|
batch_mlvl_bboxes = torch.cat(mlvl_bboxes, dim=1) |
|
if rescale: |
|
batch_mlvl_bboxes /= batch_mlvl_bboxes.new_tensor( |
|
scale_factors).unsqueeze(1) |
|
|
|
batch_mlvl_scores = torch.cat(mlvl_scores, dim=1) |
|
|
|
|
|
|
|
padding = batch_mlvl_scores.new_zeros(batch_size, |
|
batch_mlvl_scores.shape[1], 1) |
|
batch_mlvl_scores = torch.cat([batch_mlvl_scores, padding], dim=-1) |
|
|
|
if with_nms: |
|
det_results = [] |
|
for (mlvl_bboxes, mlvl_scores) in zip(batch_mlvl_bboxes, |
|
batch_mlvl_scores): |
|
det_bbox, det_label = multiclass_nms(mlvl_bboxes, mlvl_scores, |
|
cfg.score_thr, cfg.nms, |
|
cfg.max_per_img) |
|
det_results.append(tuple([det_bbox, det_label])) |
|
else: |
|
det_results = [ |
|
tuple(mlvl_bs) |
|
for mlvl_bs in zip(batch_mlvl_bboxes, batch_mlvl_scores) |
|
] |
|
return det_results |
|
|
|
def get_targets(self, |
|
anchor_list, |
|
valid_flag_list, |
|
gt_bboxes_list, |
|
img_metas, |
|
gt_bboxes_ignore_list=None, |
|
gt_labels_list=None, |
|
label_channels=1, |
|
unmap_outputs=True): |
|
"""Get targets for GFL head. |
|
|
|
This method is almost the same as `AnchorHead.get_targets()`. Besides |
|
returning the targets as the parent method does, it also returns the |
|
anchors as the first element of the returned tuple. |
|
""" |
|
num_imgs = len(img_metas) |
|
assert len(anchor_list) == len(valid_flag_list) == num_imgs |
|
|
|
|
|
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] |
|
num_level_anchors_list = [num_level_anchors] * num_imgs |
|
|
|
|
|
for i in range(num_imgs): |
|
assert len(anchor_list[i]) == len(valid_flag_list[i]) |
|
anchor_list[i] = torch.cat(anchor_list[i]) |
|
valid_flag_list[i] = torch.cat(valid_flag_list[i]) |
|
|
|
|
|
if gt_bboxes_ignore_list is None: |
|
gt_bboxes_ignore_list = [None for _ in range(num_imgs)] |
|
if gt_labels_list is None: |
|
gt_labels_list = [None for _ in range(num_imgs)] |
|
(all_anchors, all_labels, all_label_weights, all_bbox_targets, |
|
all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply( |
|
self._get_target_single, |
|
anchor_list, |
|
valid_flag_list, |
|
num_level_anchors_list, |
|
gt_bboxes_list, |
|
gt_bboxes_ignore_list, |
|
gt_labels_list, |
|
img_metas, |
|
label_channels=label_channels, |
|
unmap_outputs=unmap_outputs) |
|
|
|
if any([labels is None for labels in all_labels]): |
|
return None |
|
|
|
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) |
|
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) |
|
|
|
anchors_list = images_to_levels(all_anchors, num_level_anchors) |
|
labels_list = images_to_levels(all_labels, num_level_anchors) |
|
label_weights_list = images_to_levels(all_label_weights, |
|
num_level_anchors) |
|
bbox_targets_list = images_to_levels(all_bbox_targets, |
|
num_level_anchors) |
|
bbox_weights_list = images_to_levels(all_bbox_weights, |
|
num_level_anchors) |
|
return (anchors_list, labels_list, label_weights_list, |
|
bbox_targets_list, bbox_weights_list, num_total_pos, |
|
num_total_neg) |
|
|
|
def _get_target_single(self, |
|
flat_anchors, |
|
valid_flags, |
|
num_level_anchors, |
|
gt_bboxes, |
|
gt_bboxes_ignore, |
|
gt_labels, |
|
img_meta, |
|
label_channels=1, |
|
unmap_outputs=True): |
|
"""Compute regression, classification targets for anchors in a single |
|
image. |
|
|
|
Args: |
|
flat_anchors (Tensor): Multi-level anchors of the image, which are |
|
concatenated into a single tensor of shape (num_anchors, 4) |
|
valid_flags (Tensor): Multi level valid flags of the image, |
|
which are concatenated into a single tensor of |
|
shape (num_anchors,). |
|
num_level_anchors Tensor): Number of anchors of each scale level. |
|
gt_bboxes (Tensor): Ground truth bboxes of the image, |
|
shape (num_gts, 4). |
|
gt_bboxes_ignore (Tensor): Ground truth bboxes to be |
|
ignored, shape (num_ignored_gts, 4). |
|
gt_labels (Tensor): Ground truth labels of each box, |
|
shape (num_gts,). |
|
img_meta (dict): Meta info of the image. |
|
label_channels (int): Channel of label. |
|
unmap_outputs (bool): Whether to map outputs back to the original |
|
set of anchors. |
|
|
|
Returns: |
|
tuple: N is the number of total anchors in the image. |
|
anchors (Tensor): All anchors in the image with shape (N, 4). |
|
labels (Tensor): Labels of all anchors in the image with shape |
|
(N,). |
|
label_weights (Tensor): Label weights of all anchor in the |
|
image with shape (N,). |
|
bbox_targets (Tensor): BBox targets of all anchors in the |
|
image with shape (N, 4). |
|
bbox_weights (Tensor): BBox weights of all anchors in the |
|
image with shape (N, 4). |
|
pos_inds (Tensor): Indices of positive anchor with shape |
|
(num_pos,). |
|
neg_inds (Tensor): Indices of negative anchor with shape |
|
(num_neg,). |
|
""" |
|
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, |
|
img_meta['img_shape'][:2], |
|
self.train_cfg.allowed_border) |
|
if not inside_flags.any(): |
|
return (None, ) * 7 |
|
|
|
anchors = flat_anchors[inside_flags, :] |
|
|
|
num_level_anchors_inside = self.get_num_level_anchors_inside( |
|
num_level_anchors, inside_flags) |
|
assign_result = self.assigner.assign(anchors, num_level_anchors_inside, |
|
gt_bboxes, gt_bboxes_ignore, |
|
gt_labels) |
|
|
|
sampling_result = self.sampler.sample(assign_result, anchors, |
|
gt_bboxes) |
|
|
|
num_valid_anchors = anchors.shape[0] |
|
bbox_targets = torch.zeros_like(anchors) |
|
bbox_weights = torch.zeros_like(anchors) |
|
labels = anchors.new_full((num_valid_anchors, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) |
|
|
|
pos_inds = sampling_result.pos_inds |
|
neg_inds = sampling_result.neg_inds |
|
if len(pos_inds) > 0: |
|
pos_bbox_targets = sampling_result.pos_gt_bboxes |
|
bbox_targets[pos_inds, :] = pos_bbox_targets |
|
bbox_weights[pos_inds, :] = 1.0 |
|
if gt_labels is None: |
|
|
|
|
|
labels[pos_inds] = 0 |
|
else: |
|
labels[pos_inds] = gt_labels[ |
|
sampling_result.pos_assigned_gt_inds] |
|
if self.train_cfg.pos_weight <= 0: |
|
label_weights[pos_inds] = 1.0 |
|
else: |
|
label_weights[pos_inds] = self.train_cfg.pos_weight |
|
if len(neg_inds) > 0: |
|
label_weights[neg_inds] = 1.0 |
|
|
|
|
|
if unmap_outputs: |
|
num_total_anchors = flat_anchors.size(0) |
|
anchors = unmap(anchors, num_total_anchors, inside_flags) |
|
labels = unmap( |
|
labels, num_total_anchors, inside_flags, fill=self.num_classes) |
|
label_weights = unmap(label_weights, num_total_anchors, |
|
inside_flags) |
|
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) |
|
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) |
|
|
|
return (anchors, labels, label_weights, bbox_targets, bbox_weights, |
|
pos_inds, neg_inds) |
|
|
|
def get_num_level_anchors_inside(self, num_level_anchors, inside_flags): |
|
split_inside_flags = torch.split(inside_flags, num_level_anchors) |
|
num_level_anchors_inside = [ |
|
int(flags.sum()) for flags in split_inside_flags |
|
] |
|
return num_level_anchors_inside |
|
|