|
_base_ = './gfl_r50_fpn_1x_coco.py' |
|
|
|
lr_config = dict(step=[16, 22]) |
|
runner = dict(type='EpochBasedRunner', max_epochs=24) |
|
|
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='Resize', |
|
img_scale=[(1333, 480), (1333, 800)], |
|
multiscale_mode='range', |
|
keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
|
] |
|
data = dict(train=dict(pipeline=train_pipeline)) |
|
|