|
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' |
|
model = dict( |
|
neck=dict( |
|
type='FPN_CARAFE', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
num_outs=5, |
|
start_level=0, |
|
end_level=-1, |
|
norm_cfg=None, |
|
act_cfg=None, |
|
order=('conv', 'norm', 'act'), |
|
upsample_cfg=dict( |
|
type='carafe', |
|
up_kernel=5, |
|
up_group=1, |
|
encoder_kernel=3, |
|
encoder_dilation=1, |
|
compressed_channels=64)), |
|
roi_head=dict( |
|
mask_head=dict( |
|
upsample_cfg=dict( |
|
type='carafe', |
|
scale_factor=2, |
|
up_kernel=5, |
|
up_group=1, |
|
encoder_kernel=3, |
|
encoder_dilation=1, |
|
compressed_channels=64)))) |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=64), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1333, 800), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict(type='RandomFlip'), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=64), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
train=dict(pipeline=train_pipeline), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|