|
import json |
|
import os |
|
import subprocess |
|
import unittest |
|
from ast import literal_eval |
|
|
|
import pytest |
|
from parameterized import parameterized_class |
|
|
|
from . import is_sagemaker_available |
|
|
|
|
|
if is_sagemaker_available(): |
|
from sagemaker import Session, TrainingJobAnalytics |
|
from sagemaker.huggingface import HuggingFace |
|
|
|
|
|
@pytest.mark.skipif( |
|
literal_eval(os.getenv("TEST_SAGEMAKER", "False")) is not True, |
|
reason="Skipping test because should only be run when releasing minor transformers version", |
|
) |
|
@pytest.mark.usefixtures("sm_env") |
|
@parameterized_class( |
|
[ |
|
{ |
|
"framework": "pytorch", |
|
"script": "run_glue.py", |
|
"model_name_or_path": "distilbert-base-cased", |
|
"instance_type": "ml.g4dn.xlarge", |
|
"results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, |
|
}, |
|
{ |
|
"framework": "tensorflow", |
|
"script": "run_tf.py", |
|
"model_name_or_path": "distilbert-base-cased", |
|
"instance_type": "ml.g4dn.xlarge", |
|
"results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, |
|
}, |
|
] |
|
) |
|
class SingleNodeTest(unittest.TestCase): |
|
def setUp(self): |
|
if self.framework == "pytorch": |
|
subprocess.run( |
|
f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(), |
|
encoding="utf-8", |
|
check=True, |
|
) |
|
assert hasattr(self, "env") |
|
|
|
def create_estimator(self, instance_count=1): |
|
|
|
return HuggingFace( |
|
entry_point=self.script, |
|
source_dir=self.env.test_path, |
|
role=self.env.role, |
|
image_uri=self.env.image_uri, |
|
base_job_name=f"{self.env.base_job_name}-single", |
|
instance_count=instance_count, |
|
instance_type=self.instance_type, |
|
debugger_hook_config=False, |
|
hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path}, |
|
metric_definitions=self.env.metric_definitions, |
|
py_version="py36", |
|
) |
|
|
|
def save_results_as_csv(self, job_name): |
|
TrainingJobAnalytics(job_name).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") |
|
|
|
def test_glue(self): |
|
|
|
estimator = self.create_estimator() |
|
|
|
|
|
estimator.fit() |
|
|
|
|
|
result_metrics_df = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() |
|
|
|
|
|
eval_accuracy = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) |
|
eval_loss = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) |
|
|
|
train_runtime = ( |
|
Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 999999) |
|
) |
|
|
|
|
|
assert train_runtime <= self.results["train_runtime"] |
|
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) |
|
assert all(t <= self.results["eval_loss"] for t in eval_loss) |
|
|
|
|
|
with open(f"{estimator.latest_training_job.name}.json", "w") as outfile: |
|
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, outfile) |
|
|