|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor |
|
from transformers.pipelines import VideoClassificationPipeline, pipeline |
|
from transformers.testing_utils import ( |
|
is_pipeline_test, |
|
nested_simplify, |
|
require_decord, |
|
require_tf, |
|
require_torch, |
|
require_torch_or_tf, |
|
require_vision, |
|
) |
|
|
|
from .test_pipelines_common import ANY |
|
|
|
|
|
@is_pipeline_test |
|
@require_torch_or_tf |
|
@require_vision |
|
@require_decord |
|
class VideoClassificationPipelineTests(unittest.TestCase): |
|
model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING |
|
|
|
def get_test_pipeline(self, model, tokenizer, processor): |
|
example_video_filepath = hf_hub_download( |
|
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" |
|
) |
|
video_classifier = VideoClassificationPipeline(model=model, image_processor=processor, top_k=2) |
|
examples = [ |
|
example_video_filepath, |
|
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", |
|
] |
|
return video_classifier, examples |
|
|
|
def run_pipeline_test(self, video_classifier, examples): |
|
for example in examples: |
|
outputs = video_classifier(example) |
|
|
|
self.assertEqual( |
|
outputs, |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_small_model_pt(self): |
|
small_model = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" |
|
small_feature_extractor = VideoMAEFeatureExtractor( |
|
size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} |
|
) |
|
video_classifier = pipeline( |
|
"video-classification", model=small_model, feature_extractor=small_feature_extractor, frame_sampling_rate=4 |
|
) |
|
|
|
video_file_path = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset") |
|
outputs = video_classifier(video_file_path, top_k=2) |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], |
|
) |
|
|
|
outputs = video_classifier( |
|
[ |
|
video_file_path, |
|
video_file_path, |
|
], |
|
top_k=2, |
|
) |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], |
|
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], |
|
], |
|
) |
|
|
|
@require_tf |
|
def test_small_model_tf(self): |
|
pass |
|
|