|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import hashlib |
|
import unittest |
|
from typing import Dict |
|
|
|
import numpy as np |
|
|
|
from transformers import ( |
|
MODEL_FOR_MASK_GENERATION_MAPPING, |
|
TF_MODEL_FOR_MASK_GENERATION_MAPPING, |
|
is_vision_available, |
|
pipeline, |
|
) |
|
from transformers.pipelines import MaskGenerationPipeline |
|
from transformers.testing_utils import ( |
|
is_pipeline_test, |
|
nested_simplify, |
|
require_tf, |
|
require_torch, |
|
require_vision, |
|
slow, |
|
) |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
else: |
|
|
|
class Image: |
|
@staticmethod |
|
def open(*args, **kwargs): |
|
pass |
|
|
|
|
|
def hashimage(image: Image) -> str: |
|
m = hashlib.md5(image.tobytes()) |
|
return m.hexdigest()[:10] |
|
|
|
|
|
def mask_to_test_readable(mask: Image) -> Dict: |
|
npimg = np.array(mask) |
|
shape = npimg.shape |
|
return {"hash": hashimage(mask), "shape": shape} |
|
|
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_torch |
|
class MaskGenerationPipelineTests(unittest.TestCase): |
|
model_mapping = dict( |
|
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items()) if MODEL_FOR_MASK_GENERATION_MAPPING else []) |
|
) |
|
tf_model_mapping = dict( |
|
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items()) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) |
|
) |
|
|
|
def get_test_pipeline(self, model, tokenizer, processor): |
|
image_segmenter = MaskGenerationPipeline(model=model, image_processor=processor) |
|
return image_segmenter, [ |
|
"./tests/fixtures/tests_samples/COCO/000000039769.png", |
|
"./tests/fixtures/tests_samples/COCO/000000039769.png", |
|
] |
|
|
|
|
|
def run_pipeline_test(self, mask_generator, examples): |
|
pass |
|
|
|
@require_tf |
|
@unittest.skip("Image segmentation not implemented in TF") |
|
def test_small_model_tf(self): |
|
pass |
|
|
|
@slow |
|
@require_torch |
|
def test_small_model_pt(self): |
|
image_segmenter = pipeline("mask-generation", model="facebook/sam-vit-huge") |
|
|
|
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", points_per_batch=256) |
|
|
|
|
|
new_outupt = [] |
|
for i, o in enumerate(outputs["masks"]): |
|
new_outupt += [{"mask": mask_to_test_readable(o), "scores": outputs["scores"][i]}] |
|
|
|
|
|
self.assertEqual( |
|
nested_simplify(new_outupt, decimals=4), |
|
[ |
|
{'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444}, |
|
{'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, |
|
{'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167}, |
|
{'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132}, |
|
{'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053}, |
|
{'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9967}, |
|
{'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, |
|
{'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9909}, |
|
{'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9879}, |
|
{'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9834}, |
|
{'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9716}, |
|
{'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9612}, |
|
{'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9599}, |
|
{'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9552}, |
|
{'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9532}, |
|
{'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9516}, |
|
{'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9499}, |
|
{'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9483}, |
|
{'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9464}, |
|
{'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, |
|
{'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, |
|
{'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9408}, |
|
{'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9335}, |
|
{'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9326}, |
|
{'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9262}, |
|
{'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8999}, |
|
{'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8986}, |
|
{'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8984}, |
|
{'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8873}, |
|
{'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8871} |
|
], |
|
) |
|
|
|
|
|
@require_torch |
|
@slow |
|
def test_threshold(self): |
|
model_id = "facebook/sam-vit-huge" |
|
image_segmenter = pipeline("mask-generation", model=model_id) |
|
|
|
outputs = image_segmenter( |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", pred_iou_thresh=1, points_per_batch=256 |
|
) |
|
|
|
|
|
new_outupt = [] |
|
for i, o in enumerate(outputs["masks"]): |
|
new_outupt += [{"mask": mask_to_test_readable(o), "scores": outputs["scores"][i]}] |
|
|
|
self.assertEqual( |
|
nested_simplify(new_outupt, decimals=4), |
|
[ |
|
{"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0444}, |
|
{"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0210}, |
|
{"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0167}, |
|
{"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0132}, |
|
{"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0053}, |
|
], |
|
) |
|
|