|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
from transformers import ( |
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, |
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, |
|
PreTrainedTokenizer, |
|
is_vision_available, |
|
) |
|
from transformers.pipelines import ImageClassificationPipeline, pipeline |
|
from transformers.testing_utils import ( |
|
is_pipeline_test, |
|
nested_simplify, |
|
require_tf, |
|
require_torch, |
|
require_torch_or_tf, |
|
require_vision, |
|
slow, |
|
) |
|
|
|
from .test_pipelines_common import ANY |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
else: |
|
|
|
class Image: |
|
@staticmethod |
|
def open(*args, **kwargs): |
|
pass |
|
|
|
|
|
@is_pipeline_test |
|
@require_torch_or_tf |
|
@require_vision |
|
class ImageClassificationPipelineTests(unittest.TestCase): |
|
model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING |
|
tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING |
|
|
|
def get_test_pipeline(self, model, tokenizer, processor): |
|
image_classifier = ImageClassificationPipeline(model=model, image_processor=processor, top_k=2) |
|
examples = [ |
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
] |
|
return image_classifier, examples |
|
|
|
def run_pipeline_test(self, image_classifier, examples): |
|
outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
|
|
self.assertEqual( |
|
outputs, |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
) |
|
|
|
import datasets |
|
|
|
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test") |
|
|
|
|
|
outputs = image_classifier( |
|
[ |
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
|
|
dataset[0]["file"], |
|
|
|
dataset[1]["file"], |
|
|
|
dataset[2]["file"], |
|
] |
|
) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
[ |
|
{"score": ANY(float), "label": ANY(str)}, |
|
{"score": ANY(float), "label": ANY(str)}, |
|
], |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_small_model_pt(self): |
|
small_model = "hf-internal-testing/tiny-random-vit" |
|
image_classifier = pipeline("image-classification", model=small_model) |
|
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
) |
|
|
|
outputs = image_classifier( |
|
[ |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
], |
|
top_k=2, |
|
) |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
], |
|
) |
|
|
|
@require_tf |
|
def test_small_model_tf(self): |
|
small_model = "hf-internal-testing/tiny-random-vit" |
|
image_classifier = pipeline("image-classification", model=small_model, framework="tf") |
|
|
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
) |
|
|
|
outputs = image_classifier( |
|
[ |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
], |
|
top_k=2, |
|
) |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}], |
|
], |
|
) |
|
|
|
def test_custom_tokenizer(self): |
|
tokenizer = PreTrainedTokenizer() |
|
|
|
|
|
image_classifier = pipeline( |
|
"image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer |
|
) |
|
|
|
self.assertIs(image_classifier.tokenizer, tokenizer) |
|
|
|
@slow |
|
@require_torch |
|
def test_perceiver(self): |
|
|
|
|
|
|
|
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv") |
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
{"score": 0.4385, "label": "tabby, tabby cat"}, |
|
{"score": 0.321, "label": "tiger cat"}, |
|
{"score": 0.0502, "label": "Egyptian cat"}, |
|
{"score": 0.0137, "label": "crib, cot"}, |
|
{"score": 0.007, "label": "radiator"}, |
|
], |
|
) |
|
|
|
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier") |
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
{"score": 0.5658, "label": "tabby, tabby cat"}, |
|
{"score": 0.1309, "label": "tiger cat"}, |
|
{"score": 0.0722, "label": "Egyptian cat"}, |
|
{"score": 0.0707, "label": "remote control, remote"}, |
|
{"score": 0.0082, "label": "computer keyboard, keypad"}, |
|
], |
|
) |
|
|
|
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned") |
|
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
self.assertEqual( |
|
nested_simplify(outputs, decimals=4), |
|
[ |
|
{"score": 0.3022, "label": "tabby, tabby cat"}, |
|
{"score": 0.2362, "label": "Egyptian cat"}, |
|
{"score": 0.1856, "label": "tiger cat"}, |
|
{"score": 0.0324, "label": "remote control, remote"}, |
|
{"score": 0.0096, "label": "quilt, comforter, comfort, puff"}, |
|
], |
|
) |
|
|