|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
from transformers import is_tf_available |
|
from transformers.testing_utils import require_tf |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
from tensorflow.python.eager import context |
|
from tensorflow.python.framework import ops |
|
|
|
from transformers import GradientAccumulator, create_optimizer |
|
|
|
|
|
@require_tf |
|
class OptimizationFTest(unittest.TestCase): |
|
def assertListAlmostEqual(self, list1, list2, tol): |
|
self.assertEqual(len(list1), len(list2)) |
|
for a, b in zip(list1, list2): |
|
self.assertAlmostEqual(a, b, delta=tol) |
|
|
|
def testGradientAccumulator(self): |
|
accumulator = GradientAccumulator() |
|
accumulator([tf.constant([1.0, 2.0])]) |
|
accumulator([tf.constant([-2.0, 1.0])]) |
|
accumulator([tf.constant([-1.0, 2.0])]) |
|
with self.assertRaises(ValueError): |
|
accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) |
|
self.assertEqual(accumulator.step, 3) |
|
self.assertEqual(len(accumulator.gradients), 1) |
|
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1e-2) |
|
accumulator.reset() |
|
self.assertEqual(accumulator.step, 0) |
|
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1e-2) |
|
|
|
def testGradientAccumulatorDistributionStrategy(self): |
|
context._context = None |
|
ops.enable_eager_execution_internal() |
|
physical_devices = tf.config.list_physical_devices("CPU") |
|
if len(physical_devices) == 1: |
|
tf.config.set_logical_device_configuration( |
|
physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] |
|
) |
|
devices = tf.config.list_logical_devices(device_type="CPU") |
|
strategy = tf.distribute.MirroredStrategy(devices=devices[:2]) |
|
|
|
with strategy.scope(): |
|
accumulator = GradientAccumulator() |
|
variable = tf.Variable([4.0, 3.0]) |
|
optimizer, _ = create_optimizer(5e-5, 10, 5) |
|
gradient_placeholder = tf.Variable([0.0, 0.0], trainable=False) |
|
|
|
def accumulate_on_replica(gradient): |
|
accumulator([gradient]) |
|
|
|
def apply_on_replica(): |
|
optimizer.apply_gradients(list(zip(accumulator.gradients, [variable]))) |
|
|
|
@tf.function |
|
def accumulate(grad1, grad2): |
|
with strategy.scope(): |
|
local_variables = strategy.experimental_local_results(gradient_placeholder) |
|
local_variables[0].assign(grad1) |
|
local_variables[1].assign(grad2) |
|
strategy.run(accumulate_on_replica, args=(gradient_placeholder,)) |
|
|
|
@tf.function |
|
def apply_grad(): |
|
with strategy.scope(): |
|
strategy.run(apply_on_replica) |
|
|
|
def _check_local_values(grad1, grad2): |
|
values = strategy.experimental_local_results(accumulator._gradients[0]) |
|
self.assertListAlmostEqual(values[0].value(), grad1, tol=1e-2) |
|
self.assertListAlmostEqual(values[1].value(), grad2, tol=1e-2) |
|
|
|
accumulate([1.0, 2.0], [-1.0, 1.0]) |
|
accumulate([3.0, -1.0], [-1.0, -1.0]) |
|
accumulate([-2.0, 2.0], [3.0, -2.0]) |
|
self.assertEqual(accumulator.step, 3) |
|
_check_local_values([2.0, 3.0], [1.0, -2.0]) |
|
apply_grad() |
|
self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1e-2) |
|
accumulator.reset() |
|
self.assertEqual(accumulator.step, 0) |
|
_check_local_values([0.0, 0.0], [0.0, 0.0]) |
|
|