|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch Dinat model. """ |
|
|
|
import collections |
|
import inspect |
|
import unittest |
|
|
|
from transformers import DinatConfig |
|
from transformers.testing_utils import require_natten, require_torch, require_vision, slow, torch_device |
|
from transformers.utils import cached_property, is_torch_available, is_vision_available |
|
|
|
from ...test_backbone_common import BackboneTesterMixin |
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from torch import nn |
|
|
|
from transformers import DinatBackbone, DinatForImageClassification, DinatModel |
|
from transformers.models.dinat.modeling_dinat import DINAT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import AutoImageProcessor |
|
|
|
|
|
class DinatModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
image_size=64, |
|
patch_size=4, |
|
num_channels=3, |
|
embed_dim=16, |
|
depths=[1, 2, 1], |
|
num_heads=[2, 4, 8], |
|
kernel_size=3, |
|
dilations=[[3], [1, 2], [1]], |
|
mlp_ratio=2.0, |
|
qkv_bias=True, |
|
hidden_dropout_prob=0.0, |
|
attention_probs_dropout_prob=0.0, |
|
drop_path_rate=0.1, |
|
hidden_act="gelu", |
|
patch_norm=True, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-5, |
|
is_training=True, |
|
scope=None, |
|
use_labels=True, |
|
num_labels=10, |
|
out_features=["stage1", "stage2"], |
|
out_indices=[1, 2], |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.embed_dim = embed_dim |
|
self.depths = depths |
|
self.num_heads = num_heads |
|
self.kernel_size = kernel_size |
|
self.dilations = dilations |
|
self.mlp_ratio = mlp_ratio |
|
self.qkv_bias = qkv_bias |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.drop_path_rate = drop_path_rate |
|
self.hidden_act = hidden_act |
|
self.patch_norm = patch_norm |
|
self.layer_norm_eps = layer_norm_eps |
|
self.initializer_range = initializer_range |
|
self.is_training = is_training |
|
self.scope = scope |
|
self.use_labels = use_labels |
|
self.num_labels = num_labels |
|
self.out_features = out_features |
|
self.out_indices = out_indices |
|
|
|
def prepare_config_and_inputs(self): |
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) |
|
|
|
labels = None |
|
if self.use_labels: |
|
labels = ids_tensor([self.batch_size], self.num_labels) |
|
|
|
config = self.get_config() |
|
|
|
return config, pixel_values, labels |
|
|
|
def get_config(self): |
|
return DinatConfig( |
|
num_labels=self.num_labels, |
|
image_size=self.image_size, |
|
patch_size=self.patch_size, |
|
num_channels=self.num_channels, |
|
embed_dim=self.embed_dim, |
|
depths=self.depths, |
|
num_heads=self.num_heads, |
|
kernel_size=self.kernel_size, |
|
dilations=self.dilations, |
|
mlp_ratio=self.mlp_ratio, |
|
qkv_bias=self.qkv_bias, |
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
drop_path_rate=self.drop_path_rate, |
|
hidden_act=self.hidden_act, |
|
patch_norm=self.patch_norm, |
|
layer_norm_eps=self.layer_norm_eps, |
|
initializer_range=self.initializer_range, |
|
out_features=self.out_features, |
|
out_indices=self.out_indices, |
|
) |
|
|
|
def create_and_check_model(self, config, pixel_values, labels): |
|
model = DinatModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values) |
|
|
|
expected_height = expected_width = (config.image_size // config.patch_size) // (2 ** (len(config.depths) - 1)) |
|
expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) |
|
|
|
self.parent.assertEqual( |
|
result.last_hidden_state.shape, (self.batch_size, expected_height, expected_width, expected_dim) |
|
) |
|
|
|
def create_and_check_for_image_classification(self, config, pixel_values, labels): |
|
model = DinatForImageClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values, labels=labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
|
|
config.num_channels = 1 |
|
model = DinatForImageClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) |
|
result = model(pixel_values) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
def create_and_check_backbone(self, config, pixel_values, labels): |
|
model = DinatBackbone(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values) |
|
|
|
|
|
self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) |
|
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16]) |
|
|
|
|
|
self.parent.assertEqual(len(model.channels), len(config.out_features)) |
|
|
|
|
|
config.out_features = None |
|
model = DinatBackbone(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values) |
|
|
|
|
|
self.parent.assertEqual(len(result.feature_maps), 1) |
|
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4]) |
|
|
|
|
|
self.parent.assertEqual(len(model.channels), 1) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, pixel_values, labels = config_and_inputs |
|
inputs_dict = {"pixel_values": pixel_values} |
|
return config, inputs_dict |
|
|
|
|
|
@require_natten |
|
@require_torch |
|
class DinatModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = ( |
|
( |
|
DinatModel, |
|
DinatForImageClassification, |
|
DinatBackbone, |
|
) |
|
if is_torch_available() |
|
else () |
|
) |
|
pipeline_model_mapping = ( |
|
{"feature-extraction": DinatModel, "image-classification": DinatForImageClassification} |
|
if is_torch_available() |
|
else {} |
|
) |
|
fx_compatible = False |
|
|
|
test_torchscript = False |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_head_masking = False |
|
|
|
def setUp(self): |
|
self.model_tester = DinatModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=DinatConfig, embed_dim=37) |
|
|
|
def test_config(self): |
|
self.create_and_test_config_common_properties() |
|
self.config_tester.create_and_test_config_to_json_string() |
|
self.config_tester.create_and_test_config_to_json_file() |
|
self.config_tester.create_and_test_config_from_and_save_pretrained() |
|
self.config_tester.create_and_test_config_with_num_labels() |
|
self.config_tester.check_config_can_be_init_without_params() |
|
self.config_tester.check_config_arguments_init() |
|
|
|
def create_and_test_config_common_properties(self): |
|
return |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_for_image_classification(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) |
|
|
|
def test_backbone(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_backbone(*config_and_inputs) |
|
|
|
@unittest.skip(reason="Dinat does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="Dinat does not use feedforward chunking") |
|
def test_feed_forward_chunking(self): |
|
pass |
|
|
|
def test_model_common_attributes(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) |
|
x = model.get_output_embeddings() |
|
self.assertTrue(x is None or isinstance(x, nn.Linear)) |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
expected_arg_names = ["pixel_values"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_attention_outputs(self): |
|
self.skipTest("Dinat's attention operation is handled entirely by NATTEN.") |
|
|
|
def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
hidden_states = outputs.hidden_states |
|
|
|
expected_num_layers = getattr( |
|
self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 |
|
) |
|
self.assertEqual(len(hidden_states), expected_num_layers) |
|
|
|
|
|
patch_size = ( |
|
config.patch_size |
|
if isinstance(config.patch_size, collections.abc.Iterable) |
|
else (config.patch_size, config.patch_size) |
|
) |
|
|
|
height = image_size[0] // patch_size[0] |
|
width = image_size[1] // patch_size[1] |
|
|
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-3:]), |
|
[height, width, self.model_tester.embed_dim], |
|
) |
|
|
|
if model_class.__name__ != "DinatBackbone": |
|
reshaped_hidden_states = outputs.reshaped_hidden_states |
|
self.assertEqual(len(reshaped_hidden_states), expected_num_layers) |
|
|
|
batch_size, num_channels, height, width = reshaped_hidden_states[0].shape |
|
reshaped_hidden_states = ( |
|
reshaped_hidden_states[0].view(batch_size, num_channels, height, width).permute(0, 2, 3, 1) |
|
) |
|
self.assertListEqual( |
|
list(reshaped_hidden_states.shape[-3:]), |
|
[height, width, self.model_tester.embed_dim], |
|
) |
|
|
|
def test_hidden_states_output(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
image_size = ( |
|
self.model_tester.image_size |
|
if isinstance(self.model_tester.image_size, collections.abc.Iterable) |
|
else (self.model_tester.image_size, self.model_tester.image_size) |
|
) |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_hidden_states"] = True |
|
self.check_hidden_states_output(inputs_dict, config, model_class, image_size) |
|
|
|
|
|
del inputs_dict["output_hidden_states"] |
|
config.output_hidden_states = True |
|
|
|
self.check_hidden_states_output(inputs_dict, config, model_class, image_size) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in DINAT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = DinatModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
def test_initialization(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
for name, param in model.named_parameters(): |
|
if "embeddings" not in name and param.requires_grad: |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
|
|
@require_natten |
|
@require_vision |
|
@require_torch |
|
class DinatModelIntegrationTest(unittest.TestCase): |
|
@cached_property |
|
def default_image_processor(self): |
|
return AutoImageProcessor.from_pretrained("shi-labs/dinat-mini-in1k-224") if is_vision_available() else None |
|
|
|
@slow |
|
def test_inference_image_classification_head(self): |
|
model = DinatForImageClassification.from_pretrained("shi-labs/dinat-mini-in1k-224").to(torch_device) |
|
image_processor = self.default_image_processor |
|
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
expected_shape = torch.Size((1, 1000)) |
|
self.assertEqual(outputs.logits.shape, expected_shape) |
|
expected_slice = torch.tensor([-0.1545, -0.7667, 0.4642]).to(torch_device) |
|
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) |
|
|
|
|
|
@require_torch |
|
@require_natten |
|
class DinatBackboneTest(unittest.TestCase, BackboneTesterMixin): |
|
all_model_classes = (DinatBackbone,) if is_torch_available() else () |
|
config_class = DinatConfig |
|
|
|
def setUp(self): |
|
self.model_tester = DinatModelTester(self) |
|
|