|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import pathlib |
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from transformers.testing_utils import require_torch, require_vision, slow |
|
from transformers.utils import is_torch_available, is_vision_available |
|
|
|
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import DetaImageProcessor |
|
|
|
|
|
class DetaImageProcessingTester(unittest.TestCase): |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=7, |
|
num_channels=3, |
|
min_resolution=30, |
|
max_resolution=400, |
|
do_resize=True, |
|
size=None, |
|
do_normalize=True, |
|
image_mean=[0.5, 0.5, 0.5], |
|
image_std=[0.5, 0.5, 0.5], |
|
do_rescale=True, |
|
rescale_factor=1 / 255, |
|
do_pad=True, |
|
): |
|
|
|
size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.num_channels = num_channels |
|
self.min_resolution = min_resolution |
|
self.max_resolution = max_resolution |
|
self.do_resize = do_resize |
|
self.size = size |
|
self.do_normalize = do_normalize |
|
self.image_mean = image_mean |
|
self.image_std = image_std |
|
self.do_rescale = do_rescale |
|
self.rescale_factor = rescale_factor |
|
self.do_pad = do_pad |
|
|
|
def prepare_image_processor_dict(self): |
|
return { |
|
"do_resize": self.do_resize, |
|
"size": self.size, |
|
"do_normalize": self.do_normalize, |
|
"image_mean": self.image_mean, |
|
"image_std": self.image_std, |
|
"do_rescale": self.do_rescale, |
|
"rescale_factor": self.rescale_factor, |
|
"do_pad": self.do_pad, |
|
} |
|
|
|
def get_expected_values(self, image_inputs, batched=False): |
|
""" |
|
This function computes the expected height and width when providing images to DetaImageProcessor, |
|
assuming do_resize is set to True with a scalar size. |
|
""" |
|
if not batched: |
|
image = image_inputs[0] |
|
if isinstance(image, Image.Image): |
|
w, h = image.size |
|
else: |
|
h, w = image.shape[1], image.shape[2] |
|
if w < h: |
|
expected_height = int(self.size["shortest_edge"] * h / w) |
|
expected_width = self.size["shortest_edge"] |
|
elif w > h: |
|
expected_height = self.size["shortest_edge"] |
|
expected_width = int(self.size["shortest_edge"] * w / h) |
|
else: |
|
expected_height = self.size["shortest_edge"] |
|
expected_width = self.size["shortest_edge"] |
|
|
|
else: |
|
expected_values = [] |
|
for image in image_inputs: |
|
expected_height, expected_width = self.get_expected_values([image]) |
|
expected_values.append((expected_height, expected_width)) |
|
expected_height = max(expected_values, key=lambda item: item[0])[0] |
|
expected_width = max(expected_values, key=lambda item: item[1])[1] |
|
|
|
return expected_height, expected_width |
|
|
|
|
|
@require_torch |
|
@require_vision |
|
class DetaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase): |
|
image_processing_class = DetaImageProcessor if is_vision_available() else None |
|
|
|
def setUp(self): |
|
self.image_processor_tester = DetaImageProcessingTester(self) |
|
|
|
@property |
|
def image_processor_dict(self): |
|
return self.image_processor_tester.prepare_image_processor_dict() |
|
|
|
def test_image_processor_properties(self): |
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
self.assertTrue(hasattr(image_processing, "image_mean")) |
|
self.assertTrue(hasattr(image_processing, "image_std")) |
|
self.assertTrue(hasattr(image_processing, "do_normalize")) |
|
self.assertTrue(hasattr(image_processing, "do_resize")) |
|
self.assertTrue(hasattr(image_processing, "do_rescale")) |
|
self.assertTrue(hasattr(image_processing, "do_pad")) |
|
self.assertTrue(hasattr(image_processing, "size")) |
|
|
|
def test_image_processor_from_dict_with_kwargs(self): |
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict) |
|
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333}) |
|
self.assertEqual(image_processor.do_pad, True) |
|
|
|
def test_batch_feature(self): |
|
pass |
|
|
|
def test_call_pil(self): |
|
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
|
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, Image.Image) |
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) |
|
|
|
self.assertEqual( |
|
encoded_images.shape, |
|
(1, self.image_processor_tester.num_channels, expected_height, expected_width), |
|
) |
|
|
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) |
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
self.image_processor_tester.batch_size, |
|
self.image_processor_tester.num_channels, |
|
expected_height, |
|
expected_width, |
|
), |
|
) |
|
|
|
def test_call_numpy(self): |
|
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
|
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, np.ndarray) |
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) |
|
|
|
self.assertEqual( |
|
encoded_images.shape, |
|
(1, self.image_processor_tester.num_channels, expected_height, expected_width), |
|
) |
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) |
|
|
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
self.image_processor_tester.batch_size, |
|
self.image_processor_tester.num_channels, |
|
expected_height, |
|
expected_width, |
|
), |
|
) |
|
|
|
def test_call_pytorch(self): |
|
|
|
image_processing = self.image_processing_class(**self.image_processor_dict) |
|
|
|
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, torch.Tensor) |
|
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values |
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) |
|
|
|
self.assertEqual( |
|
encoded_images.shape, |
|
(1, self.image_processor_tester.num_channels, expected_height, expected_width), |
|
) |
|
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values |
|
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) |
|
|
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
self.image_processor_tester.batch_size, |
|
self.image_processor_tester.num_channels, |
|
expected_height, |
|
expected_width, |
|
), |
|
) |
|
|
|
@slow |
|
def test_call_pytorch_with_coco_detection_annotations(self): |
|
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: |
|
target = json.loads(f.read()) |
|
|
|
target = {"image_id": 39769, "annotations": target} |
|
|
|
|
|
image_processing = DetaImageProcessor() |
|
encoding = image_processing(images=image, annotations=target, return_tensors="pt") |
|
|
|
|
|
expected_shape = torch.Size([1, 3, 800, 1066]) |
|
self.assertEqual(encoding["pixel_values"].shape, expected_shape) |
|
|
|
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) |
|
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) |
|
|
|
|
|
expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) |
|
|
|
expected_boxes_shape = torch.Size([6, 4]) |
|
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) |
|
expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) |
|
|
|
expected_image_id = torch.tensor([39769]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) |
|
|
|
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) |
|
|
|
expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) |
|
|
|
expected_orig_size = torch.tensor([480, 640]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) |
|
|
|
expected_size = torch.tensor([800, 1066]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size)) |
|
|
|
@slow |
|
def test_call_pytorch_with_coco_panoptic_annotations(self): |
|
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f: |
|
target = json.loads(f.read()) |
|
|
|
target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} |
|
|
|
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") |
|
|
|
|
|
image_processing = DetaImageProcessor(format="coco_panoptic") |
|
encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt") |
|
|
|
|
|
expected_shape = torch.Size([1, 3, 800, 1066]) |
|
self.assertEqual(encoding["pixel_values"].shape, expected_shape) |
|
|
|
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) |
|
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) |
|
|
|
|
|
expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) |
|
|
|
expected_boxes_shape = torch.Size([6, 4]) |
|
self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) |
|
expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) |
|
|
|
expected_image_id = torch.tensor([39769]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) |
|
|
|
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) |
|
|
|
expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) |
|
|
|
expected_masks_sum = 822873 |
|
self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum) |
|
|
|
expected_orig_size = torch.tensor([480, 640]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) |
|
|
|
expected_size = torch.tensor([800, 1066]) |
|
self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size)) |
|
|