|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch CPMAnt model. """ |
|
|
|
import unittest |
|
|
|
from transformers.testing_utils import is_torch_available, require_torch, tooslow |
|
|
|
from ...generation.test_utils import torch_device |
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import ( |
|
CpmAntConfig, |
|
CpmAntForCausalLM, |
|
CpmAntModel, |
|
CpmAntTokenizer, |
|
) |
|
|
|
|
|
@require_torch |
|
class CpmAntModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=2, |
|
seq_length=8, |
|
is_training=True, |
|
use_token_type_ids=False, |
|
use_input_mask=False, |
|
use_labels=False, |
|
use_mc_token_ids=False, |
|
vocab_size=99, |
|
hidden_size=32, |
|
num_hidden_layers=3, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
num_buckets=32, |
|
max_distance=128, |
|
prompt_length=8, |
|
prompt_types=8, |
|
segment_types=8, |
|
init_std=1.0, |
|
return_dict=True, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_token_type_ids = use_token_type_ids |
|
self.use_input_mask = use_input_mask |
|
self.use_labels = use_labels |
|
self.use_mc_token_ids = use_mc_token_ids |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.num_buckets = num_buckets |
|
self.max_distance = max_distance |
|
self.prompt_length = prompt_length |
|
self.prompt_types = prompt_types |
|
self.segment_types = segment_types |
|
self.init_std = init_std |
|
self.return_dict = return_dict |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = {} |
|
input_ids["input_ids"] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).type(torch.int32) |
|
input_ids["use_cache"] = False |
|
|
|
config = self.get_config() |
|
|
|
return (config, input_ids) |
|
|
|
def get_config(self): |
|
return CpmAntConfig( |
|
vocab_size=self.vocab_size, |
|
hidden_size=self.hidden_size, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
dim_ff=self.intermediate_size, |
|
position_bias_num_buckets=self.num_buckets, |
|
position_bias_max_distance=self.max_distance, |
|
prompt_types=self.prompt_types, |
|
prompt_length=self.prompt_length, |
|
segment_types=self.segment_types, |
|
use_cache=True, |
|
init_std=self.init_std, |
|
return_dict=self.return_dict, |
|
) |
|
|
|
def create_and_check_cpmant_model(self, config, input_ids, *args): |
|
model = CpmAntModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
hidden_states = model(**input_ids).last_hidden_state |
|
|
|
self.parent.assertEqual(hidden_states.shape, (self.batch_size, self.seq_length, config.hidden_size)) |
|
|
|
def create_and_check_lm_head_model(self, config, input_ids, *args): |
|
model = CpmAntForCausalLM(config) |
|
model.to(torch_device) |
|
input_ids["input_ids"] = input_ids["input_ids"].to(torch_device) |
|
model.eval() |
|
|
|
model_output = model(**input_ids) |
|
self.parent.assertEqual( |
|
model_output.logits.shape, |
|
(self.batch_size, self.seq_length, config.vocab_size + config.prompt_types * config.prompt_length), |
|
) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config, inputs_dict = self.prepare_config_and_inputs() |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class CpmAntModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = (CpmAntModel, CpmAntForCausalLM) if is_torch_available() else () |
|
pipeline_model_mapping = ( |
|
{"feature-extraction": CpmAntModel, "text-generation": CpmAntForCausalLM} if is_torch_available() else {} |
|
) |
|
|
|
test_pruning = False |
|
test_missing_keys = False |
|
test_mismatched_shapes = False |
|
test_head_masking = False |
|
test_resize_embeddings = False |
|
|
|
def setUp(self): |
|
self.model_tester = CpmAntModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=CpmAntConfig) |
|
|
|
def test_config(self): |
|
self.config_tester.create_and_test_config_common_properties() |
|
self.config_tester.create_and_test_config_to_json_string() |
|
self.config_tester.create_and_test_config_to_json_file() |
|
self.config_tester.create_and_test_config_from_and_save_pretrained() |
|
self.config_tester.check_config_can_be_init_without_params() |
|
self.config_tester.check_config_arguments_init() |
|
|
|
def test_inputs_embeds(self): |
|
unittest.skip("CPMAnt doesn't support input_embeds.")(self.test_inputs_embeds) |
|
|
|
def test_retain_grad_hidden_states_attentions(self): |
|
unittest.skip( |
|
"CPMAnt doesn't support retain grad in hidden_states or attentions, because prompt management will peel off the output.hidden_states from graph.\ |
|
So is attentions. We strongly recommand you use loss to tune model." |
|
)(self.test_retain_grad_hidden_states_attentions) |
|
|
|
def test_cpmant_model(self): |
|
config, inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_cpmant_model(config, inputs) |
|
|
|
def test_cpmant_lm_head_model(self): |
|
config, inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_lm_head_model(config, inputs) |
|
|
|
|
|
@require_torch |
|
class CpmAntModelIntegrationTest(unittest.TestCase): |
|
@tooslow |
|
def test_inference_masked_lm(self): |
|
texts = "今天天气真好!" |
|
model_path = "openbmb/cpm-ant-10b" |
|
model = CpmAntModel.from_pretrained(model_path) |
|
tokenizer = CpmAntTokenizer.from_pretrained(model_path) |
|
inputs = tokenizer(texts, return_tensors="pt") |
|
hidden_states = model(**inputs).last_hidden_state |
|
|
|
expected_slice = torch.tensor( |
|
[[[6.1708, 5.9244, 1.0835], [6.5207, 6.2893, -11.3324], [-1.0107, -0.0576, -5.9577]]], |
|
) |
|
self.assertTrue(torch.allclose(hidden_states[:, :3, :3], expected_slice, atol=1e-2)) |
|
|
|
|
|
@require_torch |
|
class CpmAntForCausalLMlIntegrationTest(unittest.TestCase): |
|
@tooslow |
|
def test_inference_casual(self): |
|
texts = "今天天气真好!" |
|
model_path = "openbmb/cpm-ant-10b" |
|
model = CpmAntForCausalLM.from_pretrained(model_path) |
|
tokenizer = CpmAntTokenizer.from_pretrained(model_path) |
|
inputs = tokenizer(texts, return_tensors="pt") |
|
hidden_states = model(**inputs).logits |
|
|
|
expected_slice = torch.tensor( |
|
[[[-6.4267, -6.4083, -6.3958], [-5.8802, -5.9447, -5.7811], [-5.3896, -5.4820, -5.4295]]], |
|
) |
|
self.assertTrue(torch.allclose(hidden_states[:, :3, :3], expected_slice, atol=1e-2)) |
|
|
|
@tooslow |
|
def test_simple_generation(self): |
|
model_path = "openbmb/cpm-ant-10b" |
|
model = CpmAntForCausalLM.from_pretrained(model_path) |
|
tokenizer = CpmAntTokenizer.from_pretrained(model_path) |
|
texts = "今天天气不错," |
|
expected_output = "今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的" |
|
model_inputs = tokenizer(texts, return_tensors="pt") |
|
token_ids = model.generate(**model_inputs) |
|
output_texts = tokenizer.batch_decode(token_ids) |
|
self.assertEqual(expected_output, output_texts) |
|
|
|
@tooslow |
|
def test_batch_generation(self): |
|
model_path = "openbmb/cpm-ant-10b" |
|
model = CpmAntForCausalLM.from_pretrained(model_path) |
|
tokenizer = CpmAntTokenizer.from_pretrained(model_path) |
|
texts = ["今天天气不错,", "新年快乐,万事如意!"] |
|
expected_output = [ |
|
"今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的", |
|
"新年快乐,万事如意!在这辞旧迎新的美好时刻,我谨代表《农村新技术》杂志社全体同仁,向一直以来关心、支持《农村新技术》杂志发展的各级领导、各界朋友和广大读者致以最诚挚的", |
|
] |
|
model_inputs = tokenizer(texts, return_tensors="pt", padding=True) |
|
token_ids = model.generate(**model_inputs) |
|
output_texts = tokenizer.batch_decode(token_ids) |
|
self.assertEqual(expected_output, output_texts) |
|
|