|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import unittest |
|
|
|
from transformers import BloomConfig, is_torch_available |
|
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device |
|
|
|
from ...generation.test_utils import GenerationTesterMixin |
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import ( |
|
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, |
|
BloomForCausalLM, |
|
BloomForQuestionAnswering, |
|
BloomForSequenceClassification, |
|
BloomForTokenClassification, |
|
BloomModel, |
|
BloomTokenizerFast, |
|
) |
|
|
|
|
|
@require_torch |
|
class BloomModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=14, |
|
seq_length=7, |
|
is_training=True, |
|
use_token_type_ids=False, |
|
use_input_mask=True, |
|
use_labels=True, |
|
use_mc_token_ids=True, |
|
vocab_size=99, |
|
hidden_size=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=16, |
|
type_sequence_label_size=2, |
|
initializer_range=0.02, |
|
num_labels=3, |
|
num_choices=4, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_token_type_ids = use_token_type_ids |
|
self.use_input_mask = use_input_mask |
|
self.use_labels = use_labels |
|
self.use_mc_token_ids = use_mc_token_ids |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_dropout_prob = attention_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.type_sequence_label_size = type_sequence_label_size |
|
self.initializer_range = initializer_range |
|
self.num_labels = num_labels |
|
self.num_choices = num_choices |
|
self.scope = None |
|
self.bos_token_id = vocab_size - 1 |
|
self.eos_token_id = vocab_size - 1 |
|
self.pad_token_id = vocab_size - 1 |
|
|
|
def get_large_model_config(self): |
|
return BloomConfig.from_pretrained("bigscience/bloom") |
|
|
|
def prepare_config_and_inputs(self, gradient_checkpointing=False): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
sequence_labels = None |
|
if self.use_labels: |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
|
|
config = self.get_config(gradient_checkpointing=gradient_checkpointing) |
|
|
|
return (config, input_ids, input_mask, sequence_labels) |
|
|
|
def get_config(self, gradient_checkpointing=False, slow_but_exact=True): |
|
return BloomConfig( |
|
vocab_size=self.vocab_size, |
|
seq_length=self.seq_length, |
|
hidden_size=self.hidden_size, |
|
n_layer=self.num_hidden_layers, |
|
n_head=self.num_attention_heads, |
|
hidden_dropout=self.hidden_dropout_prob, |
|
attention_dropout=self.attention_dropout_prob, |
|
n_positions=self.max_position_embeddings, |
|
type_vocab_size=self.type_vocab_size, |
|
initializer_range=self.initializer_range, |
|
use_cache=True, |
|
bos_token_id=self.bos_token_id, |
|
eos_token_id=self.eos_token_id, |
|
pad_token_id=self.pad_token_id, |
|
num_labels=self.num_labels, |
|
gradient_checkpointing=gradient_checkpointing, |
|
slow_but_exact=slow_but_exact, |
|
dtype="float32", |
|
) |
|
|
|
def create_and_check_bloom_model(self, config, input_ids, input_mask, *args): |
|
model = BloomModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(input_ids) |
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(len(result.past_key_values), config.n_layer) |
|
|
|
def create_and_check_bloom_model_past(self, config, input_ids, input_mask, *args): |
|
model = BloomModel(config=config) |
|
|
|
model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True) |
|
outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids)) |
|
outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids)) |
|
|
|
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) |
|
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) |
|
|
|
past = outputs["past_key_values"] |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
|
|
output_from_no_past = model(next_input_ids)["last_hidden_state"] |
|
output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def create_and_check_bloom_model_attention_mask_past(self, config, input_ids, input_mask, *args): |
|
model = BloomModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) |
|
half_seq_length = self.seq_length // 2 |
|
attn_mask[:, half_seq_length:] = 0 |
|
|
|
|
|
output, past = model(input_ids, attention_mask=attn_mask).to_tuple() |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) |
|
|
|
|
|
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 |
|
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) |
|
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
attn_mask = torch.cat( |
|
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], |
|
dim=1, |
|
) |
|
|
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] |
|
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def create_and_check_bloom_model_past_large_inputs(self, config, input_ids, input_mask, *args): |
|
model = BloomModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
outputs = model(input_ids, attention_mask=input_mask, use_cache=True) |
|
|
|
output, past = outputs.to_tuple() |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) |
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) |
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] |
|
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past)[ |
|
"last_hidden_state" |
|
] |
|
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def create_and_check_lm_head_model(self, config, input_ids, input_mask, *args): |
|
model = BloomForCausalLM(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(input_ids, labels=input_ids) |
|
self.parent.assertEqual(result.loss.shape, ()) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
|
|
def create_and_check_sequence_classification_model(self, config, input_ids, input_mask, *args): |
|
config.num_labels = self.num_labels |
|
model = BloomForSequenceClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(input_ids, attention_mask=input_mask) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
def create_and_check_token_classification_model(self, config, input_ids, input_mask, *args): |
|
model = BloomForTokenClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(input_ids, attention_mask=input_mask) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) |
|
|
|
def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args): |
|
model = BloomForQuestionAnswering(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(input_ids, attention_mask=input_mask) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) |
|
|
|
def create_and_check_forward_and_backwards( |
|
self, config, input_ids, input_mask, *args, gradient_checkpointing=False |
|
): |
|
model = BloomForCausalLM(config) |
|
model.to(torch_device) |
|
if gradient_checkpointing: |
|
model.gradient_checkpointing_enable() |
|
|
|
result = model(input_ids, labels=input_ids) |
|
self.parent.assertEqual(result.loss.shape, ()) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
result.loss.backward() |
|
|
|
def create_and_check_bloom_weight_initialization(self, config, *args): |
|
model = BloomModel(config) |
|
model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer) |
|
for key in model.state_dict().keys(): |
|
if "c_proj" in key and "weight" in key: |
|
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) |
|
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
|
|
config, input_ids, input_mask, sequence_labels = config_and_inputs |
|
|
|
inputs_dict = {"input_ids": input_ids} |
|
|
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class BloomModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = ( |
|
( |
|
BloomModel, |
|
BloomForCausalLM, |
|
BloomForSequenceClassification, |
|
BloomForTokenClassification, |
|
BloomForQuestionAnswering, |
|
) |
|
if is_torch_available() |
|
else () |
|
) |
|
|
|
all_generative_model_classes = (BloomForCausalLM,) if is_torch_available() else () |
|
pipeline_model_mapping = ( |
|
{ |
|
"feature-extraction": BloomModel, |
|
"question-answering": BloomForQuestionAnswering, |
|
"text-classification": BloomForSequenceClassification, |
|
"text-generation": BloomForCausalLM, |
|
"token-classification": BloomForTokenClassification, |
|
"zero-shot": BloomForSequenceClassification, |
|
} |
|
if is_torch_available() |
|
else {} |
|
) |
|
fx_compatible = True |
|
test_missing_keys = False |
|
test_pruning = False |
|
test_torchscript = True |
|
|
|
def setUp(self): |
|
self.model_tester = BloomModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=BloomConfig, n_embd=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_bloom_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_bloom_model(*config_and_inputs) |
|
|
|
def test_bloom_model_past(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_bloom_model_past(*config_and_inputs) |
|
|
|
def test_bloom_model_att_mask_past(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_bloom_model_attention_mask_past(*config_and_inputs) |
|
|
|
def test_bloom_model_past_large_inputs(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_bloom_model_past_large_inputs(*config_and_inputs) |
|
|
|
def test_bloom_lm_head_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) |
|
|
|
def test_bloom_sequence_classification_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_sequence_classification_model(*config_and_inputs) |
|
|
|
def test_bloom_token_classification_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_token_classification_model(*config_and_inputs) |
|
|
|
def test_bloom_gradient_checkpointing(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) |
|
|
|
def test_bloom_weight_initialization(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_bloom_weight_initialization(*config_and_inputs) |
|
|
|
@unittest.skip("Bloom has a non-standard KV cache format.") |
|
def test_past_key_values_format(self): |
|
pass |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = BloomModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
@slow |
|
@require_torch_gpu |
|
def test_simple_generation(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path_560m = "bigscience/bloom-560m" |
|
model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").cuda() |
|
model = model.eval() |
|
tokenizer = BloomTokenizerFast.from_pretrained(path_560m) |
|
|
|
input_sentence = "I enjoy walking with my cute dog" |
|
|
|
EXPECTED_OUTPUT = ( |
|
"I enjoy walking with my cute dog, and I love to watch the kids play with the kids. I am a very " |
|
"active person, and I enjoy working out, and I am a very active person. I am a very active person, and I" |
|
) |
|
|
|
input_ids = tokenizer.encode(input_sentence, return_tensors="pt") |
|
greedy_output = model.generate(input_ids.cuda(), max_length=50) |
|
|
|
self.assertEqual(tokenizer.decode(greedy_output[0], skip_special_tokens=True), EXPECTED_OUTPUT) |
|
|
|
@slow |
|
@require_torch_gpu |
|
def test_batch_generation(self): |
|
path_560m = "bigscience/bloom-560m" |
|
model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").cuda() |
|
model = model.eval() |
|
tokenizer = BloomTokenizerFast.from_pretrained(path_560m, padding_side="left") |
|
|
|
input_sentence = ["I enjoy walking with my cute dog", "I enjoy walking with my cute dog"] |
|
|
|
input_ids = tokenizer.batch_encode_plus(input_sentence, return_tensors="pt", padding=True) |
|
greedy_output = model.generate( |
|
input_ids["input_ids"].cuda(), attention_mask=input_ids["attention_mask"], max_length=50, do_sample=False |
|
) |
|
|
|
self.assertEqual( |
|
tokenizer.decode(greedy_output[0], skip_special_tokens=True), |
|
tokenizer.decode(greedy_output[1], skip_special_tokens=True), |
|
) |
|
|
|
@slow |
|
@require_torch_gpu |
|
def test_batch_generation_padd(self): |
|
path_560m = "bigscience/bloom-560m" |
|
model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").cuda() |
|
model = model.eval() |
|
tokenizer = BloomTokenizerFast.from_pretrained(path_560m, padding_side="left") |
|
|
|
input_sentence = ["I enjoy walking with my cute dog", "Hello my name is"] |
|
input_sentence_without_pad = "Hello my name is" |
|
|
|
input_ids = tokenizer.batch_encode_plus(input_sentence, return_tensors="pt", padding=True) |
|
input_ids_without_pad = tokenizer.encode(input_sentence_without_pad, return_tensors="pt") |
|
|
|
greedy_output = model.generate( |
|
input_ids["input_ids"].cuda(), attention_mask=input_ids["attention_mask"], max_length=50, do_sample=False |
|
) |
|
greedy_output_without_pad = model.generate(input_ids_without_pad.cuda(), max_length=50, do_sample=False) |
|
|
|
|
|
self.assertEqual(greedy_output[-1, 3:].tolist(), greedy_output_without_pad[0, :-3].tolist()) |
|
|
|
|
|
self.assertEqual( |
|
tokenizer.decode(greedy_output[-1, 3:], skip_special_tokens=True), |
|
tokenizer.decode(greedy_output_without_pad[0, :-3], skip_special_tokens=True), |
|
) |
|
|
|
|
|
@require_torch |
|
class BloomEmbeddingTest(unittest.TestCase): |
|
""" |
|
The goal here is to compare the embeddings generated by the model trained |
|
using Megatron-LM with the one from the transformers library, with a small GPT2-like model |
|
to ensure that the conversion from Megatron-LM to transformers has been done successfully. |
|
The script compares the logits of the embedding layer and the transformer layers. |
|
|
|
WARNING: It is expected that these logits will not have exactly the same statistics when running |
|
the code on CPU or GPU. For more info, please visit: |
|
- https://github.com/pytorch/pytorch/issues/76052#issuecomment-1103193548 |
|
- https://discuss.pytorch.org/t/reproducibility-issue-between-intel-and-amd-cpus/144779/9 |
|
|
|
|
|
You need to install tokenizers following this readme: |
|
- https://huggingface.co/bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles |
|
|
|
Tokenizer used during training: |
|
- https://huggingface.co/bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles |
|
|
|
# TODO change the script (or just add skip) when building the env with tokenizers 0.12.0 |
|
""" |
|
|
|
def setUp(self): |
|
super().setUp() |
|
self.path_bigscience_model = "bigscience/bigscience-small-testing" |
|
|
|
@require_torch |
|
def test_embeddings(self): |
|
|
|
model = BloomForCausalLM.from_pretrained(self.path_bigscience_model, torch_dtype="auto") |
|
model.eval() |
|
|
|
EMBEDDINGS_DS_BEFORE_LN_BF_16_MEAN = { |
|
3478: 0.0002307891845703125, |
|
368: -0.000568389892578125, |
|
109586: -0.0003910064697265625, |
|
35433: -0.000194549560546875, |
|
2: 0.0004138946533203125, |
|
77: 0.000659942626953125, |
|
132619: -0.00031280517578125, |
|
2175: 0.000457763671875, |
|
23714: 0.000263214111328125, |
|
73173: -0.000286102294921875, |
|
144252: 0.00052642822265625, |
|
} |
|
EMBEDDINGS_DS_BEFORE_LN_BF_16_MIN = { |
|
3478: -0.00921630859375, |
|
368: -0.010009765625, |
|
109586: -0.01031494140625, |
|
35433: -0.01177978515625, |
|
2: -0.0074462890625, |
|
77: -0.00848388671875, |
|
132619: -0.009521484375, |
|
2175: -0.0074462890625, |
|
23714: -0.0145263671875, |
|
73173: -0.007415771484375, |
|
144252: -0.01007080078125, |
|
} |
|
EMBEDDINGS_DS_BEFORE_LN_BF_16_MAX = { |
|
3478: 0.0128173828125, |
|
368: 0.01214599609375, |
|
109586: 0.0111083984375, |
|
35433: 0.01019287109375, |
|
2: 0.0157470703125, |
|
77: 0.0174560546875, |
|
132619: 0.0078125, |
|
2175: 0.0113525390625, |
|
23714: 0.0146484375, |
|
73173: 0.01116943359375, |
|
144252: 0.01141357421875, |
|
} |
|
EMBEDDINGS_DS_BEFORE_LN_BF_16_SUM = {"value": 0.08203125} |
|
|
|
EMBEDDINGS_DS_BEFORE_LN_F_16_MEAN = { |
|
132619: -0.00031256675720214844, |
|
3478: 0.00023090839385986328, |
|
368: -0.0005702972412109375, |
|
109586: -0.00039124488830566406, |
|
35433: -0.000194549560546875, |
|
2: 0.0004146099090576172, |
|
2175: 0.0004572868347167969, |
|
23714: 0.00026416778564453125, |
|
73173: -0.0002865791320800781, |
|
144252: 0.0005254745483398438, |
|
77: 0.0006618499755859375, |
|
} |
|
EMBEDDINGS_DS_BEFORE_LN_F_16_MIN = { |
|
3478: -0.00921630859375, |
|
368: -0.010009765625, |
|
109586: -0.01031494140625, |
|
35433: -0.01177978515625, |
|
2: -0.0074462890625, |
|
77: -0.00848388671875, |
|
132619: -0.009521484375, |
|
2175: -0.0074462890625, |
|
23714: -0.0145263671875, |
|
73173: -0.007415771484375, |
|
144252: -0.01007080078125, |
|
} |
|
EMBEDDINGS_DS_BEFORE_LN_F_16_MAX = { |
|
3478: 0.0128173828125, |
|
368: 0.01214599609375, |
|
109586: 0.0111083984375, |
|
35433: 0.01019287109375, |
|
2: 0.0157470703125, |
|
77: 0.0174560546875, |
|
132619: 0.0078125, |
|
2175: 0.0113525390625, |
|
23714: 0.0146484375, |
|
73173: 0.01116943359375, |
|
144252: 0.01141357421875, |
|
} |
|
EMBEDDINGS_DS_BEFORE_LN_F_16_SUM = {"value": 0.0821533203125} |
|
|
|
EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN = { |
|
132619: -0.00031267106533050537, |
|
3478: 0.00023087859153747559, |
|
368: -0.0005701072514057159, |
|
109586: -0.0003911703824996948, |
|
35433: -0.0001944899559020996, |
|
2: 0.0004146844148635864, |
|
2175: 0.00045740045607089996, |
|
23714: 0.0002641640603542328, |
|
73173: -0.0002864748239517212, |
|
144252: 0.0005256589502096176, |
|
77: 0.0006617321632802486, |
|
} |
|
EMBEDDINGS_DS_BEFORE_LN_F_32_MIN = { |
|
3478: -0.00921630859375, |
|
368: -0.010009765625, |
|
109586: -0.01031494140625, |
|
35433: -0.01177978515625, |
|
2: -0.0074462890625, |
|
77: -0.00848388671875, |
|
132619: -0.009521484375, |
|
2175: -0.0074462890625, |
|
23714: -0.0145263671875, |
|
73173: -0.007415771484375, |
|
144252: -0.01007080078125, |
|
} |
|
EMBEDDINGS_DS_BEFORE_LN_F_32_MAX = { |
|
3478: 0.0128173828125, |
|
368: 0.01214599609375, |
|
109586: 0.0111083984375, |
|
35433: 0.01019287109375, |
|
2: 0.0157470703125, |
|
77: 0.0174560546875, |
|
132619: 0.0078125, |
|
2175: 0.0113525390625, |
|
23714: 0.0146484375, |
|
73173: 0.01116943359375, |
|
144252: 0.01141357421875, |
|
} |
|
EMBEDDINGS_DS_BEFORE_LN_F_32_SUM = {"value": 0.08217757940292358} |
|
|
|
TEST_EMBEDDINGS = { |
|
"torch.bfloat16": { |
|
"mean": EMBEDDINGS_DS_BEFORE_LN_BF_16_MEAN, |
|
"max": EMBEDDINGS_DS_BEFORE_LN_BF_16_MAX, |
|
"min": EMBEDDINGS_DS_BEFORE_LN_BF_16_MIN, |
|
"sum": EMBEDDINGS_DS_BEFORE_LN_BF_16_SUM, |
|
}, |
|
"torch.float32": { |
|
"mean": EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN, |
|
"max": EMBEDDINGS_DS_BEFORE_LN_F_32_MAX, |
|
"min": EMBEDDINGS_DS_BEFORE_LN_F_32_MIN, |
|
"sum": EMBEDDINGS_DS_BEFORE_LN_F_32_SUM, |
|
}, |
|
"torch.float": { |
|
"mean": EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN, |
|
"max": EMBEDDINGS_DS_BEFORE_LN_F_32_MAX, |
|
"min": EMBEDDINGS_DS_BEFORE_LN_F_32_MIN, |
|
"sum": EMBEDDINGS_DS_BEFORE_LN_F_32_SUM, |
|
}, |
|
"torch.float16": { |
|
"mean": EMBEDDINGS_DS_BEFORE_LN_F_16_MEAN, |
|
"max": EMBEDDINGS_DS_BEFORE_LN_F_16_MAX, |
|
"min": EMBEDDINGS_DS_BEFORE_LN_F_16_MIN, |
|
"sum": EMBEDDINGS_DS_BEFORE_LN_F_16_SUM, |
|
}, |
|
} |
|
|
|
|
|
EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478] |
|
|
|
|
|
EMBEDDINGS_DS_AFTER_LN_MEAN = { |
|
3478: -6.580352783203125e-05, |
|
368: 0.0001316070556640625, |
|
109586: -0.00030517578125, |
|
35433: 4.00543212890625e-05, |
|
2: -7.2479248046875e-05, |
|
77: -8.96453857421875e-05, |
|
132619: 0.0001583099365234375, |
|
2175: 2.1219253540039062e-05, |
|
23714: -0.000247955322265625, |
|
73173: -0.00021839141845703125, |
|
144252: -0.0001430511474609375, |
|
} |
|
EMBEDDINGS_DS_AFTER_LN_MIN = { |
|
3478: -1.6953125, |
|
368: -1.6875, |
|
109586: -1.6875, |
|
35433: -2.125, |
|
2: -1.390625, |
|
77: -1.5390625, |
|
132619: -1.875, |
|
2175: -1.4609375, |
|
23714: -2.296875, |
|
73173: -1.3515625, |
|
144252: -1.78125, |
|
} |
|
EMBEDDINGS_DS_AFTER_LN_MAX = { |
|
3478: 2.265625, |
|
368: 2.28125, |
|
109586: 1.953125, |
|
35433: 1.90625, |
|
2: 2.703125, |
|
77: 2.828125, |
|
132619: 1.65625, |
|
2175: 2.015625, |
|
23714: 2.234375, |
|
73173: 2.171875, |
|
144252: 1.828125, |
|
} |
|
|
|
EMBEDDINGS_DS_AFTER_LN = { |
|
"mean": EMBEDDINGS_DS_AFTER_LN_MEAN, |
|
"min": EMBEDDINGS_DS_AFTER_LN_MIN, |
|
"max": EMBEDDINGS_DS_AFTER_LN_MAX, |
|
} |
|
|
|
tensor_ids = torch.LongTensor([EXAMPLE_IDS]) |
|
with torch.no_grad(): |
|
embeddings = model.transformer.word_embeddings(tensor_ids) |
|
embeddings_ln = model.transformer.word_embeddings_layernorm(embeddings) |
|
|
|
output_dict = {"min": {}, "max": {}, "mean": {}, "sum": {"value": embeddings.sum().item()}} |
|
for i, idx in enumerate(EXAMPLE_IDS): |
|
output_dict["min"][idx] = embeddings.min(dim=-1).values[0][i].item() |
|
output_dict["max"][idx] = embeddings.max(dim=-1).values[0][i].item() |
|
output_dict["mean"][idx] = embeddings.mean(dim=-1)[0][i].item() |
|
|
|
for key in TEST_EMBEDDINGS[str(model.dtype)].keys(): |
|
self.assertDictEqual(TEST_EMBEDDINGS[str(model.dtype)][key], output_dict[key]) |
|
|
|
output_dict_norm = {"min": {}, "max": {}, "mean": {}} |
|
for i, idx in enumerate(EXAMPLE_IDS): |
|
output_dict_norm["min"][idx] = embeddings_ln.min(dim=-1).values[0][i].item() |
|
output_dict_norm["max"][idx] = embeddings_ln.max(dim=-1).values[0][i].item() |
|
output_dict_norm["mean"][idx] = embeddings_ln.mean(dim=-1)[0][i].item() |
|
|
|
|
|
for i, key in enumerate(output_dict_norm.keys()): |
|
for j, idx in enumerate(output_dict[key].keys()): |
|
self.assertAlmostEqual(EMBEDDINGS_DS_AFTER_LN[key][idx], output_dict_norm[key][idx], places=1) |
|
|
|
@require_torch |
|
def test_hidden_states_transformers(self): |
|
cuda_available = torch.cuda.is_available() |
|
model = BloomModel.from_pretrained(self.path_bigscience_model, use_cache=False, torch_dtype="auto").to( |
|
torch_device |
|
) |
|
model.eval() |
|
|
|
|
|
EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478] |
|
|
|
|
|
MEAN_VALUE_LAST_LM = -4.3392181396484375e-05 |
|
MIN_MAX_DICT = {"min": -2.0625, "max": 2.75} |
|
tensor_ids = torch.LongTensor([EXAMPLE_IDS]) |
|
|
|
with torch.no_grad(): |
|
logits = model(tensor_ids.to(torch_device)) |
|
output_dict = { |
|
"min": logits.last_hidden_state.min(dim=-1).values[0][0].item(), |
|
"max": logits.last_hidden_state.max(dim=-1).values[0][0].item(), |
|
} |
|
|
|
if cuda_available: |
|
self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=4) |
|
else: |
|
self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=3) |
|
|
|
self.assertDictEqual(MIN_MAX_DICT, output_dict) |
|
|
|
@require_torch |
|
def test_logits(self): |
|
cuda_available = torch.cuda.is_available() |
|
model = BloomForCausalLM.from_pretrained(self.path_bigscience_model, use_cache=False, torch_dtype="auto").to( |
|
torch_device |
|
) |
|
model.eval() |
|
|
|
|
|
EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478] |
|
|
|
|
|
MEAN_LOGITS_GPU_1 = -1.823902130126953e-05 |
|
MEAN_LOGITS_GPU_2 = 1.9431114196777344e-05 |
|
|
|
tensor_ids = torch.LongTensor([EXAMPLE_IDS]).to(torch_device) |
|
with torch.no_grad(): |
|
output = model(tensor_ids).logits |
|
|
|
output_gpu_1, output_gpu_2 = output.split(125440, dim=-1) |
|
if cuda_available: |
|
self.assertAlmostEqual(output_gpu_1.mean().item(), MEAN_LOGITS_GPU_1, places=6) |
|
self.assertAlmostEqual(output_gpu_2.mean().item(), MEAN_LOGITS_GPU_2, places=6) |
|
else: |
|
self.assertAlmostEqual(output_gpu_1.mean().item(), MEAN_LOGITS_GPU_1, places=6) |
|
self.assertAlmostEqual(output_gpu_2.mean().item(), MEAN_LOGITS_GPU_2, places=6) |
|
|